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Abstract 

In the work described in this thesis, electrochemical sensors are designed and 

investigated for their potential use in the detection of metal ions in aqueous 

solutions. Firstly, the use of carbon-based nanomaterials commonly used in 

the construction of electrochemical sensors; multiwalled carbon nanotubes 

(MWCNTs) and graphene, were characterised using a potassium ferricyanide 

probe. The carbon nanomaterials were constructed using pencil style 

electrodes which were modified via drop-casting. Both carbon nanomaterials 

were used in their pristine form, simply cast from a DMF suspension. It was 

found that the electrode modified with sonicated MWCNTs possessed a 

greater electroactive surface area (0.377 cm2) and larger rate constant for 

electron transfer (2.579 × 10-3 cm s-1) than the electrode modified with 

graphene (0.092 cm2 and 8.160 × 10-4 cm s-1) therefore the MWCNTs modified 

electrode was further investigated for its use in the detection of Cr(VI). The 

electrode modified simply with pristine MWCNTs gave a limit of detection of 

1.95 × 10-4 M with reasonable selectivity in the detection of Cr(VI) using cyclic 

voltammetry. To further enhance the sensitivity of detection, various 

alterations were made to the construction of the electrode including the use of 

gold nanoparticles to modify oxidised MWCNTs. A lower limit of detection of 

Cr(VI) (1.20 × 10-6 M) was achieved at this modified electrode using constant 

potential amperometry and a rotating disk electrode, which is close to the 

mandatory limits set by the EPA (9.61 × 10-7 M). The detection of Cu(II) was 

also studied in this thesis. The construction of this sensor involved the 

modification of an electrode with a ligand, diethyldithiocarbamate (DDC) via 

its incorporation into a Nafion film. The electrochemical detection of Cu(II) at 

this sensor was based on its complexation to DDC and the cycling of Cu(II) to 

Cu(I). The detection mechanism was investigated using UV-vis spectroscopy 

and cyclic voltammetry. The limit of detection achieved in this preliminary 

sensor study was 5.40 × 10-5 M which is close to the mandatory limit set by the 

EPA of 3.20 × 10-5 M.  
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1.1 Introduction  

 

The aim of this research was to produce new electrochemical sensors for the 

potential detection of two specific metal ion pollutants; chromium, in the form 

of Cr(VI), and copper in the form of Cu(II). In this thesis, the use of carbon-

based nanomaterials in electrochemical sensors is investigated; namely 

multiwalled carbon nanotubes (MWCNTs) and graphene. The use of 

MWCNTs in the detection of both Cr(VI) and Cu(II) is explored and they are 

electrochemically characterised using a potassium ferricyanide probe. Many 

variations of a MWCNTs-based electrochemical sensor are explored in the 

detection of Cr(VI); namely the use of polymers and nanoparticles. In the 

detection of Cu(II), the use of ligand-metal complexation is investigated as a 

means of electrochemical detection and the use of MWCNTs to enhance the 

sensitivity of detection is explored.  

 

The experimental techniques used throughout this thesis are discussed in 

Chapter 2, with details on the preparation of each electrode and the analytical 

techniques used. This chapter provides a brief introduction to electrochemical 

sensors and their importance in metal ion detection with a brief review of the 

advances reported in the field to date. The nature of each material used is also 

discussed with reference to their use in electrochemical sensors. 

 

1.1.1 Metal Pollution 

 

In the 21st century, one of the most important challenges is still to supply 

clean, potable water worldwide. Although in Ireland, the water supply is of 

relatively good quality, in 2009 the EPA listed heavy metal pollutants, among 

others such as nitrates and PCPs, as a major threat to our drinking water 

supply.1 It is therefore crucial to develop sensitive, cheap and easy methods of 

monitoring water quality. Metal pollution in aquatic systems mostly occurs in 

areas of past mining or Industrial plants, however the natural geographical 

composition of the soil can also contribute to high levels of some metal ions in 
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some areas. Chromium is a metal pollutant that occurs naturally in the 

environment and is found in both its trivalent and hexavalent oxidation states 

in aquatic systems. It can be found naturally in soil in moderate 

concentrations, however, it is also a dangerous pollutant, which can be leached 

into groundwater from industries such as tanning, stainless steel production 

and metal finishing.2 The speciation of Cr(VI) in aqueous solutions can be seen 

in Figure 1.1, which illustrates that Cr(VI) primarily exists as H2CrO4 in acidic 

solutions (pH < 1.0). In solutions of approximately pH 1.0 to 6.0, the 

predominant species is HCrO4
-, and at significantly high concentrations (> 10-2 

g L-1), the Cr2O7
2- species prevails. In alkaline solutions (pH > 6.0) the CrO4

2- 

species is the predominant anion. 

 

 

Figure 1.1: Chromium speciation diagram showing the relative predominant 

species of Cr(VI) with respect to the pH of the solution. Diagram is adapted 

from the Atlas of Electrochemical Equilibria.3 

 

Chromium(VI) exists as highly toxic metal complexes that are well known for 

their contribution to a variety of health problems such as cancers,4 mucosal 

ulcerations5 and chronic dermatitis.6 The complexes are weakly adsorbed onto 

inorganic surfaces, therefore, they can readily be transported in soil and 

leached into water bodies far from the original sites of contamination.7 In 

acidic solutions, Cr(VI) complexes are very strong oxidising agents due to the 
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high redox potential of Cr(VI) at 1.33 V (vs. NHE), therefore, there is a need to 

ensure complete removal of chromium from industrial waste with sensitive 

monitoring of Cr(VI) in water sources.  

 

Copper is another naturally occurring metal that in high concentrations can 

cause serious health defects. It is found in its monovalent and divalent forms 

mostly and is an essential dietary requirement. In relatively high 

concentrations or with prolonged exposure, copper is known to cause 

organoleptic (taste) problems, can induce symptoms of severe food poisoning,8 

and is linked to cognitive impairment and Alzheimer’s disease.9, 10 Copper is 

often used in electrical and plumbing systems, and is known to corrode under 

certain circumstances, resulting in its leaching into soils and water sources.11, 12 

There are also areas with high concentrations of copper due to mining waste,13 

and the production of pigments and ceramics.14 As it is more toxic to fish and 

aquatic life with high levels of bioaccumulation, there is a strong need for its 

sensitive detection in aqueous systems. 

 

The need for metal ions such as Cr(VI) and Cu(II) to be monitored in Irish 

water was clearly outlined in The Water Quality (Dangerous Substances) 

Regulations by the EPA.15 The EPA has set a recommended limit of 9.6 x 10-7 M 

(50 µg L-1) chromium and 3.2 x 10-5 M (2 mg L-1) copper in Irish waters. The 

most common techniques used currently for detection of chromium and 

copper metal ions involve the ionisation of  the sample by inductively coupled 

plasma (ICP) and detection of the analyte using mass spectrometry (ICP-MS) 

or optical emission spectrometry (ICP-OES).1 Another method used to 

qualitatively monitor the presence of metal ions is x-ray fluorescence (XRF) 

combined with ICP-MS.16, 17 Unfortunately, these techniques are carried out 

off-site, are relatively expensive and cannot distinguish between the oxidation 

states of the metal, unless coupled with a chromatographic technique. The use 

of electrochemical sensors for the detection of metal ions in aqueous 

environments would potentially allow for on-site, real time monitoring of 

samples at a relatively low cost. 
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1.1.2 Electrochemical Sensors  

 

A sensor can be defined as a device that continuously provides information 

about the sample being analysed and an electrochemical sensor is a device that 

does so using the interaction of electricity with chemistry.18 There are many 

classifications of electrochemical sensors, such as; potentiometric sensors, 

which measure the difference between two potentials and amperometric 

sensors, which measure a current response. The first reported potentiometric 

sensor was the pH meter, which selectively detected the concentration of H+ 

ions using a glass electrode.19 Amperometric sensors are generally based on the 

sensitive detection of a species with the concentration of the species 

represented by a current response. One of the most common techniques used 

in electrochemical detection is voltammetry, where the current response is 

studied as a function of applied potential. This allows for good control over 

both the sensitivity and selectivity of the detection.  

 

Cyclic voltammetry is one of the most commonly used voltammetric 

techniques and is explained in great detail in Chapter 2. Briefly, it involves 

cycling the applied potential between two limits, allowing for the oxidation 

and reduction steps to be observed as peaks in the current. This technique is 

relatively simple and useful for the characterisation of the sample solution as 

well as the characterisation of the electrode itself. In the sensitive monitoring 

of an oxidation or reduction process, techniques such as constant potential 

amperometry (CPA) and differential pulse voltammetry (DPV) are often used. 

CPA involves the application of a potential suitable to complete the electron 

transfer reaction required, which is generally determined from cyclic 

voltammetry experiments. The oxidation or reduction reaction in this case is 

observed as a peak or trough in the amperogram. The sensitivity of this 

technique is often enhanced by the use of rotating disc electrodes (RDEs), 

which are also further detailed in Chapter 2. Briefly, they provide a constant 

flow of fresh analyte to the electrode surface from the bulk solution, thus 

removing the time-consuming restraint of diffusion. DPV is a technique that 
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operates by applying the potential in pulses (illustrated in Chapter 2) which 

removes the capacitive effect of current build up at the electrode surface. This 

allows for a more clear observation of faradaic processes, thus enhancing the 

sensitivity of detection.  

 

Many electrochemical sensors used in the detection of metal ions are based on 

stripping voltammetry. This involves the pre-concentration of the electrode 

with the target ion, and its subsequent deposition onto the electrode surface. 

The metal is then “stripped” from the electrode which is monitored using a 

sensitive technique such as DPV. Another common class of electrochemical 

sensor used in the detection of metal ions are ion selective electrodes (ISEs), 

which are potentiometric in nature. ISEs generally consist of a membrane that 

is tailored specifically to the individual analyte and the activity of the analyte is 

related to the changes measured in the potential.   

 

The most recent advancements in sensor applications have been the design of 

wearable sensors,20 for example where the sensor has been directly attached to 

the epidermis for the non-invasive monitoring of physiological responses such 

as the heart rate, developed by Kim et al.21 Other interesting advancements in 

this field include the production of flexible screen-printed sensors such as 

those reported by Chuang et al.22 for the detection of glucose, which were 

prepared using Nafion. The development of ultra light aerogel materials 

consisting of MWCNTs has also been reported by Zou et al.,23 with potential 

uses in pressure and chemical vapour sensing. 

 

One of the major advantages of electrochemical sensors is their ability to 

provide real-time, on-site information which is particularly useful for 

environmental monitoring.24, 25 Current research in the area of electrochemical 

sensing in aquatic environments involves the use of flow-systems to enable 

remote sensing with automatic, controllable measurements and simple data 

collection. In recent years, advancements have been made in this area, such as 

in the development of microfluidic systems; in particular the work by Prof 
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Diamond’s group26, 27, 28 in the construction of on-site detection systems for 

environmental monitoring has introduced a means of employing 

electrochemical sensors in this field. The benefits of these systems are 

highlighted by Feier et al.,29 for example, who have developed a flow-analysis 

sensor for the detection of zinc at a graphite-felt electrode. The authors have 

stated that the flow system allowed for increased mass transport to the 

electrode surface. Impressively, Noyhouzer et al.30 recently described a system 

designed to implement the use of most commercially available sensors. They 

designed a light-weight system consisting of less than 10 parts (half that of 

standard systems), including an 11.45 µL measuring chamber, making it easy to 

clean with minimal sealing and contamination issues.  

 

1.2 Materials used in the Detection of Heavy Metal Ions 

 

The detection of metal ions at bare substrates is generally avoided due to bio 

fouling and corrosion issues. To avoid such problems, and to improve the 

selectivity and sensitivity at some electrodes, a wide range of materials have 

been studied for their ability to detect metal ions in aquatic systems. These 

materials include coatings such as polymers, membranes as well as 

nanomaterials and chelating agents.  

 

1.2.1 Carbon based Nanomaterials 

 

Carbon has long been known to form various stable structures such as 

diamond and graphite however, the interest of scientists in carbon based 

nanomaterials is said to originate from the synthesis of the 

buckminsterfullerene, C60, in 1985.31 This spherical fullerene molecule consists 

of twenty hexagons and twelve pentagons, taking the shape of a soccer ball. 

C60 is extremely stable and it is known to behave similarly to an electron-

deficient alkene, and reacts readily with electron-rich molecules. In 2001, 

Csiszar et al.32 used C60 in the modification of an electrochemical sensor 

showing its potential use in the detection of Cytochrome-C. The development 
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of C60 fuelled the interest in finding other allotropes of carbon,33 and lead to 

the use of arc vapour deposition to produce C60, a technique similar to that 

later used by Iijima in 199134 in his discovery of carbon nanotubes. Although 

graphene had been long discussed by theoretical physicists, it was not 

discovered until 2004 by Andre Geim and Konstantin Novoselov using the 

scotch-tape method.35 Both materials have since been the subject of many 

advances in synthetic and physical chemistry. The electrochemical properties 

of pristine MWCNTs and graphene, drop-cast on an electrode, are compared 

in Chapter 3 of this thesis, and the MWCNTs are used in the sensing of Cr(VI) 

in Chapter 4.  

 

1.2.1.1 Carbon Nanotubes 

 

1.2.1.1.1 Structural and Electronic/Electrochemical Properties of 

 Carbon Nanotubes 

 

Carbon nanotubes are rolled up sheets of graphene, or sp2 hybridised carbon 

sheets with a helical structure that provides a length to diameter ratio greater 

than any other material. They are produced using various methods such as the 

electric arc discharge process which involves the sublimation of carbon under 

inert atmospheres or chemical vapour deposition (CVD) with the use of metal 

catalysts.36, 37 They are produced as either single or multi walled nanotubes, 

both with a large aspect ratio, which is illustrated in Figure 1.2. For the purpose 

of this thesis, only multiwalled carbon nanotubes will be discussed herein. 
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(a)   (b) 

   

 

Figure 1.2: Schematic representation of (a) the sp2 hybridised structure of 

carbon nanotubes and (b) a simplified structure of a MWCNT, highlighting its 

length to diameter ratio. 

 

Multiwalled carbon nanotubes (MWCNTs) have been shown to exhibit 

extraordinary properties such as immense surface area, great mechanical 

strength,38 large capacitance39, 40 and high conductivity.41 Most importantly for 

their use in electrochemical sensors are the ballistic transport properties giving 

rise to fast electron transfer of the material.42, 43 Recently, Borowiec et al.44 

have shown the sensitive detection of ketoconazole at a MWCNTs sensor, with 

impressive enhancements in the current response owed to the increase active 

surface area provided by the MWCNTs and thermodynamically improved 

electron transfer which they attributed to the inherent properties of the 

MWCNTs. These fast electron transfer properties of carbon nanotubes have 

been much studied with many reports that the defects in the nanotube 

structure and oxygenated ends of the nanotubes are responsible for the 

observed properties.45, 46 In 2003, Wu et al.47 showed the detection of 

dopamine and serotonin at a MWCNTs modified electrode with increased 

current responses and a decrease in the over-potentials. This resulted in their 

simultaneous detection, as the peaks for both neurotransmitters were well 

separated. The large surface area, fast electron transport and electrocatalytic 

activity of the edge planes of MWCNTs were also acknowledged by Liu et al.48 

in the detection of thiocholine at a MWCNTs modified electrode. 

 

 



Chapter 1 
 

9 
 

MWCNTs are also known to have a mesoporous structure that is of particular 

benefit in the formation of composites, such as the MWCNTs/Polysulfone film 

reported by Sanches et al.49 that showed a significant increase in the porosity 

of the film which in turn decreased its elasticity and hardness. The 

mesoporous structure of the MWCNTs describes pores of 2 to 50 nm in 

diameter which are inherent to MWCNTs (intraparticle mesopores) and also 

that arise between networked tubes (interparticle mesopores).The mesoporous 

structure of MWCNTs has also been shown to influence the wettability of its 

composites and of electrodes modified directly with MWCNTs. In particular, 

studies by Kwok-Siong et al.50 have shown a decrease in contact angle with 

increasing thickness of a PpyMWCNTs film. They attribute this increased 

hydrophilicity to an increase in the surface roughness of the film caused by the 

presence of MWCNTs. Similarly, Choi et al.51 have reported the increase in 

hydrophilicity of a MWCNTs/Polysulfone membrane with increasing 

MWCNTs content. 

 

1.2.1.1.2 The use of MWCNTs in Electrochemical Sensors 

 

Although they have the ability to adsorb large amounts of water, all graphitic 

carbon nanostructures are inherently hydrophobic in nature. 52  The utilisation 

of MWCNTs in electrochemical applications therefore, requires the production 

of homogenously dispersed solutions in water or polar organic solvents as 

nanotubes are known to aggregate and readily form clusters.53, 54 The 

interactions between nanotubes are described as “soft” forces and are 

described in the well established Derjaguin, Landau, Verwey and Overbeek 

(DLVO) theory.55, 56 This theory is based on the stability of lyophobic 

dispersions (dispersions of particles that are not surrounded by solvent layers) 

and assumes a balance between the repulsive and attractive potential energies 

of interaction of the dispersed particles. Repulsive energies are proposed to be 

due to particle-solvent interactions whereas attractive energies are believed to 

be caused by van der Waal forces between the particles. To disperse the 

particles, these attractive energies must be overcome. There are three main 
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methods to form carbon nanotube dispersions: (i) the use of aqueous 

surfactant solutions, (ii) the use of polar organic solvents and (iii) the 

modification of carbon nanotubes to make the surface more hydrophilic and 

then their dispersion in aqueous solutions. 

 

The use of surfactants to disperse carbon nanotubes has therefore been widely 

studied over the past decade or so.57, 58, 59, 60, 61 Islam et al.59 compared the use 

of various surfactants such as sodium dodecyl benzene sulfonate (NaDDBS), 

Triton X-100 (TX100) and sodium dodecyl sulfate (SDS) at various weight 

fractions of single walled carbon nanotubes. They postulated that the 

stabilisation of nanotubes occurred in their solutions as hemi micelles 

sheathed the surface of the tubes. Results found by this group indicated that 

NaDDBS provided the most reliable nanotube dispersion, i.e. the solution 

remained free of aggregate bundles for over 2 months. This was explained by 

the benzyl component of the surfactant improving the dispersion of the 

nanotubes as π-stacking interactions increases the binding and surface 

coverage of the surfactants on the nanotubes. The mode of adsorption of 

surfactant molecules on the surface of carbon nanotubes has not yet been 

confirmed however, models have been proposed for a vertical monolayer of 

adsorbed molecules with the anionic head groups extended to the aqueous 

phase.60 The researchers also suggest that surfactant molecules may block off 

charge transport through MWCNT networks and recommend minimal use of 

such molecules for electronic applications.  

 

Organic solvents such as N,N-dimethylformamide (DMF) and N-

methylpyrrolidine (NMP) have consequently been used in the dispersion of 

nanotubes, providing well dispersed, clean nanotubes.62, 63 Stable, homogenous 

samples of nanotubes are provided in solutions such as DMF by industrial 

suppliers such as NanoLab64 and are widely used in the current literature.65, 66, 

67, 68 In particular, Nguyen et al.69 showed the beneficial effects of dispersing 

MWCNTs in DMF, using UV-vis, FT-IR and Raman spectroscopy. 
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The modification of carbon nanotubes is generally carried out using acid 

treatment, with further modification also performed in some cases.70 Acid 

treatment of carbon nanotubes is performed by refluxing the pristine 

nanotubes in a mixture of concentrated acids, such as HNO3 and H2SO4 and is 

known to result in the oxidation of the carbon nanotubes resulting in 

carboxylate and carbonyl functional groups at the edge-plane defects of the 

cylindrical structures.64 This method of functionalisation generally results in 

great improvement to the dispersion of carbon nanotubes in aqueous 

solutions. The harshness of this treatment however, has been shown to result 

in severe damage to their structure, for example drastically decreasing their 

length to diameter ratio.71, 72  

 

The use of MWCNTs in electrochemical sensors ranges widely from the use of 

pristine nanotubes to those that have been highly functionalised. Recently, 

Han et al.73 have reported on the growth of well-aligned MWCNTs on 

patterned Si substrates and the subsequent electrochemical functionalisation 

produced oxygen containing groups. The antibodies of microcystin LR (MC-

LR) were added to the surface. The resulting electrode was highly effective at 

detecting the toxin MC-LR in the range of 0.05 to 20 µg L-1. Moreover, Chebil 

et al.74 have demonstrated the use of MWCNTs functionalised with an nitro-

triacetic acid Cu(II) complex and a His-tag D-dimer antibody to 

electrochemically monitor D-dimers (products of a fibrin degradation). Both of 

these biosensor papers accredited the electronic properties and large surface 

area of MWCNTs for the efficiency of detection achieved. 

 

The use of metal nanoparticles and nanostructures in electrochemical sensing 

has also been receiving a lot of attention. Recently, Wang et al.75 reported the 

detection of 1 µg L-1 Cu(II) and Pb(II) at a micro-sensor using square wave 

voltammetry. They utilised gold nanoparticles to increase the electroactive 

surface area of the modified electrode by 1.5 fold. The sensitive detection of the 

metal ions in this work was based on their complexation to cross-linked L-

cysteine and L-aspartic acid which also showed good selectivity in the 
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presence of common interferants such as Ni(II), Co(II) and Cd(II). 

Advancements in the electrochemical detection of Cr(VI) include those from 

Ouyang et al.76 who have fabricated gold nano-particles in a flower-like 

assembly, modified with pyridinium achieving detection of 2.9 ng L-1 Cr(VI). 

 

Much advancement in the use of MWCNTs has exploited their large surface 

area by decorating them with such metal nanoparticles to further enhance the 

surface are of the modified material and its conductivity.77 78 Lu et al.,79 for 

example, have demonstrated sensitive and selective detection of Hg(II) using a 

MWCNTs modified electrode containing gold nanoparticles and DNA. They 

have attributed the amplitude of the signal for the detection of Hg(II) to the 

large surface area of the MWCNTs. Zhang et al.80 have also shown the use of 

MWCNTs and gold nanoparticles to be beneficial in electrochemical sensing. 

This group found enhanced sensitivity and good selectivity in the detection of 

Nitrite.  

 

1.2.1.2 Graphene 

 

1.2.1.2.1 The Structural and Electronic/Electrochemical Properties of 

 Graphene 

 

Graphene was discovered in 2004 by Andre Geim and Konstantin Novoselov81 

who won a Nobel Prize in 2010 for their work on the two dimensional sheet of 

carbon. In Figure 1.3 (a), the general structure of a graphene sheet is 

illustrated, showing the irregular curves which are known to form folds in the 

graphene sheets. The structure of the molecule can be seen in Figure 1.3 (b) 

showing the sp2 hybridized carbon atoms arranged in a hexagonal form.  

 

It is reported that the partially filled π-orbitals of graphene provide 

phenomenal electronic properties making it a zero-gap semiconductor whose 

charge carriers are mass less Dirac fermions and whose mobilities can exceed 

15,000 cm2 V-1 s-1.82,35 Gooding et al.83  published a review in 2010 comparing 
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carbon nanotubes to graphene for their use as a biosensor material, with some 

of  the  advantages of graphene over carbon nanotubes being the ease of 

assembly and low noise levels.  

 

(a)     

 

(b) 

 

 

 

Figure 1.3: Schematic representation of graphene highlighting (a) a single 

graphene sheet84 and (b) its basic sp2 hybridised structure.84 
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In 2009, Ohno et al. 85 were the first to propose a sensing device using single 

layer graphene for pH detection and protein adsorption, making use of its 

electronic properties. Also in 2009 Pumera86 published a report on the 

electrochemistry of graphene, suggesting it as a competitor for carbon 

nanotubes due to its large surface area, high conductivity and low levels of 

impurities. In 2010, Kang et al.87 described a sensor modified with 

functionalised graphene, by the drop-cast method, for the sensitive detection 

of paracetamol. Reports by Wang et al.88 have attributed the selective 

detection of dopamine in the presence of ascorbic acid at a graphene-modified 

sensor, to the π-π interactions between dopamine and graphene. The authors 

suggest the better performance of graphene to that seen at a CNT modified 

electrode is due, in this case to its unique planar structure and high quality sp2 

hybridised carbon.  

 

1.2.1.2.2 The use of Graphene in Electrochemical Sensors 

 

The use of graphene in electronic devices requires the formation of well 

dispersed suspensions, however, similarly to carbon nanotubes, graphene 

sheets are known to aggregate, forming stacks via the π-orbitals, as illustrated 

in Figure 1.4. This leads to the formation of bi-layer and multi-layer graphene 

and at a certain level of stacking (100 layers according to Pumera et al.86) it 

becomes graphite, which does not possess the impressive properties of single-

layer graphene, such as the enormous surface area with respect to its weight. 

To overcome stacking, similarly to MWCNTs, graphene is often treated with 

surfactants and sonication is often employed to disperse the suspensions. In 

particular, work by Keeley et al.61 has shown the production of nano-graphene 

sheets using sonication in DMF for use in the electrochemical detection of 

ascorbic acid. They have shown the electrochemical surface area of the 

modified electrode to be 0.15 cm2 using a hexaammineruthenium(III) chloride 

redox probe.  They estimated that the sheets consisted of 5 layers (or fewer) of 

carbon atoms.  
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Si and Samulski89 have used a more elaborate method of separating individual 

graphene sheets by their modification with platinum nanoparticles. The 

authors describe the mechanical exfoliation of graphene suspensions by 

introducing nanoparticles to a dispersed solution, which inhibits the re-

stacking of the graphene sheets upon drying. Using this method, they found 

an increase in the surface area (calculated using the BET theory) of the 

modified electrode by approximately 20 fold, and calculated that the samples 

were limited to approximately 3 layers of graphene re-stacked in comparison 

to 60 layers in samples without the Pt nanoparticles. In 2012, Wang et al.90 

showed a further improvement of this method by the modification of graphene 

oxide sheets with carbon nanoparticles. They found excellent separation with 

this method that they calculated limited only two layers of graphene to re-

stack in comparison to 40 layers in their non-modified sample.  

  

  

 

Figure 1.4: Illustration of the stacking of graphene sheets.  

 

Current investigations into the material include its adsorption and desorption 

characteristics,91 and the formation of composite materials from graphene such 

as hydrogels.92 Most recently, Rajesh et al.93 have reported on the formation of 

hybrid materials of graphene with nanostructured platinum and carbon 

nanotubes for the oxidation of methanol. They characterise their material 

vertically grown carbon nanotubes from a single layer of graphene, resulting in 

a three-dimensional material that they modify with the electrochemical 

deposition of platinum nanoparticles.  
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1.2.2 Metal Chelators 

 

Metal chelation is a term that refers to the coordination of a metal ion to a 

binding molecule known as a chelator, to form a stable, insoluble product. 

Chelators are generally either macro-cyclic or non-macro-cyclic. The macro-

cyclic class of chelators includes crown ethers and cyclodextrins, among 

others, which have been reported to coordinate to a species via the formation 

of a host-guest complex. This requires the guest molecule (e.g. metal ion) to 

become localised to the “cavity” of the host molecule or macro-cycle.94, 95 This 

makes the complex formation selective for analytes of a specific size. El Shal et 

al.,96 for example have recently reported on the fabrication of carbon paste 

electrode modified with β-cyclodextrin for the sensitive detection of 

Gemifloxacin and Nadifloxacin. The authors reported limits of detection of 1.2 

× 10-8 and 1.0 × 10-8 M respectively for the anti-bacterial agents using DPV 

stripping voltammetry with an accumulation time of 2 min. Recent reports on 

the use of crown ethers include that from Cheraghi et al.97 who describe the 

use of carbon paste electrode modified with dicyclohexyl-18-crown-6 for the 

detection of Tl(I). These authors reported a limit of detection of 0.86 ng mL-1 

also using DPV stripping voltammetry and a deposition time of 5 min.  

 

In the case of non macro-cyclic chelators, some of the most commonly studied 

agents are thiols,98 neutral pyridines99 and Schiff bases.100  Recent reports on 

the use of Schiff bases in electrochemical sensing of metal ions include that by 

Kucukkollbasi et al.101 who synthesised chitosan nanoparticles which they 

modified with a Schiff base. The resulting material was incorporated into a 

carbon paste electrode and DPV with stripping voltammetry was used for the 

detection of Pb(II). The limit of detection achieved was 7.24 × 10-7 M. Jahandari 

et al.102 similarly showed sensitive detection of Ag(I) using DPV stripping 

voltammetry at a carbon paste electrode modified with carbon nanotubes, 

graphite powder and a silver selective Schiff base. The authors reported 

sensitivity of 0.08 ng mL-1 in this case.  
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Other well known metal ion ligands are a class derived from dithiocarbamates, 

such as dimethyl dithiocarbamate, which generally contain two sulfur atoms 

which coordinate to the metal ion.103, 104 Kanchi et al.105 for example, have 

shown the detection of Co(II) using ammonium piperidine dithiocarbamate 

and ammonium morpholine dithiocarbamate ligands with detection limits of 

up to 0.001 ppm using differential pulse polarography.  

 

1.2.2.1 Diethyl dithiocarbamate (DDC) 

 

Diethyl dithiocarbamate (DDC), illustrated in Figure 1.5, is one of the more 

basic dithiocarbamate molecules and has been studied since the 1950s for its 

ability to chelate metal ions.106, 107 It is used to form insoluble metal-dithio 

salts, used in the precipitation of various metals in waste-water treatment.108 

The chelation generally involves the coordination of the metal ion via the 

sulfur atoms between two DDC molecules, resulting in a square planar 

complex.109 This complex has been fully characterised throughout the 

literature,110, 111, 112, 113, 114 and importantly has shown good affinity for the Cu(II) 

ion with a stability constant of approximately 5.44 × 1027.113 DDC has been used 

in Chapter 5 for the detection of Cu(II) at a modified electrode.  

 

The formation of the Cu(DDC)2 complex has shown promise as a means of 

removing copper from water sources.115, 116 Li et al.117 have described the use of 

diethyl dithiocarbamate in flocculation process for the removal of copper from 

electroplating waste water with good results. Furthermore, Fu et al.118 have 

reported a method of removing copper complexes from aqueous solutions 

using a dithiocarbamate compound using simple precipitation and filtration. 

Dithiocarbamate ligands have also been used for the detection of various metal 

ions, such as that reported by Weldegebriel et al.119 whereby vegetables, water 

and soil samples were treated with ammonium pyrrolidine dithiocarbamate, 

and flame atomic absorption spectrophotometry was used to detect Co(II), 

Cr(III) and Cu(II) metal ions. The Cu(DDC)2 complex has shown promise in 
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many biological applications,120 with anti-tumour activity reported by Burkitt 

et al.121 among others.  

 

(a)   (b) 

                        

 

Figure 1.5: Structure of diethyl dithiocarbamate (DDC) and (b) the square 

planar complex of DDC to Cu(II). 

 

1.2.2.1.1 The use of DDC in Electrochemistry 

 

The electrochemical detection of metal ions using DDC is generally carried out 

in organic solvents as the metal complexes are insoluble in water. For example, 

Hendrickson et al.111 reported electrochemical data in 1976 regarding various 

metal ion chelates with the DDC ligand, showing quasi-reversible 

electrochemistry of the Cu(DDC)2 complex in acetone-based solutions. In 1981, 

Bond and Wallace122 used DDC in reverse phase liquid chromatography where 

they added Cu(II), and detected the formation of Cu(DDC)2 electrochemically 

at bare electrodes in acetonitrile/water mixed solutions. The authors reported 

a limit of detection of 2.0 × 10-7 M Cu(II) in this publication which they 

enhanced to 3.1  × 10-8 M Cu(II) in 1982,123 with the use of a thin layer cell. 

 

The analysis of such complexes in aqueous solutions generally involves the 

anchoring of the complex to a solid substrate. This has led to the development 

of sensors such as that reported by Chen et al.124 who have shown the use of 

DDC immobilised in a Nafion film cast on a GCE for the detection of Cu(II). 

The authors obtained a limit of detection of 1.0 × 10-8 M Cu(II) using stripping 

voltammetry.  More recent reports on the use of DDC in electrochemical 

sensing includes work by de Carvalho et al.125 in the detection of As(III) and 
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As(V) at a hanging mercury drop electrode using stripping voltammetry. Most 

recently, Dong et al. have shown the production of Bismuth-DDC nanorods 

which they have drop-cast on  a GCE for the sensitive detection of ascorbic 

acid  (8.3 × 10-7 M) 126 and H2O2 (2.0× 10-7 M).127 

 

1.2.3 Polymer and Polymer Composites 

 

Polymers are macromolecules that consist of small repeating units known as 

monomers. They are generally associated with plastics and insulating 

substances, used frequently in packaging materials and for the protection of 

electronic wires and devices as they are characteristically insulating.128 

Conductive polymers or ICPs (intrinsically conducting polymers) however, are 

a class of polymer that consist of carbon, hydrogen and simple heteroatoms 

(e.g. sulfur, nitrogen etc.) with a  π-conjugated backbone providing the basis 

for conductivity. They are widely used in sensors, batteries and as corrosion 

protection materials amongst many other applications, mainly due to the fact 

that they retain the mechanical properties of traditional polymers in 

combination with their specific electronic properties. Their development has 

been accredited to A.J. Heeger, A.G. MacDiarmid and H. Shirakawa and they 

were awarded the Noble Prize in Chemistry in 2000 for their work in the 

advancement of the materials.129 Frequently used ICPs include polyaniline, 

polythiophene, and polypyrrole.130 Polypyrrole (Ppy) is used in Chapter 4 of 

this thesis in the development of a Cr(VI) sensor and its repeating unit 

structure is illustrated in Figure 1.6.  

 

 

 

 

Figure 1.6: Structure of polypyrrole (Ppy) in its neutral form. 
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1.2.3.1 Polypyrrole 

 

Polypyrrole (Ppy) is one of the most studied conducting polymers in 

electrochemistry, since its first electrochemical synthesis in 1968 by Dall’Ollio 

et al.131 it has been implemented in a wide range of applications such as 

sensors, batteries, and corrosion inhibitors.132, 133, 134, 135 The extensive use of Ppy 

can be attributed to its biocompatibility, ease of preparation, stability and 

conductivity.132 There has been much research on the various factors affecting 

the growth and properties of Ppy films,136, 137, 138, 139 with the more recent 

publications focussing on the formation of nano and microstructures of the 

polymer.140 There has also been a lot of attention paid to the incorporation of 

nano materials in Ppy films, in particular carbon nanotubes.141, 142, 143  

 

The use of Ppy in metal ion detection has been well studied, for example, by 

Zanganeh et al.144 who polymerised Ppy on a GCE for the sensitive and 

selective detection of Ag(I). The authors achieved good selectivity of the 

polymer towards Ag(I) using a pre-treatment step of cycling the Ppy film in 

AgNO3 and observed a sensitive response of 6.3 × 10-9 M Ag(I) using 

potentiometry. More recent advancements in the use of Ppy for the detection 

of metal ions include that by Wang et al.145 who used a nanowire morphology 

of Ppy in the detection of Fe(III). The authors described the modification of 

Ppy nanowires with 2-guanidinobenzimidazole which coordinated to Fe(III), 

as confirmed by UV-vis and FTIR spectroscopy. The limit of detection achieved 

at the modified Ppy nanowires was 5  × 10-6 M Fe(III). 
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1.2.3.1.1 Polypyrrole/ Carbon Nanotube based  composites  

 

The incorporation of carbon nanotubes into Ppy matrices has gained a lot of 

attention over the past decade, as the resulting composites retain the 

electronic properties of the nanotubes and the polymer provides good stability 

and process-ability as a support matrix, in addition to its inherent 

properties.146, 147, 148 Recent advances in Ppy-carbon nanotube (Ppy/CNT) 

composites include those described by Mi et al.149 who functionalised the 

nanotubes with an organometallic compound which was used to oxidise 

pyrrole in the creation of a Ppy/CNT composite which showed high 

capacitance. Ionita et al.150 have also recently described the enhanced 

mechanical properties, morphology and anti-corrosion properties of Ppy/CNT 

composites containing functionalised carbon nanotubes.  

 

Some studies have focussed on the use of functionalised MWCNTs as dopant 

anions during polymerisation,151, 152 where MWCNTs are generally refluxed in 

sulfuric and nitric acids for the attachment of carboxylate groups prior to their 

use. Tsai et al.152 highlight this functionality as being useful for the reduction of 

Van der Waals forces between the nanotubes, thus aiding in their dispersion in 

solution. The researchers also displayed the use of these acid-treated 

MWCNTs as dopant anions during polymerisation performed in the absence of 

a supporting electrolyte. As Snook et al.151 have explained, the incorporation of 

MWCNTs into the polymer structure can increase the conductivity of the 

material, as they provide the ion and electron conducting paths that would 

saturate with increasingly thicker polymers in their absence.  
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1.2.3.2 Nafion 

 

Nafion is an ionic polymer (ionomer), consisting of a tetrafluoraethylene 

backbone with perfluorovinyl ether branches, terminated with sulfonate ends, 

developed by Dr Walther Grot153 for DuPont in the 1960s. This material has 

been used extensively in forming modified electrodes, and in Chapter 5 of this 

thesis, it is used in the detection of Cu(II). There has been great interest in the 

structure of Nafion over the years, with a general agreement that it consists of 

ionic clusters that are arranged differently depending on its level of 

hydration.154, 155, 156, 157 The molecular structure is illustrated in Figure 1.7.  

 

 

 

Figure 1.7: Structure of Nafion. 

 

Nafion thin films are mainly used in electrochemical sensors to provide 

selectivity158 and increase the sensitivity of detection,159 however, they have 

also been used as support systems in the fabrication of electrodes, as shown by 

Thangavel,160 for example, who used the thin film as a reaction vessel and 

template in the preparation of multi branched gold nanostructures. The 

conductivity of Nafion films has shown to be relatively good but dependent on 

swelling which reduces the contact of the film to its substrate.161 Chen et al.162 

displayed the stability of Nafion during heat treatment in the investigation of a 

Pt/WO3 electrode, where the Nafion coating prevented the dissolution of 

tungsten from the electrode.  
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The use of Nafion is often employed in electrochemical sensors for in-vivo use. 

For example, Brown et al.163 have shown the use of a Nafion coated Pt wire for 

the detection of nitrous oxide in the brain. The authors have reported a 

sensitivity of 1.67 nA mM-1 at this sensor with a limit of detection of                

5.0 × 10-9 M achieved using constant potential amperometry.  

 

1.2.3.2.1 Nafion based composites 

 

The incorporation of chelators into Nafion films has been developed mainly to 

enhance the selectivity and sensitivity of electrodes modified with Nafion 

composites. Recently, Yusof et al.164 showed the use of Nafion to support 

MWCNTs and aspartic acid in the detection of Pb(II). The authors describe a 

sensitivity of 5.22 μA  μM-1 using cyclic voltammetry for the modified screen 

printed electrode. Chen et al. 124 have also shown good detection of metal ions 

using a Nafion composite modified electrode. This group performed stripping 

voltammetry on electrodes modified with neutral chelating agents in a Nafion 

film to detect Pb(II), Hg(II) and Cu(II). They achieved a limit of detection of 

1.0 × 10-9 M using stripping voltammetry with 5 min accumulation time for all 

of the metals. Other developments of MWCNTs composites include a 

MWCNT/Nafion film produced by Kumar et al.,165 showing good sensitivity in 

the detection of ascorbic acid. They used square wave voltammetry to achieve 

a limit of detection of 1.4 × 10-6 M ascorbic acid and found it comparable to 

HPLC methods.  
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2.1 Introduction 

 

Electrochemistry is the area of chemistry that uses electricity to create a 

chemical change, providing a means of monitoring the transfer of electrons. 

An electrochemical sensor, therefore, is a device that provides constant 

information of the transfer of electrons, using the interaction of electricity 

with a solution.18 This chapter outlines the electrochemical experimental 

procedures used in this thesis. Firstly the materials, instruments and chemicals 

that have been used are illustrated, including the construction of the 

electrochemical sensors themselves. The specific techniques performed in this 

work are also detailed. Analytical methods and equations applied to the 

experimental data throughout this thesis are also described in this chapter. 

 

2.1.1 Sensor Materials 

 

The nature of the electrochemical sensors varies slightly throughout this work. 

In the preparation of the MWCNTs modified electrodes (Chapters 3 & 4), 

pencil-type working electrodes (WE) were prepared, with working surfaces of 

0.1257 cm2. In the construction of these electrodes the conducting substrates, 

glassy carbon (GC) and gold (Au) were encased in Teflon tubing (60 x 5 mm), 

using an epoxy resin as a sealant and a conducting wire was used as an 

electrical connection (illustrated in Figure 2.1). The GC and Au rods were 

purchased from Goodfellow and were of 99.50 and 99.95 % purity. Pristine 

working surfaces were prepared before each experiment by polishing the 

exposed material with diamond pastes (Beuhler) of successively decreasing 

particle size and sonicating in both ethanol and water for 5 mins each. 

Intermittently, the working surface was completely refreshed by grinding the 

top layer using SiC grinding paper (Beuhler), revealing a new surface.  
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Figure 2.1: Schematic diagram of the pencil-type working electrode. 

 

For the work involving the detection of copper (Chapter 5), platinum mesh 

was utilised as the WE with a conducting wire attached to one end providing 

the electrical connection via a silver epoxy resin, which is shown in Figure 2.2. 

Platinum mesh was purchased from Goodfellow with 99.9% purity and a 

nominal aperture of 0.25 mm. The mesh was cut to a size suitable for use in 

both electrochemical and spectroscopic instruments from a large sheet, giving 

measurements of 0.5 × 20.0 mm and the silver epoxy was sealed with a coating 

of non-conducting epoxy resin to avoid interference from silver in the 

analytical measurements. 

 

 

 

Figure 2.2: Schematic of a Pt mesh working electrode 
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In Chapter 3, highly orientated pyrolytic graphite (HOPG) was used as an 

electrode substrate. HOPG is a semi metallic allotrope of carbon, consisting of 

stacked layers of graphite sheets. As graphite sheets are made up of carbon 

atoms arranged in a hexagonal lattice, the properties of HOPG are highly 

anisotropic, and either the edge-plane of the material or its basal plane can be 

utilised (Figure 2.3). 

 

 

 

 

Figure 2.3:  Schematic of HOPG block illustrating its basal and edge planes. 

 

The basal plane of the material was primarily used as a working surface and, as 

defects are undesirable in the delicate top layer, polishing and sonication were 

avoided in its regeneration. The HOPG working surface was therefore 

regenerated between experiments by stripping the top layer away with scotch 

tape, until an even surface was revealed underneath without visible defects. 

The use of a non-conducting epoxy resin was also avoided in its construction, 

which is normally used to achieve a reliable seal around the working surface of 

the substrate. As the resin is generally loaded over the entire surface and the 

working surface revealed by grinding the epoxy down, the top layer of the 

typical electrodes are damaged and therefore require extensive polishing to 

remove any imposed defects. In the use of basal plane HOPG, this method 

would destroy the basal plane structure making it very difficult to remove the 

defects, and resulting in the loss of a large quantity of the substrate. Therefore, 

to accommodate the HOPG as a WE, another method was established to 

Basal plane HOPG

Edge plane HOPG
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construct the electrode, which in turn required an alternative cell set-up 

(illustrated in Figure 2.4). HOPG was received as a block and the WE was 

constructed to specifically expose the basal plane of the material.  The HOPG 

substrate was fixed to a conducting foil (aluminium) using a silver epoxy resin, 

to provide an electrical contact to the potentiostat. The electrode was 

mounted on an insulating block, wooden in this case, and was held in place 

using adhesive tape, as shown in Figure 2.4 (a). This required the glass cell to 

be mounted on top of the electrode, which is detailed in Section 2.3, and 

briefly illustrated in Figure 2.4 (b). 
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(a) 

 

 

(b) 

 

 

Figure 2.4: Schematic of (a) the HOPG working electrode and (b) visualisation 

of the alternative cell set-up. 
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2.1.2 The Electrochemical Cell 

 

Electrochemical experiments for potentiostatic measurements and techniques 

such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV) 

were performed using a standard three electrode cell. This involves the use of a 

working electrode (WE), reference electrode (RE) and counter electrode (CE) 

which are connected to a potentiostat. The WE served as the electrochemical 

sensor in this work and consisted of a conducting substrate which had been 

modified to improve the sensing of a particular metal ion. A standard 

saturated calomel electrode (SCE) was utilised as the reference electrode 

which provided a reference point to aid in the identification of oxidation and 

reduction peaks. A platinum wire of large surface area was used as a CE in all 

experiments, balancing the current generated at the working electrode, for 

example if an oxidation reaction occurred at the WE, the opposing reduction 

reaction occurred at the CE. In general, the potential was measured between 

the WE and RE and the current was measured between the WE and CE. 

 

The conventional and modified electrochemical cell set-ups used in this work 

are illustrated in Figure 2.5 (a) and (b) respectively. The former involves the 

use of electrodes that are submerged in a cylindrical soda-glass cell containing 

the sample solution, however the use of highly orientated pyrolytic graphite 

(HOPG) as a WE required the used of a different cell set up. As the HOPG 

surface was attached to a base (Figure 2.4) rather than the tip of a pencil-style 

electrode, the cylindrical cuvette holding all three electrodes was replaced by a 

conical-shaped cell holding both the CE and RE, mounted on the WE base. A 

hole in the bottom of the cell revealed the working surface and the solution 

was contained in the vessel with the use of a clamp and O-ring. In both cases 

the submerged electrodes were held in place using a PTFE lid. 
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(a) 

 

 

 

(b) 

 

 

Figure 2.5: Schematic representation of (a) a conventional electrochemical cell 

set-up and (b) the modified cell set-up of the three electrode cell. 
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2.1.3 Instruments  

 

Electrochemical experiments were carried out primarily using a Solartron 

Potentiostat Model 1285A and an Autolab M101, and a CH1760C Potentiostat 

was used to carry out DPV analysis. Scribner Associates Corrware, GPES and 

CH900i software packages were used respectively to perform and analyse the 

electrochemical experiments. UV-Vis spectroscopy was performed using a 

Varian Cary series spectrophotometer which comprises of a Xenon lamp. SEM 

and EDX characterisations were carried out with the help of Ms. Bakul Gupta 

at UNSW and more extensively by Dr Conor McCarthy at NUIM, who’s 

assistance is greatly appreciated in this work. All experimental instruments 

and the models used are listed in Table 2.1. Precise analysis of experimental 

data was carried out using EC-Lab Software and Microsoft Excel. 

 

Table 2.1 : List of instruments used in experimental procedures with relevant 

model details. 

Instrument Model 

Potentiostat Solartron 1285A / AutoLab M101 / CH1760 

UV-Vis Spectrometer Varian Cary 50 UV-Vis Spectrometer 

SEM Hitachi S400 / S900 

EDX Inca-X Energy  

pH meter Eutech Cyberscan pH 510  

Conductivity meter Jenway 4510 

Sonicator Fisher Scientific Fb 15048 
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2.1.4 Chemicals 

 

In this body of work, electrochemical sensors were constructed by modifying 

WEs, i.e. gold, glassy carbon and basal plane HOPG, with various materials. 

The materials; multiwalled carbon nanotubes (MWCNTs), graphene and 

diethyldithiocarbamate (DDC), were chosen based on their specific individual 

properties, and various methods to modify the electrodes were carried out to 

cater for the individual materials. Aqueous solutions were prepared from 

Millipore distilled water and stored under cool, dark conditions to ensure 

maximum stability.  

 

2.1.4.1 Pyrrole 

 

Pyrrole was purchased from Sigma-Aldrich as a 98% pure solution, however 

purification was carried out before its use by simple distillation under vacuum 

to remove any dimeric or oligomeric impurities. The purified monomer was 

stored at -20.0 °C before use. 

 

2.1.4.2  Multiwalled Carbon Nanotubes (MWCNTs) 

 

In chapter 1, multiwalled carbon nanotubes (MWCNTs) are reviewed and their 

unique physical and electronic properties are discussed in depth. Briefly, they 

are rolled up sheets of graphene, or sp2 hybridised carbon sheets with a helical 

structure that provides a length to diameter ratio greater than any other 

material.34 The MWCNTs used in this work were obtained from Sigma Aldrich, 

of 6-13 nm in open diameter and 2.5-20 µm in length and were used as 

received, unless stated otherwise.166 They were produced by a chemical vapour 

deposition (CVD) method followed by HCl demineralisation to obtain >99% 

purity and the reported surface area (by BET method) is approximately         

220 m2 g-1. 
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2.1.4.3 Graphene 

 

Graphene is a two dimensional sheet of sp2 hybridized carbon. The graphene 

used in this body of work was provided by Dr Mohammad Choucair who 

published his “top-down” synthesis in 2010 which involved  the low-

temperature flash pyrolysis of a solvothermal product of sodium and ethanol, 

followed by gentle sonication of the nano-porous carbon product.167 The 

reported surface area, calculated by the BET method, of this graphene was  

1692 m2 g-1 and it was used without further modification in this work. 

 

2.1.4.4  Diethyl Dithiocarbamate (DDC) 

 

Dithiocarbamic acid or diethyl dithiocarbamate (DDC) is an amino formic acid 

containing two sulfur atoms in place of the oxygen atoms. It is a well known 

ligand, as discussed in Chapter 1 that is generally used in its salt form. In this 

work, the diethyl ammonium salt of DDC was purchased from Sigma Aldrich 

and was of 97 % purity. 

 

2.1.4.5 Nafion 

 

Nafion is an ionic polymer, or ionomer, consisting of a tetrafluoraethylene 

backbone with perfluorovinyl ether branches, terminated with sulfonate ends. 

Although Nafion membranes are commonly used, for the purpose of this work, 

its acidic ionomer which is prepared in low aliphatic alcohols was solely used. 

It is available in various concentrations, however in this work only the 5% wt. 

solution was utilised, which was purchased from Sigma Aldrich and contained 

15-20% water. 
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2.2 Methods 

 

The methods used in the modification of electrodes varied throughout this 

body of work. The use of MWCNTs and graphene required good dispersion of 

the materials prior to surface modification. The use of polypyrrole as a 

supporting scaffold involved the electrochemical polymerisation of pyrrole and 

the use of Nafion as a support material involved its electrodeposition. The 

methods implemented for modifying the individual electrodes are detailed in 

this section. 

 

2.2.1 Dispersion  

 

To prepare dispersed solutions of MWCNTs and graphene, ultrasonic agitation 

was implemented. This technique is widely used in the preparation of 

dispersed solutions and briefly, involves the transmittance of ultrasound by 

waves that alter the molecular spacing of the sample. Ultra sonication is 

unique in that it uses solid disruption to decrease the size of solid particles in 

solution which increases the total solid surface in contact with the solution.168  

Ultra sonication can be applied either directly to a sample, using an ultrasonic 

probe or indirectly using an ultra sonication bath. As the use of probes is very 

costly and can potentially introduce sample contamination,169 a sonication 

bath (Table 2.1) was utilised in this work to disperse solutions of MWCNTs and 

graphene. 

 

2.2.2  Adsorption 

 

The modification of electrodes using physical adsorption was predominantly 

carried out with MWCNTs and graphene. To modify the electrodes by this 

method, specific volumes of the dispersions were drop-cast on the electrode 

surface. An IR lamp (approx. 500 °C) was utilised to evaporate the solvent from 

the electrode surface leaving the modification material adsorbed on the 

surface.  
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2.2.3  Polymerisation 

 

In this work, polymerisation of pyrrole to form polypyrrole (Figure 2.6) was 

carried out electrochemically. Electrochemical polymerisation is defined as a 

process of polymer synthesis, initiated by particles which are the product of 

electrode reaction.170 This is performed with the application of a suitable 

potential to a conducting substrate which is immersed in a solution containing 

the monomer and required doping electrolyte. This is generally carried out 

using galvinostatic, potentiostatic or potentiodynamic methods. Potentiostatic 

deposition of polypyrrole was carried out in this work as it generally produces 

polymers with the most consistent morphologies.171  

 

 

     

          n 

 

Figure 2.6: Structure of polypyrrole in the oxidised form, where A¯ are the 

anionic dopants required to balance the charge.  

 

The role of the dopant anion in polymerisation is to balance the charge formed 

on the polymer backbone. Dopants are generally introduced to a polymer as 

the electrolyte salt, such as Cl- or SO4
2- in the polymerisation solution during 

electropolymerisation and the level of doping can largely effect the 

conductivity of the polymer by creating more mobile charges.171  
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2.2.4  Electrodeposition of Nafion 

 

The method of coating a material by electrodeposition is widely used in 

industries such as paints and plastics172 to achieve reliable, cost-effective 

coverage of all varieties of materials. It is based on the electrostatic 

interactions of the substrate with the coating. In this case, the Pt mesh 

electrode substrate was positively charged using constant potential 

amperometry, whilst submerged in a solution of Nafion for a specific time. The 

electrostatic interactions between the electrode and the solution ensured each 

aperture of the mesh was evenly coated with the ionomer.  

 

2.3 Theory of Electrochemical Techniques 

 

The various electrochemical techniques employed in the characterisation of 

the electrochemical sensors and used in the detection of metal ions in this 

work are detailed in this section. Specifically they include cyclic voltammetry, 

differential pulse voltammetry and rotating disk voltammetry. 

 

2.3.1 Cyclic voltammetry 

 

As mentioned in Section 2.1, electrochemical measurements are based on 

Ohm's Law, in that they measure the effects of potential (E) and resistance (R) 

on current (I). Cyclic voltammetry is an electrochemical technique that 

measures changes in current as the cell potential is cycled between two 

specific limits. The changes in current can represent either a faradaic process 

i.e., the oxidation or reduction of a species in the sample solution, or a non-

faradaic process such as capacitance. The faradaic processes occur at the 

interfacial region of the WE, and the CE balances the electron transfer with the 

opposing reaction. The working electrode can thus act as an electrochemical 

reductant or oxidant depending on the potential applied to the surface. The 

application of a negative potential creates a reducing electrode and as the 

potential applied becomes more positive, the WE becomes more oxidising. 
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The rate at which the potential is cycled (the scan rate) and the number of 

cycles recorded can both be varied to provide various information on the 

electroactive species which is generally displayed as a voltammogram which is 

a plot of current (I) vs. potential (E), illustrated in Figure 2.7. 

 

 

Figure 2.7: Typical voltammogram of a reversible redox couple. 

 

In the case of simple redox couples, both the oxidation and reduction of the 

species are represented by waves or peaks in the voltammogram. The potential 

at which the peak exhibits a maximum current can be used to identify the 

electron transfer that is occurring, and the process can be quantified by the 

amplitude of this peak current. The increase in peak current as the potential is 

scanned forward is representative of the analyte being oxidised, and its 

decrease is representative of the concentration of the original analyte in the 

diffusion layer decreasing due to its oxidation. In the reverse sweep the same 

process occurs, whereby the reduction peak current increases as there is a high 

concentration of the oxidised species. As this species is reduced, there is a 

decrease in the oxidised species in the diffuse layer and the current approaches 

zero.173   
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Cyclic voltammetry was used extensively in this thesis as it provides a wide 

range of information on electroactive species and conducting surfaces. It can 

be used without the observation of a solution based redox couple, in a 

background supporting electrolyte solution to provide information such as the 

anion/cation exchange properties of a material (e.g. a conducting polymer) or 

by measuring a region of the voltammogram where no known redox processes 

occur, as an indication of its capacitive properties (e.g. for carbon nanotubes).  

Capacitance is defined as the ability of a material to store charge, and in 

capacitive electrode materials, when a potential is applied to the electrode 

surface, the charge from solution builds up at the electrode surface which is 

identified by a charging current. The combination of the charge on the 

electrode surface and the build up of charge at the electrode-solution interface 

is known as the electrical double layer, and the double layer capacitance is 

used to characterise the electrode-solution interface, which can therefore be 

used to characterise an electrode material. The double layer is made up of (i) 

an inner layer or Helmholtz plane (IHP), which contains solvent molecules 

and any adsorbed species and (ii) a diffuse layer which extends from the outer 

Helmholtz plane (OHP), where solvated ions interact with the inner layer, to 

the bulk solution.174 The proposed model of the electrical double layer is 

illustrated in Figure 2.8. 
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Figure 2.8: Illustrated model of the electrical double layer.174 

The capacitance of an electrode is often measured by electrical impedance 

spectroscopy however it can also be calculated using cyclic voltammetry. In 

the latter case, the current is measured in a region of the voltammogram 

where no faradaic processes are evident and the voltammogram is rectangular 

in shape.40 This current (I / A) can be related to the scan rate (ν / V s-1) 

according to the linear Equation 2.1. To calculate the capacitance (C / F), a plot 

of the currents against the scan rate is generated and the slope is therefore 

equal to the capacitance. If the currents have been normalised to the mass of 

the material on the electrode, the units of capacitance then relate to the mass 

(F g-1). 

    

Cyclic voltammetry was the primary technique used in the detection of metal 

ions in this thesis, with attention paid mainly to the peak position (Ep) and the 

peak currents (Ip) recorded. In general Ep gave information on the 

thermodynamic properties of the reactions and Ip gave information regarding 

their kinetics. Relevant parameters were varied within this technique, 

specifically scan rate and potential window, to achieve the optimum 
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conditions for each sensor. The electron transfer properties of the working 

electrodes modified with carbon-based nanomaterials were studied using this 

technique. This involves analysis of the redox behaviour of an electrochemical 

probe, i.e. a well established redox couple that exhibits efficient electron 

transfer. In this work, the redox behaviour of [Fe(CN)6]3- / [Fe(CN)6]4- was 

studied, as it is a commonly used example of an outer sphere reaction, 

however, it is known to be sensitive to surface conditions.175 The electron 

transfer of an outer sphere reaction therefore occurs in the outer Helmholtz 

layer, and the couple is not chemically bound to the substrate. Outer sphere 

reactions are said to be highly thermodynamically dependent, that is they are 

predominantly effected by the potential difference in the redox exchanging 

sites. Analysis of such reactions provides information on the electron transfer 

abilities of modified surfaces when compared to the bare substrate.  

 

The ratio of peak currents (Ipc/Ipa) is often used to describe the reversibility of 

a redox reaction according to Equations 2.2, 2.3 and 2.4. Here, unity (Equation 

2.2) signifies a fully reversible reaction and the observation of one process 

shows irreversibility (Equation 2.3). In the case where the currents recorded 

for the reduction reaction are lower than those recorded for the oxidation 

reaction, (Equation 2.4) it is said that the reaction is partially reversible and is 

expected to depend greatly on scan rate.176 Partial irreversibility can be due to 

many factors such as chemical instability or the occurrence of a chemical 

process. 
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2.3.1.1 Diffusional Models 

 

The diffusion of analytes to and from the electrode surface also has an 

important role in the thermodynamics of a redox reaction. Electrochemical 

experiments are therefore performed in solutions containing an electrolyte of 

sufficient concentration to overcome any mass transport limitations. For 

simplicity in this section, simple solvated anionic and cationic species are 

considered in their diffusion to an electrode. It is illustrated in Figure 2.9 (a) 

that when a negative potential is applied to the electrode, positively charged 

species from the bulk solution are attracted to the electrode surface. Here they 

are reduced and diffuse back to the bulk solution. This is known as semi-

infinite planar diffusion as there is, theoretically, a semi-infinite amount of 

cations diffusing from the bulk solution. A second diffusional process must be 

considered however in the modification of electrodes with MWCNTs, thin 

layer diffusion.177, 178 This model assumes the formation of “solvent pockets” 

within an entangled network of MWCNTS where anions and cations are 

essentially trapped, as illustrated in Figure 2.9 (b). When a cathodic potential 

is applied to an electrode in this case, the cation is already at the electrode 

surface and is therefore reduced without the limitation of diffusion from the 

bulk solution. When the potential is switched (as in cyclic voltammetry) this 

reduced species is still at the surface and thus is oxidised promptly, reducing 

the ΔEp of the redox couple. 174 It should be noted however that such effects 

tend to rely on slow scan rates to allow for the initial diffusion of the analyte 

into the thin layer cavities.174, 177 
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 (a) 

 

 

(b) 

 

 

Figure 2.9: Schematic illustration depicting the relationship between an 

electrode and the sample solution (a) when a cathodic potential is applied, 

causing semi-infinite planar diffusion and (c) the formation of “solvent 

pockets” at an electrode modified with MWCNTs is illustrated where the 

application of a cathodic potential causes thin layer diffusion.  
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2.3.1.2 Analytical measurements 

 

Analysis of the results obtained in the electrochemical characterisation of the 

sensors and detection of the metal ions are discussed in this section. The 

information gained from cyclic voltammetry was applied to kinetic equations 

to gain further knowledge about the electron transfer occurring at the working 

electrode. In particular, the separation between the oxidation and reduction 

peak potentials can give details on the reversibility of the reaction. Equation 

2.5 shows the ideal peak separation for a reversible redox couple which is 

independent of scan rate and can be used to determine the number of 

electrons (n) transferred in the reaction.   

 

      

 

Poor reversibility can be identified by a large ΔEp, and refers to the kinetics of 

the electrode, which can be affected by the limitations imposed by mass 

transport at the electrode surface. In the case of quasi-reversible systems, an 

intermediate case of reversibility, the peak separation is generally used to 

calculate the rate of electron transfer of an electrochemical reaction and it is 

dependant on the scan rate. In this work, two methods were employed to 

calculate rate constants at the various unmodified and modified electrodes for 

the redox of [Fe(CN)6]3- / [Fe(CN)6]
4-, namely the theory published by 

Nicholson179 in 1965 and the equation derived by Kochi and Klingler180 in 1981. 

The peak currents (Ip) are also very useful in the electrochemical 

characterisation of the detection process. In the case of a reversible redox 

couple, the magnitudes of Ip for the forward and reverse sweeps are the same 

and regardless of reversibility, the Ip height is dependant on scan rate. In this 

work particularly, the Randles-Sevcik equation has been used in two ways to 

present information gained from monitoring Ip; namely the calculation of the 

diffusion coefficient of the probe at the bare electrode, and the 
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electrochemically available surface area of the modified electrode. The use of 

these Equations is detailed herein. 

 

2.3.1.3  Nicholson Theory 

 

Nicholson used the absolute rate equation to construct a rate equation which 

overcame the problems of concentration polarisation, and allowed him to 

calculate theoretical values for the constant Ψ, based on specific peak 

separations, ΔEp. The peak separations were limited to those larger than 60 

mV to ensure a quasi-reversible reaction and lower than 212 mV to maintain 

agreement of the equation with the transfer coefficient, α. The transfer 

coefficient or “symmetry factor” describes the change in the energy barrier for 

the transition of an electrochemical reaction, with respect to the electrode 

potential.181, 182 Typical values of α are between 0.3 and 0.7, and represent the 

efficiency of the transition between oxidation states of an electrochemical 

reaction. They are also indicative of the position of the reaction with respect to 

the outer Hemlholtz layer.183 The term “symmetry factor” refers to the effect of 

β on the shape of the energy-potential plot, i.e. how symmetrical the redox 

peaks appear.173 

 

 The theoretical values of the peak separations, proposed by Nicholson, are 

listed in Table 2.2, and were used to construct Figure 2.12, a plot of 1/Ψ vs. 

1/ΔEp. The trend of this plot  (Figure 2.10) was utilised to deduce a polynomial 

equation. This was used to calculate Ψ values based on experimental ΔEp 

values at each scan rate. The standard rate of the reaction was then calculated, 

ks, according to Equation 2.6 at each scan rate. 

 

    

 

In the equation constructed by Nicholson (2.6), ks is the standard rate 

constant, Ψ is the dimensionless constant calculated based on the theoretical 
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plot in Figure 2.10, π is 3.14159, Do is the diffusion coefficient (cm2 s-1) and a is 

calculated from Equation 2.7. 

 

     

 

Where n is the number of electrons transferred, F is Faradays Constant               

(96485.3 C mol-1), ν is the scan rate (V), R is the gas constant (8.3145 J K-1mol-1) 

and T is the temperature (K).  

 

Table 2.2: Variation of peak potential separations with kinetic parameters for 

cyclic voltammetry179. 

Ψ ΔEp x n / 

mV 

20.00 61 

7.00 63 

6.00 64 

5.00 65 

4.00 66 

3.00 68 

2.00 72 

1.00 84 

0.75 92 

0.50 105 

0.35 121 

0.25 141 

0.10 212 
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Figure 2.10: A plot of the inversed theoretical values for Ψ as a function of the 

inversed peak separations given by Nicholson. The polynomial equation for 

the trend is y = 4 × 1013 x6 – 3 × 1012 x5 + 8 × 1010 x4 – 1 × 109 x3 + 1 × 107 x2 – 49703 

x + 105.32 , which was used to calculate Ψ values for the experimental ΔEp 

values. Here, y is 1 / Ψ and x is 1 / ΔEp. 

 

2.3.1.4 Kochi and Klingler Equation 

 

In 1981 Kochi and Klingler devised an equation to calculate the rate of a 

reaction, similar to that of the Nicholson Theory, but without the use of 

theoretical data, and including the calculation of the transfer coefficient β, 

where β = 1-α. This method uses the rearrangement of Equation 2.8, and a 

linear equation can be deduced, Equation 2.9.  

 

     

 

   

 

Here, k is the rate constant (cm s-1), D is the diffusion coefficient (cm2 s-1), n is 

the number of electrons transferred, F is Faraday’s constant (96,485.3415 C 

mol-1), ν is the scan rate (V s-1), R is the gas constant (8.314 J K-1 mol-1) and T is 
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the temperature (K). If a linear correlation between the natural logarithm of 

the scan rate, ν, and ΔEp can be achieved experimentally, the slope of this 

equation can be used to calculate β. A typically constructed plot of this data 

can be seen in Figure 2.11 with good linear correlation. The calculated β value 

can then be used to calculate the average rate constant for electron transfer for 

the observed electrochemical process, over the range of scan rates tested.  

 

 

Figure 2.11: Typical plot monitoring the change in electron transfer (ΔEp) with 

the natural log of the scan rate (ln ν) used to determine the rate of reaction.  

 

2.3.1.5 Randles Sevcik Equation 

 

The Randles Sevcik Equation utilises the current response (Ip) of an 

electrochemical redox reaction at various scan rates to analyse an 

electrochemical process. In this work particularly, the Randles Sevcik equation 

(Equation 2.10) has been used in two ways to present information gained from 

monitoring Ip. Experimentally, the scan rate was varied between 10 and 200 

mV s-1 and the peak currents were monitored. In the first application, a plot of 

the square root of the scan rate as a function of the peak current was 

generated, and as a linear relationship was established (Figure 2.12), the 

Randles-Sevcik equation was used to determine the diffusion coefficient, D, of 

a particular analyte at a bare electrode, based on Equation 2.7. In Chapter 3 
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this equation was used to calculate the diffusion coefficient for [Fe(CN)6]3- / 

[Fe(CN)6]4-. 

 

 

 

 

 

Here Ip is the peak current (A), K is a constant (2.69 x 105), A is the surface area 

(cm2), c is the concentration of the redox species (mol cm-3), D is the diffusion 

coefficient (cm2 s-1) and ν is the scan rate (V s-1). By rearranging Equation 2.10 

to give Equation 2.11, and utilising the diffusion coefficient calculated at the 

bare electrode, the electroactive surface area of the modified working 

electrodes were calculated. The ferricyanide couple was chosen for this study 

as it has highly reproducible electrochemistry and has been studied extensively 

in the literature. 

 

 
 

 

 

 

Figure 2.12: Typical plot monitoring change in oxidative ■ and reductive         

■ peak currents (Ip) with the square root of the scan rate (√ν) used to calculate 

the electroactive surface area. 
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2.3.2 Differential Pulse Voltammetry (DPV) 

 

Although cyclic voltammetry can provide a broad spectrum of information on 

electrochemical sensors, it is not the most sensitive technique accessible, 

however pulse voltammetry is a sensitive electrochemical technique used 

widely in ion detection. In contrast to cyclic voltammetry, where there is a 

constant application of potential to the WE, in pulse voltammetry the 

potential is applied in pulses which can be tightly controlled.  As potential is 

applied to the electrode surface, a charge builds up known as a “double layer” 

and creates large background signals due to its capacitance. Pulsing the 

applied potential allows this current to decay, preventing a build up of 

background capacitive current, thus enhancing the redox signals. Generally, 

either normal pulse voltammetry or differential pulse voltammetry are used, 

which are illustrated in Figure 2.13. In normal pulse voltammetry, the base 

potential applied is constant; however with DPV, the base potential is 

incremented at a fixed rate. The pulses applied are of the same magnitude 

each time and the pulse period, which comprises the pulse duration as well as 

the lapse between pulses, is set to be repeated identically each time also. 

Unlike normal pulse voltammetry, in DPV the current is sampled twice, just 

prior to each pulse and then again at the end of the pulse, as shown in Figure 

2.13. The difference between the two values is calculated and a plot is 

generated of the resulting current values (ΔI), as a function of the applied 

potential, V. In this work, DPV was utilised to reduce the large background 

current caused by the capacitance of MWCNTs, in order to increase the 

sensitivity and the detection properties of the electrode surface modified with 

MWCNTs. The specific parameters used are outlined in the relevant sections. 
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(a)         (b) 

  

 

 

(c) 

 

 

 

 

Figure 2.13: Schematic of (a) normal pulse voltammetry, (b) differential pulse 

voltammetry and (c) the variable parameters for DPV.184 

 

2.3.3 Rotating Disc Voltammetry 

 

Rotating Disc Voltammetry (RDV) is a mechanical alteration to the cell set up 

to increase the rate of mass transport to the electrode surface. In combination 

with constant potential amperometry, RDV was employed in the sensitive 

detection of Cr(VI) in Chapter 4. A rotating disc electrode, similar to the 

pencil-style electrode shown in Figure 2.1, was used for these studies. The RDV 

set-up consists of an electrode attached to a rotor spindle via a suitable 

Potential (V)

Time (s)
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electrical contact which is illustrated in Figure 2.14. When the electrode is 

rotated at a particular rotation speed in solution, fresh reactant is brought to 

the working surface. A well-defined flow pattern as shown in  Figure 2.14 (b), is 

obtained where the rotating electrode acts as a ‘pump’, dragging the solution 

perpendicular to the electrode surface which is subsequently thrown out in a 

radial direction on contact with the electrode surface.185  

 

 

          

 

Figure 2.14: Schematic diagram of electrode in the RDV set-up. The patterns 

of flow to a rotating disc electrode (a) viewed from below the electrode face 

and (b) across its surface as viewed from the side.184     

 

This technique is generally more sensitive than a traditional cell set up, where 

the diffusion layer is time dependent. The thickness of the diffusion layer 

using RDV can be controlled by changing the rotation speed of the electrode. 

This technique theoretically leads to higher currents, greater sensitivity and 

improved reproducibility due to the increased transport of electroactive 

Rotor spindle 

 

 

 

 

  Electrode 
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species to the electrode surface. The electrode is rotated at a known frequency, 

f, where the angular velocity, ω, is described by Equation 2.12: 

 

     

 

The rotation of the electrode must be controlled to avoid turbulence in the 

sample solution, therefore ensuring laminar flow of the substrate to the 

electrode surface.186 Two rotation speeds were compared in this work; 900 and 

1900 rpm for their effect on enhancing the sensitivity of the Cr(VI) detection. 

 

2.4 Physical Characterisation Techniques 

 

Further characterisation of the materials and sensors were carried out using 

the following methods. 

 

2.4.1 UV-vis Spectroscopy 

 

Ultraviolet-visible (UV-vis) spectroscopy is an analytical technique that 

measures the amount of ultraviolet and visible light transmitted or absorbed 

by a sample. The absorption of light gives rise to electronic transitions, from 

the highest occupied molecular orbital (HOMO) to the lowest unoccupied 

molecular orbital (LUMO) which are quantitatively measured simply on a 

scale of 0 to 1, dependent on concentration. The radiation source has 

wavelengths from 200 to 800 nm. The absorption of UV light (by seemingly 

colourless species) occurs between 200 and 400 nm whereas the visible region 

of the spectra, i.e. the absorption by visibly coloured species, is from 400 to 

800 nm (Figure 2.15). Absorptions occur at a frequency that is characteristic of 

the electronic structure of a particular species, therefore changes in the 

absorption wavelength can signify changes in the electronic structure of the 

species. Simply, the wavelength at which a chemical absorbs light is dependent 

on its structure and the intensity of the light absorption is related to its 
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concentration. A UV-vis spectrum can be used to identify specific chemical 

species and to monitor processes where either the structure or concentration 

of that species changes. In this work UV-vis spectroscopy was used to analyse 

the complexation of copper to DDC in Chapter 5. 

 

 

Figure 2.15: Illustration of UV-Vis theory depicting the excitation of electrons 

from the ground state and where the resultant compounds absorb light.  

 

2.4.2 Physical characterisation of solutions 

 

The physical properties of each solution were documented and used in the 

analysis of experimental data where appropriate. In all cases, the pH of the 

solution was tested using a pH meter. This was specifically important in 

Chapter 4, where the pH of the sample solution was varied and its effects were 

analysed in depth. The acidity of solutions was increased by addition of 

concentrated acid, e.g. H2SO4 or decreased by addition of a base, e.g. Na2SO4 as 

outlined in the respective sections.  

 

When required, the conductivity of solutions was measured using a 

conductivity meter and used within comparative studies. Solutions were 
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prepared in the same manor as for the relevant experimental procedures and 

digital measurements were recorded for analysis. 

 

2.4.3 Scanning Electron Microscopy and Energy Dispersive X-ray 

 Analysis 

 

Scanning Electron Microscopy (SEM) allows the observation and 

characterisation of samples on a micrometre (µm) to a nanometre (nm) scale. 

The technique uses electron beams to capture images of conducting solid 

surfaces. The electrons are applied to the surface using an electron gun under 

vacuum (at 20 kV), and electrons emitted from the sample (as well as 

backscattered electrons) construct an image at the detector. EDX is a 

technique that is often coupled with SEM, and is used to identify the elemental 

composition of the surface. In the same chamber as for SEM, when the surface 

is bombarded with electrons from the electron gun, X-rays are emitted from 

the sample, which are used to identify elements present on the surface 

according to the energy required to remove the outer electrons from their 

respective orbitals. 

 

SEM images were obtained from an Avalon 8000, Princeton Gamma 

Technology and a Hitachi S3400. A shorter version of the pencil-style electrode 

of 5 mm in diameter was used as a support for each substrate. This electrode 

was specifically designed for use in the SEM chamber, in order to fit on the 

stage where the samples were placed.  

 

2.4.4  Transmission Electron Microscopy  

 

Transmission electron microscopy (TEM) is a surface analysis technique 

similar to SEM, however the electrons in this case are accelerated at a much 

higher speed (300 kV in this case) and are focused on a much smaller area. The 

benefit to this technique is that the resolution is far superior to SEM due to the 

speed of the electrons, allowing for imaging predominantly on the nano scale. 
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The TEM images in this work were carried out by Clive Downing at CRANN in 

TCD, using an FEI Titan TEM. 

 

2.4.5  Fourier Transform Infra-red Spectroscopy (FT-IR) 

 

Fourier transform infra-red spectroscopy (FT-IR) is a physical characterisation 

technique used to identify the bonding within a sample. It is based on the 

vibration of molecules when infrared radiation is passed through a sample. 

“Fourier transform” refers to the mathematical modification made to the raw 

data for a spectrum to be obtained.187 The bonds in the sample are identified 

by the wavelength at which they absorb light, indicated by their vibrational 

modes. The position of the infra-red band is specified by its wavelength 

measured in microns or its reciprocal value called wavenumber (cm-1). The 

frequency of the vibrations between two atoms is governed by Hooke’s law as 

the frequency of the vibration depends on both the masses of the atoms and 

the rigidity of the bond. Heavier atoms vibrate slower than light ones and 

stronger bonds are generally stiffer. In order for a vibrational mode to be IR 

active the vibration must alter the dipole moment in the molecule.188 The 

vibrational bands of many functional groups occur at characteristic 

wavenumbers which helps aid interpretation of a spectrum and the entire IR 

spectrum may be used as an unique fingerprint of a compound. In this 

research infrared spectra (cm-1) were recorded as KBR disc using a Perkin 

Elmer 2000 FT-IR spectrometer. 
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3.1 Introduction 

 

The use of nanomaterials in electrochemical devices has excelled in recent 

years due to the improved sensitivity achieved with large surface to volume 

ratios. Both graphene81, 189 and multiwalled carbon nanotubes (MWCNTs)34 in 

particular have been at the forefront of research in nanomaterials over the past 

decade and many advances have been made in recent years which are 

discussed in Chapter 1, in their applications due to their unique, impressive 

properties. Briefly, graphene is a two dimensional sheet of sp2 hybridized 

carbon,81 and MWCNTs are helical structures of graphene sheets, consisting of 

multiple concentric nanotubes. Carbon nanotubes have attracted much 

interest in electrochemical sensing due to their immense aspect ratio which 

provides an impressive surface area (approximately 2200 m2 g-1)190 and reports 

of their catalytic ability to promote electron transfer.43, 191 Similar to MWCNTs, 

literature reports of graphene boast properties of fast electron mobility82 and 

immense surface area (approximately 2630 m2 g-1)192, amongst other electronic 

properties.  

 

Carbon nanotubes are known to agglomerate in solution, a process which is 

attributed to high van der Waals interactions between individual tubes.54 This 

hinders their use in electronic applications and has thus required the 

development of various methodologies to achieve dispersed solutions.53, 63 

Similarly, graphene is also known to undergo agglomeration in solution, due 

to Van der Waals and π-stacking interactions between the individual sheets.86 

To overcome this agglomeration or stacking, both materials are often 

chemically modified which generally involves introducing oxygen-containing 

species to the surface. This modification involves the use of strong acids which 

can shorten the nanotubes and can be time consuming. As the oxygenated 

species are often accredited with a large influence on the electrochemistry of 

the materials,86, 193 it is often unclear if the reported electrocatalytic properties 

are a property of the material itself or simply due to the modification. The use 

of sonication to disperse agglomerates of MWCNTs and of graphene has been 
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proven to be very successful, as discussed in Chapter 1, improving the electrical 

and mechanical properties of materials made from the suspensions.57, 70, 194  

 

The electron transfer properties of materials such as MWCNTs and graphene 

are of particular interest in electrochemical sensing and are generally 

described in terms of their density of states (DOS), which refers to a large 

amount of energy states at the Fermi level. A higher DOS therefore increases 

the possibility that an electron will be of the appropriate energy state for 

electron transfer with an electroactive species.195 The high DOS of carbon 

nanotubes and graphene are known to be enhanced by defect areas which can 

be described as either intrinsic or extrinsic. Intrinsic defects refer to structural 

anomalies, e.g. sp3 hybridised carbons, and extrinsic defects refer to edge plane 

defects and their associated functionalities, e.g. oxygenated species. These 

defects can affect the electrochemical activity observed at a material 

differently depending on the nature of the electrochemical species. The 

mechanism by which a species is oxidised or reduced can be described as 

either outer sphere or inner sphere. In the case of inner sphere reactions, bond 

breakage or formation occurs which allows for the oxidation or reduction of 

the species. Such reactions are therefore largely affected by extrinsic defects of 

the electrode material. In the case of outer sphere reactions, the species 

remain in close proximity to the material and charge is transferred without the 

breaking of bonds. Outer sphere reactions are therefore largely affected by 

intrinsic defects of a material. 

 

The amount of material used to modify the electrode surface varies 

significantly throughout literature reports, with very little reasoning given to 

the amounts used.196 Kang et al.87 for example have shown the  increase in Ip 

for the detection of paracetamol with increasing cast volume of graphene from 

5.0 to 8.0 µL, from a 1 mg mL-1 suspension in EtOH, with a decrease observed 

when volumes exceeded 10 µL. Borowiec et al.44 have seen an increase in Ip 

with increasing the casting of MWCNTs in the range of 1.5 to 2.5 µL with 

respect to the detection of ketoconazole. They noted a decrease in the Ip with a 
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casting volume of 8.5 µL which they ascribe to the instability of the cast film, 

which in this case was also cast from a 1 mg mL-1 suspension, however, using 

DMF as a dispersant. The ratio of materials used and the nature of the 

dispersant used in the suspensions is also known to vary significantly 

throughout reports, making them difficult to compare. The aim of this chapter 

is therefore to investigate the basic electrochemical properties of an electrode 

modified with MWCNTs and graphene to further support observations thus 

far of fast electron transfer and increased surface area. In this chapter, the 

effect of sonication is investigated on samples of MWCNTs and graphene with 

respect to the electrochemical properties of the resulting modified electrodes. 

The volume cast is also varied for both sonicated and non-sonicated samples, 

and its effect is analysed with respect to the electrochemical properties of the 

resulting modified electrodes.  

 

The electrochemistry of the materials is evaluated using a potassium 

ferricyanide (K3Fe(CN)6) probe. It is known that the kinetics of this probe can 

be significantly influenced by the surface properties of the electrode such as 

functional groups or defects although its redox activity is generally considered 

an outer sphere reaction.197  The redox properties of this probe therefore 

provide an indication of the level of defects in a material, both extrinsic and 

intrinsic. For porous materials, such as MWCNTs, it is known that the 

electrochemical response recorded can be influenced by three predominant 

factors; diffusion from the bulk solution, thin layer diffusion and adsorption.177 

The contribution from each factor greatly depends on the electrode material 

and its treatment, as well as the probe used and will be considered throughout 

this work.  

 

An important property of MWCNTs is their mesoporous structure, which 

describes pores of 2 to 50 nm in diameter which are inherent to MWCNTs 

(intraparticle mesopores) and also that arise between networked tubes 

(interparticle mesopores). This structure prevails in cast films of dispersed 

MWCNTs as larger agglomerates are diminished and networking between 
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smaller agglomerates is enhanced. This mesoporosity has recently been 

highlighted for its impact on the diffusion of analytes to the active sites of 

electrodes modified with carbon nanotubes. Streeter et al.178 in particular have 

noted the importance of considering thin layer diffusion in such systems to 

avoid the misinterpretation of electrocatalytic responses of electron transfer. 

As the MWCNTs in this work were not functionalised or treated harshly 

enough to cause significant defects to the structure of the nanotubes, it can be 

assumed that the major contributors to the electrochemical properties 

evaluated with K3Fe(CN)6 are characteristic of the inherent properties of the 

MWCNTs purchased commercially. The planar structure of graphene is not 

known to form mesopores, but moreover to re-stack, decreasing its relative 

surface area and electronic properties.198 The graphene in this work also is not 

functionalised; therefore its properties are examined relative to its mild 

treatment herein. 

 

 The electrochemical responses of the MWCNTs and graphene modified 

electrodes are measured in this chapter using cyclic voltammetry which is 

discussed fully in Chapter 2. Specifically in this work, the magnitude of the 

peak currents, Ip, and the observed symmetry of the peaks provide information 

on the electroactive surface area and kinetic properties of the modified 

electrodes. The peak positions, Ep, are used to characterise the 

thermodynamics of the reaction, and the distance between the oxidation and 

reduction peak potentials, ΔEp, is utilised to calculate the rate constants at the 

modified surfaces. The Randles-Sevcik Equation, the Kochi and Klingler 

Equation and the Nicholson Theory are all implemented in this 

electrochemical characterisation of the modified electrodes. The materials are 

thus directly compared in their pristine state for use in the simple 

modification of electrodes. Some results from this chapter have been 

published in ECS Transactions.199  
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3.2 Results and Discussion  

 

3.2.1 Electrodes Modified with Multiwalled Carbon Nanotubes 

 

3.2.1.1 Physical Characterisation of Electrodes Modified with MWCNTs  

 

The MWCNTs used in this work were purchased from Sigma-Aldrich (>99% 

purity) and as they were not modified prior to their use, they did not require 

extensive physical characterisation. The MWCNTs samples were therefore 

characterised using Fourier transform infrared spectroscopy (FTIR) and 

electron dispersive X-ray (EDX) analysis, as described in Chapter 2 to assess 

the effects of sonication in DMF on the properties of the MWCNTs. The use of 

FTIR spectroscopy allowed for the identification of any oxygen-containing 

groups on the MWCNTs and the EDX analysis was utilised to identify any 

impurities in the MWCNTs sample.  

 

In the preparation of the modified electrodes, a GC pencil-style WE was 

prepared as illustrated in Chapter 2, and pristine working surfaces were 

prepared before each experiment by polishing with diamond paste. The 

MWCNT samples were prepared by adding 10 mg MWCNTs to 1 mL DMF. The 

non-sonicated samples were inverted several times to mix the suspension and 

the sonicated samples were subjected to 30 min sonication to disperse the 

nanotubes. The glassy carbon electrode (GCE) was modified by drop casting a 

specific volume of the MWCNT sample on the polished surface and the 

electrode was dried at room temperature or with the aid of an IR lamp. 

Scanning electron microscope (SEM) imaging was carried out on the electrode 

surfaces to highlight the effect of sonication on the morphology of the 

resultant castings. 
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3.2.1.1.1 FTIR Spectroscopy of MWCNTs 

 

The FTIR spectra of MWCNTs sonicated for 30 min in DMF and non-sonicated 

(pristine) MWCNTs are compared in Figure 3.1. Both samples were prepared as 

KBr disks and exhibit large O-H stretches with bands at 3433 cm-1 and 1632 cm-1  

due to the absorbance of water, and a less intense peak at 1385 cm-1 that can be 

identified as a standard impurity in the KBr used in preparing the samples.200  

The presence of DMF in both sonicated and unsonicated samples was 

apparent by the absorbance bands representing C-H2 between 2849 and      

2959 cm-1,201, 202 and by the band representing an N-H vibration at 805 cm-1.203 

Surprisingly however, the absorbance of the C=O component of DMF at     

1680 cm-1 was absent. The DMF is known to adsorb on the nanotube surface 

via hydrophobic or π-π interactions,69 which could have caused this bond to 

weaken, leading it to be shifted and masked by the water absorbance in the 

same region. The bands between 2849 and 2959 cm-1 and at 805 cm-1 however 

provide an indication that some DMF had adsorbed onto the MWCNTs in 

both the sonicated and non-sonicated samples. 

 

The increase in oxygenated species on MWCNTs with sonication was 

identified by a small C=O band at 1723 cm-1, which was not visible in the non-

sonicated sample.69 This analysis further supports the reports that oxygenated 

species can be introduced at defect sites or edge planes of MWCNTs from the 

air.204 However, as the band was of low intensity, it shows that sonication in 

DMF does not drastically increase the content of oxygenated moieties in the 

MWCNTs sample in comparison to modification of MWCNTs surfaces, for 

example, with -COOH groups using acid treatment.69 The MWCNTs used 

herein can therefore be described as pristine MWCNTs. 
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Figure 3.1: FT-IR spectra of — non-sonicated MWCNTs and — MWCNTs 

sonicated for 30 min in DMF. 

 

3.2.1.1.2 SEM and EDX Analysis of MWCNTs  

 

Scanning electron imaging of the modified surfaces was used to highlight the 

effect of sonication on the morphology of the resultant castings. The images in 

Figure 3.2 (a) and (b) compare the morphologies of GCEs modified with 20 µL 

non-sonicated and sonicated MWCNTs at a low magnification showing the 

overall increased coverage obtained by sonication of the MWCNTs. The non-

sonicated sample exhibited large agglomerations of MWCNTs on the GCE 

surface whereas the sonicated sample showed more evidence of networking 

between the smaller agglomerations of MWCNTs. Images of increased 

magnification seen in Figure 3.2 (c) and (d) show the compact structure of the 

non-sonicated sample in comparison to the loosely entangled sonicated 

MWCNTs. The highly magnified images in Figure 3.2 (e) and (f) highlight the 
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structure of the sonicated MWCNTs with individual MWCNTs visible in both 

samples indicating that reasonable dispersion was achieved with gentle 

shaking of the sample in DMF. The  images suggest an increased surface area 

of the sonicated MWCNTs due to the separation of the large agglomerations, 

in comparison to the slightly more dense packed structure of the non-

sonicated MWCNTs. Similar surface morphologies have been observed by 

Lawrence et al.68 for 20 µL casting of 2 mg mL-1 suspensions in DMF. 

 

EDX analysis was carried out on the modified electrode surface (Figure 3.3 (a) 

and (b)) as described in Chapter 2. The recorded spectra showed evidence of 

cobalt and chlorine impurities which can arise from the metal catalysts used in 

the production of MWCNTs. Giri et al.205 have recently used Co(II) in doping 

polymer/MWCNTs composites for application in super capacitors. The Co-

doped composites showed improved capacitance and electrical conductivity in 

comparison to the un-doped composites, which is attributed to the charge 

accumulation property of the transition metal ion. There is no evidence 

however that the presence of Co(II) would enhance the electron transport 

properties of MWCNTs, and as the amount of Co(II) in the MWCNTs present 

in this study were lower, at 0.2 wt.% in comparison to the 4.0 wt.% used by 

Giri et al., it is highly unlikely that it significantly contributed to any 

observations in this work. The Au peaks observed in the spectra are due to the 

pre-treatment of the electrodes with Au sputter-coating to prevent charging of 

the surface. No differences were seen in comparing the non-sonicated sample 

to the sonicated sample. 
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(a) (b) 

     

(c)                       (d) 

     

(e) (f) 

     

 

Figure 3.2: SEM micrographs of GCE modified with 20 µL 10 mg mL-1 

MWCNTs in DMF. (a), (c) and (e) show varying magnifications of non-

sonicated MWCNTs and (b), (d) and (f) show the corresponding sonicated 

samples. 
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(a) 

 

(b) 

 

 

Figure 3.3: EDX analysis of GCE modified with (a) sonicated and (b) non-

sonicated MWCNTs showing Co impurities. 
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3.2.1.2  Electrochemical Characterisation of Electrodes Modified with 

 MWCNTs using a K3Fe(CN)6 probe  

 

The electrode surfaces were characterised using cyclic voltammetry which is 

described in detail in Chapter 2. Briefly, this involves sweeping the applied 

electrical potential between two points and recording the resulting current. 

Although experimental parameters varied slightly throughout this work, 

generally the WE was cycled between -0.15 and 0.60 V vs. SCE for MWCNTs 

and vs. Ag+/AgCl for graphene (due to the different laboratories where the 

experiments were carried out). For comparison purposes the potentials were 

corrected to SCE. The main substrate utilised in this study was glassy carbon, 

as it is used widely in graphene-based sensors,87 showing superior performance 

in its modification with MWCNTs compared to metallic electrodes, most likely 

due to the similarity between their structures. A standard three electrode cell 

was used for the experiments based on GCE however a modified set up was 

commissioned to accommodate the use of basal plane HOPG as a working 

electrode (illustrated in Chapter 2).  

 

To gain information about the electron transfer abilities of electrodes, redox 

reactions at the electrolyte interface are often analysed. The electrochemical 

probe used in this set of experiments was the redox couple                 

[Fe(CN)6]3-/[Fe(CN)6]
4-. Although the redox behaviour of this probe is used 

widely to describe the electrochemical properties of various electrodes, it is 

duly noted that it does not behave ideally, showing degradation with both 

time and light in particular.197 To minimise the unreliability of this probe, fresh 

solutions were prepared regularly and kept under dark conditions. It was 

prepared as an aqueous solution containing 0.05 M KH2PO4 and 0.05 M KCl as 

a supporting electrolyte, to ensure that diffusion of the analyte was the only 

limitation to mass transport. This solution was also used to provide 

background currents for each voltammogram, ensuring that any peaks or 

waves observed were a result of the [Fe(CN)6]3-/[Fe(CN)6]
4- couple. The values 
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obtained in measurement of the faradaic current were estimated by removal of 

these background currents. 

 

The effects of sonication on the electrochemical properties of MWCNTs 

samples cast on GCE is investigated in this section. This involved comparing 

the electrochemical response of the modified and bare electrodes to the redox 

behaviour of K3Fe(CN)6 using cyclic voltammetry. The peak potentials (Ep) and 

peak currents (Ip) of the redox probe were measured directly from the 

voltammograms and capacitance of the modified electrodes was calculated 

from a measurement of the background currents at various scan rates. The 

effect of increasing the cast volume for both non-sonicated and sonicated 

solutions is also investigated. Cyclic voltammetry in 1.00 × 10-3 M K3Fe(CN)6 

was performed on the electrodes prior to modification, i.e. the bare electrode, 

to provide a comparison for the modified surfaces. The substrates were then 

replenished and cast with 5, 10, 15 or 20 µL of the 10 mg mL-1 MWCNTs/DMF 

samples. In both cases the volume cast was used to give a rough estimation of 

the mass of MWCNTs on the GC surface. The reproducibility of the results 

using various casting volumes indicate that in both cases, the MWCNTs were 

reasonably well dispersed throughout the solvent and it was estimated that 5 

µL of the MWCNTs sample would result in approximately 0.05 mg MWCNTs 

on the GC surface.  

 

3.2.1.2.1 The Effect of Sonication on the [Fe(CN)6]3-/[Fe(CN)6]4- Peak 

 Current 

 

Cyclic voltammograms illustrating the redox behaviour of [Fe(CN)6]3-

/[Fe(CN)6]4- at the modified electrodes can be seen in Figure 3.4, which 

compares GCEs modified with both non-sonicated and sonicated MWCNTs to 

the bare GCE. An increase in faradaic currents with both modifications of 

glassy carbon is apparent from these voltammograms, suggesting an increased 

surface area with enhanced electrochemical activity. As discussed in Chapter 2, 

the faradaic current refers only to the current arising from the transport of 
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electrons, whereas the capacitive currents can be referred to as those resulting 

from a build of a charge at the electrode/electrolyte interface.174 The 

magnitude of this faradaic current is generally an indication of the amount of 

the species being oxidised or reduced, and therefore in this case can be 

indicative of an increased electroactive surface area in comparison to the bare 

electrode.  

 

 

 

Figure 3.4: Cyclic voltammograms comparing a 4 mm diameter GCE — bare, 

— modified with 5 µL non-sonicated MWCNTs (10 mg mL-1) and — modified 

with 5 µL sonicated MWCNTs (10 mg mL-1). All electrodes were cycled in      

1.00 × 10-3 M [Fe(CN)6]3-/[Fe(CN)6]4-, with 0.05 M KCl and 0.05 M KH2PO4 as a 

supporting electrolyte system, at a scan rate of 100 mV s-1. The average values 

of the anodic peak current, Ipa, and ΔEp from the voltammograms are tabulated 

with the calculated reversibility ratio of Ipc/Ipa. 

 

The average recorded anodic faradaic current (n=7) for the oxidation of 

Fe(CN)6
4- at a GCE modified with non-sonicated MWCNTs was 2.86 × 10-5 A, 

which was significantly larger than 2.28 × 10-5 A (n=4) at the bare electrode (t = 

32.59, d.f. = 9, P < 0.0001). Modification of the GC electrode with dispersed 

MWCNTs showed a further enhancement of the faradaic currents. In this case 

the average peak current (n=7) measured was 6.50 × 10-5 A, which was also 

significantly larger than the bare GC electrode (t = 29.76, d.f. = 8, P < 0.0001). 

In the case of the non-sonicated MWCNTs, this increase is likely due to their 

superior surface area, as the nanotubes are known to have an extremely high 
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aspect ratio34 that would provide a significant increase in the surface area of 

the electrode, regardless of their level of dispersion. The further increase 

observed in the average faradaic current at the electrode modified with 

sonicated MWCNTs is indicative of the dispersive effects of sonication on the 

MWCNTs. As the surface areas of the electrodes were expected to change 

relative to modifications, the currents were not normalised to the geometric 

surface area of the GCE in this work. It can therefore be presumed that the 

increase in currents seen at the modified GCE electrodes can be associated 

with an increase in surface area, achieved by sonicating the nanotube solution 

which would further expose the large aspect ratio of MWCNTs. The 

reversibility of the redox process was analysed by calculating the ratio of the 

peak currents and was found to be approximately 1 and behaved independently 

of scan rate (10 to 200 mV s-1) indicating an electrochemically reversible 

process.174  

 

In analysing the voltammograms of GCEs modified with various casting 

volumes (5, 10, 15 and 20 µL) of both samples, it is clear that there were slight 

increases observed in the faradaic currents of [Fe(CN)6]
3-/[Fe(CN)6]4- with 

additions of 5 to 15 µL of non-sonicated MWCNTs. This is shown in Figure 3.5 

(a) and (b) for unsonicated and sonicated samples, respectively. In particular, 

the anodic peak currents increased steadily from 2.38 × 10-5 A at the bare 

electrode to 3.13 × 10-5 A at the GCE modified with 15 µL non-sonicated 

MWCNTs but did not further increase at the 20 µL casting. A one way ANOVA 

analysis of the data indicated, however, that the differences between the 

various casting volumes were statistically insignificant (P>0.05). The slight 

enhancement of the peak current can possibly be attributed to a small increase 

in the electroactive surface area of the modified electrode.  
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(a) 

 

 

 

(b) 

 

 

Figure 3.5: Cyclic voltammograms comparing successively increasing casting 

volumes of (a) — 5, — 10, — 15 and — 20 µL aliquots of non-sonicated and 

(b) — 5, — 10, — 15 and — 20 µL aliquots of sonicated MWCNTs. In all 

cases, modified electrodes were cycled in 1.00 × 10-3 M  [Fe(CN)6]3-/[Fe(CN)6]4- 

with 0.05 M KCl and 0.05 M KH2PO4 as a supporting electrolyte system, at a 

scan rate of 100 mV s-1.  
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The voltammograms comparing increases in volumes cast of sonicated 

MWCNTs, seen in Figure 3.5 (b) shows that the peak currents increased from 

2.38 × 10-5 A at the bare electrode to 5.22 × 10-5 and 7.46 × 10-5 A at the GCE 

modified with 5 and 10 µL sonicated MWCNTs, respectively. The surface area 

was likely to be increased with increasing cast volumes, which accounted for 

the increased peak currents, also observed by Borowiec et al.44 Similar results 

were observed by   Li et al.206 in studying this redox couple at MWCNT tower 

electrodes. They found that the redox currents of [Fe(CN)6]3-/[Fe(CN)6]4- were 

proportional to the film thickness, which was explained by the porous nature 

of nanotubes allowing the electrolyte access to the interior surface. Further 

increasing the casting volume of sonicated MWCNTs, to 15 and 20 µL, 

decreased the peak currents slightly to 6.02 × 10-5 and 6.29 × 10-5 A, 

respectively, which could possibly be caused by the large background 

capacitive currents masking the faradaic current. Statistical analysis of the 

modified electrodes however showed no significance in the observed 

differences. This indicated that the maximum increase in surface area was 

achieved with 5 to 10 µL casting of the sonicated MWCNTs solution.  

 

3.2.1.2.2 Evaluation of the Capacitance of the Modified Electrodes 

 

Capacitive currents are generated due to the charge stored at the 

electrode/electrolyte interface, and are therefore affected by the entire 

physical surface area of the material. The mesoporous structure of MWCNTs 

enables easy access of the solvated ions to this interface during charging of the 

electrical double layer40 (further discussed in Chapter 2). It can be seen in 

Figure 3.5 (a) and (b) that sonication had a large affect on the capacitance of 

the modified electrodes.40, 207  The capacitance was therefore calculated and 

compared for the sonicated and non-sonicated materials by measuring the 

current in the non-faradaic region (0.50 V) as a function of the scan rate. As 

mentioned previously, the currents are not normalised to the geometric 

surface area in this work. In this case, the gravimetric capacitance is reported, 
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similarly to the work reported by Barisci et al.,208 where the currents were 

related to the approximate mass of MWCNTs on the modified electrode. 

 

As the capacitance of bulk metals is dominated by the solution,209 it is 

reasonable to measure the capacitance at the bare electrode, as a comparison 

for measurements at the modified substrates. Capacitance values of 

approximately 3.0 × 10-5 F were calculated for the bare GC electrode, 

confirming the minor contribution of the substrate to the capacitance 

measured at the modified electrode. The plot seen in Figure 3.6 shows the 

increase in the background current with increasing scan rate for the modified 

electrodes, where the slope is a measure of the capacitance.  

 

The small increase in capacitance observed upon modification with non-

sonicated MWCNTs, compared to the bare GC, to 2.3 × 10-4 F or 5.0 F g-1 is 

likely due to a slight increase in the surface area of the GCE. The average 

capacitance of the GC electrode modified with 5 µL sonicated MWCNTs (n=7) 

was calculated to be 5.8 × 10-4 F which results in a gravimetric capacitance of 

11.6 F g-1. This larger increase in capacitance observed upon modification with 

the sonicated MWCNTs sample can be owed to the dispersion of the 

MWCNTs which would have further increased the surface area of the modified 

electrode. It should also be noted that the DMF was not entirely removed from 

the MWCNT films and could have contributed to the observed capacitance. 

The different amounts of DMF in the sonicated and non-sonicated samples 

could therefore have contributed to the increase in capacitance observed upon 

sonication.210  

 

The capacitance values calculated here are quite similar to those calculated in 

a similar fashion by Barisci et al.208 of 14 to 16 F g-1 for sheets of SWCNTs, that 

they referred to as nanotube paper. In both cases it is apparent that the mass 

distribution of MWCNTs through the solution was reasonably homogenous, 

evident by the small error in the repeated experiments (n = 7), indicated by the 

small error bars, which highlighted that the amount cast was very 
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reproducible. However, as indicated by SEM analysis, the non-sonicated 

sample was more compact and therefore would likely have a smaller physical 

surface area than the more dispersed sonicated sample. 

 

 

 

Figure 3.6: Plot of increasing background current (normalised to the 

approximate mass of MWCNTs in a 5 µL aliquot) with scan rate for GC 

electrode modified with MWCNTs ■ sonicated (R2=0.999) and ■ non-

sonicated (R2=0.998), used to calculate the specific capacitance. 

 

The capacitive currents were also compared for both samples by recording the 

current as a function of cast volume, which can be seen in Figure 3.7. Here it 

can be seen that increasing the volume cast of the non-sonicated sample did 

not drastically alter the background currents (measured at 0.50 V vs. SCE). A 

linear increase (R2=0.997) was observed in the currents on increasing the cast 

volume of the sonicated sample. This suggests that the physical surface area 

did not increase with increasing cast volume due to the compactness of the 

non-sonicated sample, and highlights the dispersive effect of sonication on the 

MWCNTs film. This dispersion is expected to have increased the amount of 

DMF in the sonicated MWCNTs sample, which may also have contributed to 

the increased capacitance observed for the sonicated MWCNTs. 
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Figure 3.7: Plot comparing the capacitive currents recorded for ■ non-

sonicated and ■ sonicated samples of MWCNTs at various casting volumes.  

 

To further investigate the observed effect of the increase in capacitance with 

increased amount of sonicated MWCNTs, the currents normalised to their 

respective estimated mass of MWCNTs. The currents were then plot as a 

function of scan rate and it can be seen in Figure 3.8 that when normalised to 

the amount of MWCNTs on the surface, the capacitance was approximately 

the same at each electrode, and the relationship was linear. This is a good 

indication that the mesoporous structure of MWCNTs was exposed with 

sonication providing a more capacitive film with increasing cast volume.  
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Figure 3.8: Plot representing the relationship between the background current 

and scan rate for various amounts of MWCNTs, ■ 5 ■ 10 ■ 15 and ■ 20 µL, from 

10 mg mL-1 suspensions in DMF, used to calculate the capacitance of the 

MWCNTs used in this work (R2=0.999). 

 

3.2.1.2.3 The Effect of Sonication of MWCNTs on The Peak 

 Separation for The Redox Reaction of K3Fe(CN)6  

 

The peak potentials were measured for each reaction at the modified 

electrodes, Ep, and used to calculate the half wave potential, E1/2, which is a 

thermodynamic measure of the reaction. The half wave potential was 

calculated to be 0.17 V and was independent of sonication and cast volume. 

Similar values were reported by Keeley and Lyons177 for similarly prepared 

electrodes. The efficiency of electron transfer at each modified electrode was 

also measured and compared to that at the bare electrode by measuring the 

separation between the oxidation and reduction peak potentials, ΔEp, of the 

[Fe(CN)6]3-/[Fe(CN)6]
4- couple at various scan rates. It was calculated that 

modification of the GCE with non-sonicated MWCNTs resulted in a significant 

decrease in the average ΔEp to 0.064 V (n = 7) in comparison to the bare GC 

which gave an average peak separation of 0.102 V (n=3) for voltammograms 

recorded at 100 mV s-1 (t = 6.124, d.f. = 9, P < 0.001).  
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The modification of the GCE with MWCNTs sonicated for 30 min was 

evaluated and found to significantly decrease the ΔEp to 0.075 V (n = 7), in 

comparison to that seen at the bare electrode (t = 29.76, d.f. = 8, P < 0.0001). 

The observations of enhanced electron transfer at GCE modified with 

MWCNTs agrees with studies by Bai et al.,38 who proposed that the length of 

MWCNTs, had a significant influence on the conductivity of the resulting 

modified material. This conductivity was owed greatly to the linkage of small 

aggregates via intertube connections. As the MWCNTs in this study were 

sonicated for a short time or shaken gently without the use of surfactants, the 

enhanced electron transfer can be owed to the sufficient dispersion of larger 

aggregates into networks of MWCNTs and maintenance of the nanotube 

length in both samples.  

 

In studying the separation between the oxidation and reduction peak positions 

for the GCE modified with various amounts of MWCNTs, (Figure 3.9) it was 

found that the electron transfer at the modified GCE was impeded as the 

casting volume of sonicated MWCNTs increased. The average ΔEp recorded at 

100 mV s-1 for the GCE modified with 5 µL sonicated MWCNTs was 0.075 V 

which was increased to 0.112 V at the 20 µL casting. One-way ANOVA 

statistical analysis of these data showed a significant difference in the peak 

separation (F = 7.252, d.f. = 30, P < 0.005) in comparing the bare GCE to the 

GCE cast with various volumes of sonicated MWCNTs (5, 10 15 and 20 µL). 

Bonferroni post-hoc analysis comparing the individual cast volumes however, 

showed mixed results. A plot measuring the change in ΔEp with increasing cast 

volume was therefore generated and is shown in Figure 3.9, where poor 

linearity is noted and a plateau of the curve can be seen at higher casting 

volumes. This suggested that the thickness of the MWCNTs layer introduced a 

diffusional limitation or may have decreased the conductivity at the electrolyte 

interface.211 This was not seen however at the GCE modified with non-

sonicated MWCNTs (Figure 3.9). As the casting volume was increased for this 

modified electrode, the peak separation remained relatively constant at an 

average of 0.058 V. Under these specific conditions it appears that the non-
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sonicated sample that was shaken gently to aid dispersion showed superior 

electron transfer to the sonicated sample. It is proposed that the increased cast 

volume may have slowed the diffusion of the analyte through the mesoporous 

structure of the sonicated MWCNTs.  Additionally, it is likely that the 

increased thickness of the film led to an increase in the amount of DMF on the 

electrode surface which would decrease the conductivity at the 

electrode/electrolyte interface.  

 

 

 

Figure 3.9: Plot of increasing ΔEp with increasing cast volume. Potentials were 

recorded at GCEs modified with  5, 10, 15 and 20 µL MWCNTs ■ non-sonicated 

and ■ sonicated for 1 hr of the redox reactions of 1.00 × 10-3 M  [Fe(CN)6]3-

/[Fe(CN)6]4- with 0.05 M KCl and 0.05 M KH2PO4 as a supporting electrolyte 

system, at a scan rate of 100 mV s-1. 

 

3.2.1.2.4 Evaluation of Diffusional Effects at Electrodes Modified 

 with MWCNTs 

 

To investigate the diffusion process at the modified electrodes, the 

relationships between the log of the scan rate (log ν) and the log of the 

recorded peak currents (log Ip) for all experiments in this section were 

measured by plotting the data, as shown in Figure 3.10. It is widely accepted 
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that a slope of 0.5 for this plot would indicate a diffusion controlled process 

whereas a slope of 1.0 would suggest an adsorption phenomenon. Values in 

between 0.5 and 1.0 indicate that both processes are important factors.174, 212 

The relative slope values for all of the modified electrodes can be seen in  

Table 3.1, where it is clear that a diffusional process is predominantly occurring 

for the redox couple of [Fe(CN)6]3-/[Fe(CN)6]4- as all values are closer to 0.5 

than to 1.0. The diffusional nature of this process was further supported by the 

linearity observed in plotting the peak current (Ip) against the square root of 

the scan rate (√ν).171 The average correlation coefficients recorded for 

modification with non-sonicated and sonicated MWCNTs were 0.99 and 0.98, 

respectively. Moreover, in monitoring the peak currents with cycle number it 

was found that they were stable and did not steadily increase with time, which 

also discounted any significant adsorption at the electrodes modified with 

sonicated MWCNTs samples. These observations coincide with the observed 

diffusive tail seen in cyclic voltammograms (Figure 3.11) confirming that 

adsorption to the nanotube surface is unlikely. 

 

 

 

Figure 3.10: Typical plot showing the linear relationship (R2=0.995) between 

the log of the scan rate and the log of the peak current. The slope of ~0.5 was 

used to determine the diffusional nature of the electron transfer. 
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Table 3.1: Values for the slope (m) obtained in plotting the log of the scan rate 

(log ν) against the log of the peak current (log Ip) for various cast volumes of 

sonicated and non-sonicated MWCNTs.  

 

Cast Volume / µL Sonicated MWCNTs Non-sonicated MWCNTs 

5 0.69 0.53 

10 0.68 0.54 

15 0.60 0.56 

20 0.56 0.57 

 

As mentioned previously, Keeley and Lyons177 have highlighted that three 

possible processes may contribute to electron transfer in electrodes modified 

with carbon nanotubes; diffusion of an analyte through bulk solutions, 

diffusion through thin layers of solution within the networked nanotubes and 

adsorption to the surface of the nanotubes. As the diffusional nature of this 

system appears to be prevalent, from Table 3.1, it is likely that the diffusion 

through bulk solution and thin films are dominant factors in electron transfer 

at these modified electrodes. The effects of thin layer diffusion are explained in 

Chapter 2. In terms of electrodes modified with MWCNTs, it has been 

proposed that probe molecules or analytes can diffuse into “pockets” which 

form between networked nanotubes on the electrode surface. As the species is 

trapped at the electrode surface, it does not diffuse back into the bulk solution, 

as it would for semi-infinite diffusion, making electron transfer more efficient. 

Thin layer diffusion results in a small peak separation and is dependent on 

many factors, such as the thickness of the thin layer.  

 

The small peak separation observed under certain conditions in Section 

3.2.1.2.3 can be owed to the contribution of thin layer diffusion. Thin layer 

diffusion might be expected to have a bigger effect for the non sonicated 

MWCNTS, as an increase in the size of the thin layer “pockets” should occur in 

the sonicated MWCNTs agglomerations. Streeter et al.178, have shown that an 

increase in the thin layer size will shift the anodic potential to more oxidative 
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potentials as the electron transfer becomes more difficult. Another important 

factor contributing to the slower electron transfer observed is the volume of 

solvent in the nanotube film. Keeley and Lyons177 have suggested that the 

coating of nanotubes with solvent can inhibit electron transfer between the 

redox probe and the nanotube strands which is likely to be seen in the case of 

the sonicated MWCNTs. Sonication of the MWCNTs in DMF is likely to have 

coated the nanotubes more thoroughly than would be expected from gentle 

shaking. Although the solvent was evaporated under an IR lamp, it is unlikely 

that full removal of DMF was achieved. This increased level of solvent in the 

MWCNTs film may therefore also be responsible for the slower electron 

transfer at the sonicated MWCNTs film in comparison to the non-sonicated 

sample.  

 

In comparing the voltammograms at various scan rates, evidence of thin layer 

diffusion at sonicated MWCNTs can be seen by the smaller peak separation 

(Figure 3.11 (a)) at slower scan rates. Significantly, while studying the peak 

separation of dopamine at a bare GCE and a single-walled nanotube modified 

electrode, Keeley and Lyons177 observed that the peak separation for the 

modified electrode was smaller at low scan rates but larger at high scan rates 

than for the bare GCE. They explain that this is possibly due to time 

limitations of the diffusion process, in that at faster scan rates the diffusion of 

the analyte into the “thin layer pockets” of the MWCNTs does not have time to 

occur.  
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It can be seen in Figure 3.11 (b), by comparing the peak separations at each 

scan rate for the bare GCE to that modified with a sonicated sample of 

MWCNTs, the largest difference between the electrodes is seen at the slower 

scan rates. At higher scan rates the modified and bare electrodes behaved 

similarly, showing the contribution from semi-infinite planar diffusion for the 

GCE modified with sonicated MWCNTs. These results are consistent with the 

trend observed in Section 3.2.1.2.3 in the [Fe(CN)6]3-/[Fe(CN)6]4- peak 

separation with increasing cast volume of sonicated MWCNTs. This suggests 

that the thin layer diffusion process is an important contribution to fast 

electron transfer at MWCNTs used in this work and that slow scan rates and 

low casting volumes are required to allow for the diffusion to occur in the 

sonicated sample. 
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(a) 

 

(b) 

 

 

 

Figure 3.11: The redox behaviour of K3Fe(CN)6
 3-/4- with 0.05 M KCl and 0.05 M 

KH2PO4 as a supporting electrolyte system, at GCE modified with 5 µL 

sonicated MWCNTs shown by (a) voltammograms illustrating the effect of 

scan rates — 10 to — 200 mV s-1 and (b) plot highlighting the linear 

relationships of peak separation to scan rate for GCE ■ bare and ■ modified 

with 5 µL sonicated MWCNTs.  
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3.2.2 Electrodes Modified with Graphene 

 

3.2.2.1  Electrochemical Characterisation of Electrodes Modified 

  with Graphene 

 

The effect of sonication on graphene samples is investigated in this section, 

similarly to that seen in Section 3.2.1.2.1 for MWCNTs. The experiments 

involving graphene were carried out at UNSW in Australia under the 

supervision of Prof. J.J. Gooding as part of an international exchange 

programme. Experiments involving the use of graphene required the use of 

two types of working electrodes (WEs). Glassy carbon (GC) and Platinum (Pt) 

pencil-style working electrodes of 3 mm diameter were prepared for use by 

polishing with alumina slurry (1.00, 0.30 and 0.05 µm grades) as described in 

Chapter 2. Highly ordered pyrolytic graphite (HOPG) was used to construct a 

basal plane HOPG working electrode as a comparative substrate (set up 

illustrated in Chapter 2). The quality of the basal plane HOPG was insured by 

stripping defected layers from the surface with adhesive tape, rinsing with 

EtOH and drying with N2.
213, 214 The low level of remaining defects on the 

surface was confirmed by cyclic voltammetry whereby the electrode was cycled 

in 1.00 × 10-3 M  K3Fe(CN)6 with 0.05 M KH2PO4 and 0.05 M KCl as supporting 

electrolytes. Voltammograms were recorded at various scan rates                    

(10 to 200 mV s-1) and a separation between the oxidation and reduction peak 

potentials, ΔEp > 600 mV signified a suitable working surface containing a low 

level of defects.213  

 

Graphene samples were prepared from 10 mg mL-1 suspensions in DMF, 

whereby non-sonicated samples were inverted to achieve their maximum 

dispersion without the aid of sonication and sonicated samples were dispersed 

using sonication for 30 min. The modified electrodes were prepared by drop 

casting 5 or 10 µL aliquots of the sample on the surface of the prepared 

working electrode and drying in an oven at 45 oC for 10 min. Cyclic 

voltammetry was carried out using the ferricyanide probe as described in 
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Section 3.2.1.2 with the peak currents, background currents and peak 

potentials recorded. 

 

3.2.2.1.1 Effects of Dispersion on K3Fe(CN)6 Peak Currents at Glassy 

 Carbon Modified with Graphene 

 

The cyclic voltammograms in Figure 3.12 compare results obtained at bare GC 

to the GC electrode modified with non-sonicated graphene in [Fe(CN)6]3-

/[Fe(CN)6]4- at 100 mV s-1. There was a distinct decrease in the peak currents by 

modification of GCE with non-sonicated graphene, which can be seen in 

Figure 3.12 (a).  The average anodic peak current measured at the bare GCE 

was 0.013 mA which decreased to 0.004 mA (n=3) upon modification with 5 µL 

of the non-sonicated graphene sample. The significance of this decrease was 

confirmed using a t-test (t = 10.04, d.f. = 5, P <0.001) and suggested that poorly 

dispersed graphene resulted in a lower active surface area of the modified 

electrode. Contrastingly, Figure 3.12 (b) shows an increase in faradaic currents 

at the GCE modified with sonicated graphene with the average anodic peak 

current (n=4) increased to 0.016 mA. However, this was not statistically 

different from the bare electrode (t = 2.014, d.f. = 6, P > 0.05). This slight 

increase was likely due to the increased surface area of the dispersed graphene 

sheets as was similarly shown for sonicated MWCNTs samples in Figure 3.4 

but as the difference was insignificant, it suggested that the activity of the 

surface was very similar to that of glassy carbon.  

 

It should be noted, however, that the difference observed between the GCE 

modified with non-sonicated and sonicated graphene was significant (t = 7.130, 

d.f. = 5, P < 0.001), highlighting the effect of sonication on the graphene 

sample. Similar results were recently obtained by Kang and co-workers87 who 

studied the electrochemical detection of paracetamol at a graphene modified 

electrode prepared similarly to the sonicated sample in this work. They simply 

proposed that the graphene accelerated the electrochemical reaction at the 
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modified surface and the currents were further increased with increasing cast 

volume. 

 

The volume of graphene cast on GCE was also varied and analysed similarly to 

that in Section 3.2.1.2.1. Results displayed in Figure 3.13 compare redox 

behaviour of the [Fe(CN)6]3-/[Fe(CN)6]4- couple at 100 mV s-1 of the GCE 

modified with 5 and 10 µL (a) non-sonicated and (b) sonicated graphene, 

obtained using cyclic voltammetry as described before. It can be seen that by 

increasing the volume of non-sonicated material, the peak current varied 

insignificantly, (t = 1.077, d.f. = 4, P > 0.05). For modification of the GCE with 

sonicated graphene, the peak currents were increased from 1.56 × 10-5 A for 5 

µL casting to 1.68 × 10-4 A upon modification with 10 µL. Statistical analysis of 

these data however, again showed no significance in this increase (t = 0.6078, 

d.f. = 6, P > 0.05), indicating that the increased volume did not significantly 

increase the active surface area of the modified electrode. 
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(a) 

 

(b) 

 

 

Figure 3.12: Cyclic voltammograms comparing 3 mm GCE (a) — bare to      

— modified with 5 µL non-sonicated graphene and (b) — bare to                 

— modified with 5 µL sonicated graphene. All electrodes were cycled in        

1.00 × 10-3 M [Fe(CN)6]
3-/[Fe(CN)6]

4- with 0.05 M KCl and 0.05 M KH2PO4 as a 

supporting electrolyte system, at a scan rate of 100 mV s-1.   
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(a) 

 

(b) 

 

 

Figure 3.13: Cyclic voltammograms comparing (a) — 5 and — 10 µL casting 

volumes of non-sonicated graphene and (b) — 5 and — 10 µL casting 

volumes of sonicated graphene. The modified electrodes were cycled in       

1.00 × 10-3 M  [Fe(CN)6]3-/[Fe(CN)6]
4- with 0.05 M KCl and 0.05 M KH2PO4 as a 

supporting electrolyte system, at a scan rate of 100 mV s-1.  
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Investigation of further increasing the volume of sonicated graphene cast on 

GC showed results contrasting to those obtained for MWCNTs. As can be seen 

in Figure 5.14, the increase from 10 to 15 and 20 µL in casting volume resulted 

in an apparent decrease in the faradaic currents.  The peak currents in this 

case decreased slightly from 1.68 × 10-4 A at the GC modified with 10 µL to   

5.85 × 10-5 and 1.13 × 10-5 A, respectively, for 15 and 20 µL castings. No statistical 

differences were found between the various casting volumes which further 

suggested that regardless of the volumes cast, the electrochemical activity was 

similar to that observed at the bare electrode, indicating that the graphene re-

stacked on the GCE surface. This re-stacking is known to occur with pristine 

graphene as the individual sheets are relatively unstable86 therefore the use of 

nanoparticles and chemical functionalisation of graphene is commonly 

implemented to aid in their separation.89, 215 For the purpose of this study 

however, the materials in their pristine forms were solely examined.  

 

 

 

Figure 3.14: Cyclic voltammograms of GCE modified with increasing cast 

volumes of sonicated graphene: — 5, — 10, — 15 and — 20 µL. The 

modified electrodes were cycled in 1.00 × 10-3 M  [Fe(CN)6]3-/[Fe(CN)6]4- with 

0.05 M KCl and 0.05 M KH2PO4 as a supporting electrolyte system, at a scan 

rate of 100 mV s-1.  
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3.2.2.1.2 Evaluation of the Capacitive Properties of Electrodes 

 Modified with Sonicated Graphene 

 

The capacitance of the GCE modified with sonicated graphene was calculated 

by measuring the current at 0.50 V as a function of scan rate, as seen 

previously in Section 3.2.1.2.2 for the MWCNTs modified electrodes. It was 

found that upon modification with 5 µL sonicated graphene, the capacitance 

increased to 1.3 × 10-4 F from 3.0 × 10-5 F at the bare GCE. The measured 

capacitance was further increased to 1.8 × 10-4 F with the modification of GCE 

with 10 µL sonicated graphene. This suggested that sonication of the graphene 

sample separated individual graphene sheets allowing for the build up of 

charge at the edge planes of the sheets. The ordered layering between 

graphene sheets is known to introduce interfacial capacitive properties to the 

material which would have contributed to this increase.198, 211 Kang et al.,87 for 

example observed increased background currents with increasing amounts of 

graphene, which they ascribed to an increased surface area obtained in 

modification of their GCE surface with a graphene nanocomposite film.    

Wang et al.211 have utilised a similar increase in observed capacitance to 

calculate the number of layers in their graphene samples, relating their 

observations to interfacial capacitance. 

 

As   outlined in Section 3.2.1.2.2, the measured capacitance was related to the 

mass of graphene cast on the surface to provide gravimetric capacitance 

values. It was calculated that the gravimetric capacitance of the electrode 

modified with 5 µL sonicated graphene (i.e. 0.05 mg) was 2.6 F g-1. However, 

this decreased to 1.8 F g-1 at the GCE modified with 10 µL (i.e. 0.10 mg) 

sonicated graphene. This is indicative that the entire amount of graphene on 

the surface was not accessible to the electrolyte in this case. This can perhaps 

be explained by a decrease in  the exposed edge planes of the graphene which 

can be caused by the agglomeration of undispersed sheets.86 The 

agglomeration may have resulted in folding and disordered stacking of the 

graphene sheets which has been shown to have adverse effects on its 



Chapter 3 
 

92 
 

electronic properties.216 From the results presented here, it is apparent that the 

modification of GCE with approximately 0.05 mg graphene provides the most 

significant enhancement of the capacitance. 

 

3.2.2.1.3 Evaluation of Diffusional Properties of K3Fe(CN)6  at 

 Electrodes Modified with Graphene 

 

To investigate the differences in the Ip for the oxidation of K3Fe(CN)6 and the 

capacitance values noted thus far between MWCNTs and graphene modified 

electrodes, the mechanism of the observed reaction was assessed. The 

relationship between the log of the scan rate (log ν) and the log of the peak 

current (log Ip) was investigated, as used before for the MWCNTs modified 

electrodes in Section 3.3.1.4. Data are shown in Table 3.3 comparing the slope 

of these plots for sonicated and non-sonicated graphene confirming that a 

diffusional process remained dominant as the slopes for these plots remained 

at approximately 0.5 in both cases. Although in literature reports, semi-infinite 

planar diffusion is generally the only process considered, Hallam and Banks217 

have highlighted that, similarly for MWCNTs, electrochemical measurements 

on graphene-modified electrodes should consider the possibility of thin layer 

diffusion or discount it where necessary.  

 

The decrease in electrochemical activity with increased casting volume of 

sonicated graphene suggested that some adsorption occurred at the electrode 

surface. In monitoring the peak currents with cycle number however, it was 

found that they were stable and did not steadily increase with time, 

discounting any significant adsorption at the electrodes modified with 

sonicated graphene samples. Based on the slope values presented in Table 3.2, 

it is unlikely that  thin layer diffusion occurred for the graphene modified 

electrodes unlike that seen for MWCNTs.217 
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Table 3.2: Values for the slope (m) obtained in plotting the log of the scan rate 

(log ν) against the log of the peak current (log Ip) for various cast volumes of 

sonicated and non-sonicated MWCNTs. 

Cast Volume / µL Sonicated 

graphene 

Non-sonicated 

graphene 

Bare GC 

Electrode 

5 0.53 0.38 
0.48 

10 0.48 0.32 

 

3.2.2.1.4 The Effect of Dispersion on Electron Transfer for the 

 [Fe(CN)6]3-/[Fe(CN)6]4-couple at Glassy Carbon Modified with 

 Graphene 

 

The peak potentials for the [Fe(CN)6]3-/[Fe(CN)6]4- couple were measured at 

the modified electrodes, Ep, and used to calculate the half wave potential, E1/2, 

as was carried out for MWCNTs. The half wave potential was calculated to be 

0.16 V, similar to that calculated at MWCNTs modified electrodes and again 

was independent of sonication or cast volume. The efficiency of electron 

transfer at the modified electrodes was also investigated by calculating the 

separation of the anodic and cathodic peak positions, ΔEp. The average (n=4) 

calculated ΔEp at the GCE modified with non-sonicated graphene was slightly 

larger at 0.144 V than the bare GCE which was 0.102 V. Statistical analysis of 

these data however, showed no significance in the shift (t = 1.446, d.f. = 5, P > 

0.05).  

 

The peak separation for [Fe(CN)6]3-/[Fe(CN)6]4- redox notably decreased from 

0.102 V at the bare electrode to 0.088 V at the GCE modified with sonicated 

graphene. It was possible that this was due to partial oxidation of graphene 

during sonication, as Ji et al.218 demonstrated an increase in electron transfer at 

graphitic materials with increasing oxygen-containing groups. Similarly to that 

seen for MWCNTs, as the graphene samples were not treated with strong 

acids, it was unlikely that they were significantly oxidised during sonication 

but a small increase in oxygen containing groups would be expected. The 
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statistical analysis however, showed that this was not a significant decrease (t 

= 1.326, d.f. = 6, P > 0.05) which highlights the importance of using such 

analytical techniques to clarify the significance of changes in voltammetric 

responses. 

 

It was found that increasing the volume of sonicated graphene cast on the 

surface from 5 to 10 µL increased the peak separation slightly from 0.088 to 

0.111 V. Further increasing the cast volume to 15 µL caused another slight 

increase in ΔEp to 0.117 V, however increasing the volume to 20 µL decreased 

the peak separation to 0.098 V. Statistical analysis of the various cast volumes 

showed no significant difference overall, however Bonferroni post-hoc analysis 

showed variable significances between individual data sets. As these results 

contrast with that seen for MWCNTs, it is proposed that the increase in 

casting volume had no impact on the active area of this modified electrode due 

to stacking of graphene.  

 

Data presented in Table 3.3 comparing the electrodes modified with sonicated 

and non-sonicated graphene solutions which shows that there is a clear 

decrease in the peak separation, ΔEp, and a significant increase in peak 

current, Ip, at the electrode modified with sonicated graphene compared to 

that of non-sonicated graphene. These results indicate that the dispersion of 

graphene in DMF exposed the electrocatalytic properties of the material for 

small cast volumes of 5 to 10 µL. These properties, as discussed previously, 

arise due to extrinsic defects such as oxygenated groups or intrinsic defects 

such as the formation of 5 membered rings in the graphene sheet.  
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Table 3.3: Data obtained from cyclic voltammograms of non-sonicated and 

sonicated graphene cast on GCE. Table compares peak separation (ΔEp) and 

anodic peak current (Ipa) for 5 and 10 µL casting volumes of both materials at 

100 mV s-1. 

Electrode ΔEp / V Ipa / mA 

GCE 0.102 0.0130 

 Volume Cast / µL 

 5 10 5 10 

GC/non-sonicated graphene 0.144 0.188 0.0044 0.0037 

GC/sonicated graphene 0.088 0.111 0.0156 0.1683 

 

3.2.2.2 Electrochemical Comparison of Various Substrates Modified with 

Graphene using K3Fe(CN)6 .  

 

As the modification of GC with graphene has thus far shown similar 

electrochemical properties to that seen at the bare electrode, and in some 

cases impeded the electrochemical response, the influence of the substrate on 

the peak current and peak separation was investigated. In this study, 5 µL casts 

of the sonicated graphene sample were compared at GC, basal plane highly 

orientated pyrolytic graphite (HOPG) and platinum (Pt) electrodes. 

 

3.2.2.2.1 The Electrochemical Properties of HOPG modified with 

 Sonicated Graphene 

 

The use of basal plane HOPG as a comparative substrate was investigated as it 

is known to have poor electron transfer properties.213 This facilitated testing of 

the electrochemical properties of graphene without interference from the 

underlying substrate. In Figure 3.15 (a) and (b) results obtained by cycling bare 

glassy carbon and basal plane HOPG in the ferricyanide solution are compared 

to those modified with sonicated graphene. It is evident in Figure 3.15 (b) that 

redox cycling of the [Fe(CN)6]3-/[Fe(CN)6]4- couple is inefficient at the bare 
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basal plane HOPG electrode. The slow electron transfer was identified by a 

broad ΔEp of > 600 mV which is characteristic of this substrate when it is 

virtually free from defects.213, 214 In Figure 3.15 (b), the slow electron transfer 

observed at the bare basal plane HOPG substrate was increased upon 

modification with sonicated graphene and exhibited a ΔEp of 0.185 V (n=3). 

The large difference between this peak separation and that observed for the 

analogous experiment carried out at GCE (0.088 V) suggested that there was 

some interaction between the GC substrate and the graphene or that the 

electron transfer properties of GC contributed to the results observed in 

Section 3.3.2.1. 

 

The increase in Ip for the oxidation of K3Fe(CN)6  to 0.0048 mA observed with 

modification of the basal plane HOPG with sonicated graphene was significant 

in comparison to the bare substrate, due to the low levels of defects achieved 

during preparation of the substrate. The peak currents monitored at the GCE 

modified with sonicated graphene were notably larger; at 0.0156 mA. These 

values were obtained by removal of the background capacitive currents and 

therefore indicated that there was some interaction between the graphene and 

the glassy carbon electrode that enhanced the electronic properties of the 

modified electrode. This could  be explained by the structure of GC as it is 

reported to have fullerene–like structures and many edge-plane sites,219 which 

would likely interact with graphene via π-π interactions. It could also indicate 

that some electroactivity occurred at the GC substrate. As no composite or 

filler materials were used, it was likely that some of the GC substrate was left 

uncovered and contributed to the reaction. 
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(a) 

 

 

(b) 

 

 

Figure 3.15: Cyclic voltammograms of (a) glassy carbon and (b) basal plane 

graphite electrodes comparing — bare surfaces and — surfaces modified with 

5 µL sonicated graphene recorded in 1.00 × 10-3 M  K3Fe(CN)6 with 0.05 M KCl 

and 0.05 M KH2PO4 as a supporting electrolyte system, at a scan rate of 100 

mV s-1. 
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3.2.2.2.2 The Electrochemical Properties of Pt modified with 

 Sonicated Graphene 

 

To further investigate the possibility of carbon-based interactions between the 

defects of glassy carbon and graphene, a platinum substrate was investigated 

as an electrode material. Figure 3.16 displays results similar to those in Figure 

3.15 (a), whereby both the bare substrate and the substrate modified with 5 µL 

sonicated graphene were compared for their electrochemical properties. It 

appears from these voltammograms that the addition of graphene to the 

platinum surface increased the faradaic current response in comparison to the 

bare electrode. However, the anodic peak currents observed at the modified 

platinum electrode were substantially lower than the currents observed at GC 

modified with sonicated graphene (0.016 mA), which supported observations 

that some interaction between the GC substrate and the sonicated graphene 

enhanced the amount of analyte oxidised at the modified electrode. Also, as 

the redox behaviour of K3Fe(CN)6 is known to be largely affected by defects at 

the electrode surface such as edge-plane sites, it is a possibility that any 

uncoated parts of the GCE reacted directly with the K3Fe(CN)6.  

 

The findings outlined above support observations of the contribution of GC to  

the observed electronic properties of graphene and suggested that there were 

electrostatic interactions between the graphene and the glassy carbon 

substrate.57 Similar results have been reported by Borowiec et al.44 in 

comparing MWCNTs cast on Pt, Au and GC electrodes for the oxidation of 

ketoconazole. They found that GCEs modified with MWCNTs provided the 

highest current response for ketoconazole detection in comparison to Au and 

Pt modified electrodes. A decrease in the peak separation from 0.076 V at the 

bare platinum to 0.066 V was observed as a result of modification with 

sonicated graphene. This indicated that electron transfer at the platinum 

modified electrode was faster than that observed at the modified GC substrate 

(0.088 V); however the bare platinum was also superior to GC in this respect. 

This observation further highlights the contribution of the substrate to the 
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electrochemical response of the modified electrodes to the redox behaviour of 

the ferricyanide couple.  

 

 

 

Figure 3.16: Cyclic voltammograms comparing the redox couple of                   

1.00 × 10-3 M [Fe(CN)6]3-/[Fe(CN)6]
4- with 0.05 M KCl and 0.05 M KH2PO4 as a 

supporting electrolytes, at — bare Pt electrode and — Pt electrode modified 

with 5 µL sonicated graphene.    

 

3.2.2.3 SEM Analysis of Graphene 

 

High resolution micrographs obtained of the cast graphene samples can be 

seen in Figures 3.17 (a) and (b). The images show agglomeration of the carbon 

material without sonication (a) and the image in Figure 3.17 (b) highlights that 

some order was achieved in the sample by sonication. The non-sonicated 

image in Figure 3.17 (a) is similar to that initially reported by Choucair et al. 167 

in the production of this graphene sample. They describe the structure as a 

fusion of individual graphene sheets creating a porous structure. The order 

achieved by sonication seen in Figure 3.17 (b) resembles the individual folded 

graphene sheets observed by Kang et al.87 also on a GC substrate, however at 

this magnification, it is likely that an ordered stack of graphene sheets is 
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observed as π-stacking interactions would create a certain degree of order 

between individual sheets.92   

 

  

 

Figure 3.17: SEM images for (a) non-sonicated and (b) sonicated graphene 

samples.  

 

3.2.3 Electrochemical Analysis of GC Electrodes Modified with 

 Sonicated MWCNTs and Graphene 

 

Observations of increased peak currents in Section 3.2.1.2.1 and 3.2.2.1.1 at GCE 

modified with MWCNTs and graphene indicated that an increase in the 

electroactive surface area was achieved upon sonication of both materials. The 

peak separations observed in Section 3.2.1.2.3 and 3.2.2.1.4 indicated that 

sonication also increased the rate of electron transfer at the modified 

electrodes in comparison to the bare GCE. The data obtained from cyclic 

voltammetry experiments were therefore used to calculate the electroactive 

surface areas and specific rate constants at GC electrodes modified with 

sonicated MWCNTs and sonicated graphene samples in this section. The 

calculation of the rate constants, ks, involved using the peak separations (ΔEp) 

of the [Fe(CN)6]3-/[Fe(CN)6]4- redox couple as described in Section 3.2.3, for 

(a) (b)
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each electrode at various scan rates; 10, 50, 100, 150 and 200 mV s-1. As the 

diffusional nature of the [Fe(CN)6]3-/[Fe(CN)6]
4- redox couple at each electrode 

was confirmed in Section 3.2.3, the peak separations were applied to two 

kinetic equations that assume a diffusion-controlled current, namely the Kochi 

and Klingler Equation and the Nicholson theory, which are both discussed in 

detail in Chapter 2.  

 

3.2.3.1 Calculation of the Diffusion Coefficient of K3Fe(CN)6 at GCE 

 

Firstly the diffusion coefficient, D, was calculated as it is a widely used value in 

analytical equations used to describe diffusion controlled process that 

describes the transport of the electrochemical probe to the electrode surface. 

In order to further characterise both MWCNTs and graphene modified 

electrodes, the diffusion coefficient of the probe, K3Fe(CN)6 was calculated at 

the bare GC electrode, using the Randles Sevcik220 Equation, 3.1.  

 

  3  

 

In this equation Ip is the peak current (A), F is Faraday’s constant                 

96,485 C mol-1, R is the gas constant (8.314 J mol-1), T is the temperature (K), n 

is the number of electrons involved in the redox reaction, A represents the 

electroactive surface area (cm2), D is the diffusion coefficient of the analyte 

(cm2 s-1), c is the concentration (mol cm-3) and ν is the scan rate (V s-1). Cyclic 

voltammetry of the bare GCE was carried out in 1.00 × 10-3 M  K3Fe(CN)6 at 

various scan rates as detailed in Section 3.2.3. The recorded peak currents were 

plot against the square root of the scan rate, and as illustrated in Figure 3.18, 

linear plots were observed. This linearity was used to calculate a diffusion 

coefficient of 3.58 × 10-6 cm2 s-1, which agrees quite well with previous literature 

reports (6.3 × 10-6 cm2 s-1).221  

 

 



Chapter 3 
 

102 
 

 

 

Figure 3.18: Typical plot monitoring change in ■ oxidative and ■ reductive 

peak currents (Ip) of 1.00 × 10-3 M K3Fe(CN)6 with 0.05 M KCl and 0.05 M 

KH2PO4 as a supporting electrolyte system, with the square root of the scan 

rate (√ν) used to calculate the diffusion coefficient, D. 

 

3.2.3.2 Calculation of the Heterogeneous Electron Transfer Rate 

 Constant using The Nicholson Theory  

 

The use of the Nicholson theory to calculate rate constant, ks, involved the 

derivation of the kinetic parameter Ψ from a working curve. Theoretical values 

of decreasing Ψ with increasing peak separation, ΔEp, were proposed in the 

classic paper by Nicholson.179 In plotting 1/Ψ against 1/ΔEp, a polynomial 

relationship was observed which was used to calculate values of Ψ based on 

experimental ΔEp values. According to Equation 3.2, Ψ was then used to 

calculate ks. This theory is further discussed in Chapter 2. 

 

   3.2 

 

Here, the value of γ is 1 which indicates the assumption that the oxidised and 

reduced species have small differences in concentration and diffusion 
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coefficients, α is the transfer coefficient which is assumed to 0.5,  and ks is the 

heterogeneous electron transfer rate constant. D is the diffusion coefficient 

calculated in Section 3.2.3.1 (3.58 × 10-6 cm2 s-1) the number of electrons 

transferred is represented by n, ν is the scan rate (V s-1), F is Faraday’s constant 

(96,485 C mol-1), R is the gas constant (8.314 J K-1 mol-1) and T is the 

temperature (K). It is noteworthy that this method is limited by ΔEp values 

between 61 and 212 mV and intermediate scan rates, to maintain Ψ values in 

the quasi-reversible range. 

 

The Nicholson Theory was used to calculate rate constants at each peak 

separation and the average rate constant was then determined. This was 

carried out for both MWCNTs and graphene at a range of cast volumes and 

the results are illustrated in Table 3.4. It is clear from this table that the rate 

constants for both MWCNTs and graphene in this case are very similar. The 

largest difference between the rate constants in this case occurs at the 5 µL 

casting, where thin layer diffusion is most effective, as indicated in Section 

3.2.1.2.3 by the relatively small peak separation. As the predominant 

characteristic of thin layer diffusion is small peak separation,222 it could not be  

accurately accounted for with the Nicholson Theory, which is limited by peak 

separations greater than 61 mV. Therefore, in calculating the average electron 

transfer rate constant at GCE modified with MWCNTs, peak separations 

smaller than 61 mV were not included. The Nicholson theory generally 

assumes that semi-infinite planar diffusion is the only contributing mode of 

transport in the electrochemical cell, and that no iR compensation is required. 

 

The heterogeneous electron transfer rate constant calculated using 5 µL 

casting of MWCNTs reported here is similar to the 1.7 × 10-3 cm s-1 calculated 

by Ambrosi et al.223 for MWCNTs containing nano graphite impurities, also 

using the Nicholson Theory. The peak separations in the case of graphene 

modified electrodes were between 61 and 212 mV, further indicating that semi-

infinite planar diffusion was the most dominant form of mass transport for 

electron transfer. The rate constant calculated using 5 µL casting of graphene 
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is similar to that calculated for stacked graphene nanofibers by Ambrosi et 

al.224 In comparing the effects of inter-sheet folds on the electron transfer rate, 

they calculated ks of 6.9 × 10-3 cm s-1 for electrodes modified with “open” stacks 

of graphene, prepared similarly to this work. 

 

It generally can be seen that increasing the cast volume of MWCNTs on GCE 

resulted in slower rate constants. This was expected as the ΔEp measured in 

Section 3.2.1.2.3 increased with increasing cast volume. This was attributed to 

the influence of thin layer diffusion on the electron transfer at smaller casting 

volumes that was not seen with larger cast volumes due to the thickness of the 

mesoporous film which is further supported here. The cast volume had little 

effect on the rate constant at the graphene-modified electrode which indicated 

that the graphene sheets re-stacked upon drying on the electrode surface and 

suggested that electroactivity was resided to the top layer of graphene which is 

at the electrode-electrolyte interface. 

 

Table 3.4: Average rate constants calculated using the Nicholson Theory for 

GCE modified with various casting volumes of sonicated MWCNTs and 

graphene. 

Casting Volume / µL Rate Constant (ks) / cm s-1 

 MWCNTs graphene 

5 4.29 × 10-2 7.29 × 10-3 

10 3.75 × 10-3 5.44 × 10-3 

15 2.05 × 10-3 2.91 × 10-3 

20 1.63 × 10-3 4.64 × 10-3 
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3.2.3.3 Calculation of the Heterogeneous Electron Transfer Rate 

 Constant Using The Kochi and Klingler Method 

 

The Kochi and Klingler180 Equation 3.3 was applied to data obtained from 

cyclic voltammetry to calculate rate constants at both modified and bare 

electrodes for the [Fe(CN)6]3-/[Fe(CN)6]4- redox couple which could include 

values outside the threshold of the Nicholson Theory.  

 

  3  

 

Here, k is the rate constant (cm s-1), β is a derivation of the transfer coefficient 

α, where β = 1-α, D is the diffusion coefficient (cm2 s-1), n is the number of 

electrons transferred, F is Faraday’s constant (96,485 C mol-1), ν is the scan rate 

(V s-1), R is the gas constant (8.314 J K-1 mol-1) and T is the temperature (K). 

Equation 3.3 was rearranged to form Equation 3.4 to correlate the natural 

logarithm of the scan rate, lnν, to ΔEp. 

 

  3  

 

In obtaining a linear correlation, as can be seen in Figure 3.19, the slope (m) 

was used to calculate values for β and the intercept was therefore used to 

calculate values for the rate constant, k.  
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Figure 3.19: Typical plot of the logarithm of the scan rate as a function of peak 

separation, the slope of which was used in the calculation of β.  

 

The values calculated for β indicated values for the transfer coefficients which 

are in good agreement with literature obtained by Kochi and Klingler180 in 

their original paper in 1981 using the [Fe(CN)6]3-/[Fe(CN)6]4- couple. The 

heterogeneous electron transfer rate constants that were calculated using 

Equation 3.3 for both sonicated MWCNTs and graphene of various casting 

volumes are displayed in Table 3.5. The values of  β calculated at MWCNTs 

modified electrodes ranged between 0.41 and 0.56 and the rate constants 

ranged from 1.35  to 2.36 × 10-3 cm s-1 which agree well with literature reports 

from Sanchez et al.49 The values calculated for β at graphene modified 

electrodes ranged between 0.65 and 0.80 and the heterogeneous electron 

transfer rate constants ranged from 8.16 × 10-4 to 1.07 × 10-3 cm s-1 which 

coincide with results obtained by Keeley et al.61  

 

The rate constants are similar at both graphene and MWCNTs modified 

electrodes for casting volumes from 5 to 20 µL, with a slight variance observed 

at the GCE modified with 5 µL graphene. This can be explained by the β value 

of 0.80 calculated at this electrode which deviates from the other modified 

electrodes. The rate constant decreased steadily for MWCNTs with increasing 
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cast volume, as expected from observed peak separations in Section 3.2.1.2.3. 

This indicated that the mesoporous structure decreased the rate constant of 

the MWCNTs modified electrodes as it introduced diffusional limitations. 

There was little effect on rate constant at the graphene modified electrode 

again, which highlights that the stacked structure of the graphene limited any 

effects of cast volume. 

 

Table 3.5: Heterogeneous electron transfer rate constants calculated for the 

[Fe(CN)6]3-/[Fe(CN)6]
4- couple using Kochi and Klingler Equation for GCE 

modified with various casting volumes of sonicated MWCNTs and graphene. 

Casting Volume / µL Rate Constant (ks) / cm s-1 

 MWCNTs Graphene 

5 2.36 × 10-3 8.16 × 10-4 

10 2.35 × 10-3 1.02 × 10-3 

15 1.53 × 10-3 1.03 × 10-3 

20 1.35 × 10-3 1.07 × 10-3 
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3.2.3.4 Comparison of Kinetic Analyses 

 

The rate constants calculated using both the Nicholson theory and the Kochi 

and Klingler method were compared to evaluate the discrepancies between the 

two methods. In Section 3.2.3.3 the relationship between a range of peak 

separations and scan rates was used to determine the rate constants, ks, for the 

Kochi and Klingler method. Conversely, rate constants were determined at 

each peak separation for the Nicholson method with the average rate constant 

reported. To compare both methodologies ks was calculated for each peak 

separation using the calculated β values in the case of the Kochi and Klingler 

method. As shown in Figure 3.20 (a) and (b), the relationship of ks with peak 

separation can be therefore displayed for both methods. Similar to results 

presented by Kochi and Klingler in 1981,180 the plots rapidly converge at larger 

peak separations, showing the equivalence of both methods in calculating rate 

constants under certain conditions.  

 

Although it is very difficult to compare the amount of material at a graphene 

and MWCNT modified electrode due to their different morphologies and 

therefore dispersion in solution, it is estimated under these conditions that a 

similar mass of both materials was deposited on the surface. This was assumed 

as experiments which were repeated with the same cast volume of each 

material showed good reproducibility. In both cases, the heterogeneous 

electron transfer constant was larger at the GCE modified with MWCNTs than 

with graphene. This can be explained by the thin layer effects seen at the 

MWCNTs modified electrode in Section 3.2.1.2.4 that were not seen for the 

graphene modified electrode. The electroactive surface area of both materials 

was also expected to have affected the calculated rate constants at these 

electrodes. 
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(a) 

 

(b) 

 

 

Figure 3.20: Comparison of the standard rate constant, ks evaluated by ■ the 

Nicholson theory and ■ the Kochi and Klingler method for (a) MWCNTs and 

(b) graphene modified GC electrodes. 
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3.2.3.5 Calculation of Electroactive Surface Areas of GCEs Modified with 

Sonicated Graphene and MWCNTs. 

 

As discussed in Chapter 1, among the most important benefits to using 

MWCNTs and graphene in the modification of electrodes, is their large surface 

area, however as the morphology of both materials are vastly different, it was 

expected that the electroactive surface areas of the modified electrodes would 

also be different. This may have also contributed to differences observed in the 

heterogeneous electron transfer rate constant observed in Sections 3.2.3.2 and 

3.2.3.3. Literature reports often focus on the physical surface area of MWCNTs 

samples, for example, Pumera et al.71 have shown graphene to have a larger 

physical surface area than carbon nanotubes in evaluating the influence of 

nitric acid treatment on carbon materials, with reported BET surface areas of 

2630 m2 g-1 and 1315 m2 g-1 for acid treated graphene and carbon nanotubes, 

respectively. The reported physical surface area of the graphene used in this 

work by Choucair et al.167 is 1692 m2 g-1 calculated by methylene blue 

adsorption for samples dispersed in ethanol. In this section however, the area 

of the modified electrodes used in electrochemical measurements of the 

K3Fe(CN)6 probe, i.e. the electroactive surface areas, were calculated by re-

arrangement of the Randles Sevcik equation, 3.1. By plotting the peak current, 

Ip, as a function of the square root of the scan rate, ν1/2, the slope, m, was used 

to calculate the surface area according to Equation 3.5: 

 

   

 

The use of K3Fe(CN)6 as an electrochemical probe is known to be sensitive to 

defects which are an indication of the Density of States of an electrode.218, 225 It 

can therefore be deduced that the electroactive surface area in this case, refers 

to the area of the electrode that is active towards K3Fe(CN)6.  It was therefore 

expected that the electroactive surface areas calculated using this method 

would differ to those calculated by adsorption techniques such as BET.  
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The average (n=7) of the calculated surface areas of GCEs modified with 

sonicated samples of both MWCNTs and graphene are displayed in Figure 3.21 

and compared to their respective bare electrodes. Firstly, the calculated 

surface area of a 3 mm diameter (0.071 cm2) GCE modified with 5 µL sonicated 

graphene is compared to the bare electrode. It can be seen here that this 

modification increased the electroactive surface area from 0.071 cm2 to      

0.092 cm2, which can be due to the dispersion of graphene in the DMF 

solution exposing the defect areas by revealing the smaller stacks of sheets, as 

seen in SEM images in Figure 3.9. Luo et al.226 have calculated the surface area 

of a 0.071 cm2 GCE modified with a CuO-nanocube/graphene composite using 

the Randles Sevcik Equation and found it to be 0.062 cm2. This decrease in 

electroactive surface area from the bare GCE could be a result of the use of 

Nafion® in the composite which possibly impeded the access of the electrolyte 

to the electroactive sites of the modified electrode. Most recently,            

Rajesh et al.93 have calculated the surface areas of 0.071 cm2 GCEs modified 

with platinum modified graphene using the Randles-Sevcik method to be 

0.074 cm2. They have elegantly combined the electronic and structural 

properties of MWCNTs and graphene to dramatically increase this surface area 

to 0.121 cm2 by vertically growing the nanotubes on a single sheet of graphene.  

 

Figure 3.21 also compares the surface areas of a 4 mm diameter GCE         

(0.1257 cm2) modified with 5 µL sonicated MWCNTs to the bare electrode. This 

modification impressively increased the electroactive surface area of the 

electrode from 0.1257 cm2 to 0.413 cm2. This large increase can be attributed to 

the dispersion of MWCNTs exposing their high aspect ratio. This dispersion 

would have increased the mesoporosity of the resulting film by reducing the 

size of MWCNT aggregates and improving internetworking of the smaller 

bundles.38  Recently, Kun et al.78 have used the Randles-Sevcik equation to 

calculate the surface area of MWCNTs modified with platinum nanoparticles, 

and found an increase by a factor of 1.79 with 5 µL castings in comparison to 

the bare GCE which is significantly less than the 3 fold increase in surface area 

calculated in this work for 5 µL castings of pristine MWCNTs. This could be 
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explained by the use of Nafion® in fabrication of the former electrode as seen 

also for graphene modified electrodes. The increase of about 3 fold in the 

surface area achieved with this modification also supersedes that achieved by 

Xiao et al.227 who observed a 1.5 fold increase in the calculated surface area of a 

similarly prepared GCE. This can possibly be attributed to the larger aspect 

ratio of the MWCNTs employed here, as the length of MWCNTs used in this 

work ranged from 2.5 to 20 µm in comparison to lengths of 1 to 2 µm used by 

Xiao et al.227  

 

 

 

Figure 3.21: Bar charts comparing electroactive surface areas of ■ bare GCE to 

GCE modified with 5 µL ■ graphene and ■ MWCNTs samples from 10 mg mL-1 

DMF suspensions, sonicated for 1hr. 

 

The electroactive surface areas of electrodes modified with various cast 

volumes of both graphene and MWCNTs were also calculated, and are 

displayed in Figure 3.22 as a percentage change in surface area from the bare 

GCE for each cast volume and the individual surface areas are tabulated. It can 

be seen from this chart that further increasing the cast volume of sonicated 

graphene to 10, 15 and 20 µL decreased the electroactive surface area of the 

modified GCE. This is possibly due to the π-stacking interactions between the 

graphene sheets that may have decreased the level of exposed electroactive 
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sites of the graphene.86 Conversely, it can be seen that increasing the volume 

of sonicated MWCNTs cast on the GCE further enhanced the electroactive 

surface area to up to 0.580 cm2. In 2009, Hegde et al.228 calculated the surface 

area for a GCE modified with acid treated MWCNTs using this method and 

found a 4.0-4.5 fold increase with the addition of a 15 µL casting in the surface 

area compared to the bare GCE. The results obtained in this study are 

comparable with up to 4.6 fold increase for cast volumes of 15-20 µL castings of 

untreated MWCNTs.  

 

In comparing the increase in surface area of the GCE upon modification with 

sonicated graphene to that of sonicated MWCNTs, it is clear that MWCNTs 

provided a significantly larger surface area than graphene when cast on the 

GCE surface. This can be explained by the large aspect ratio of MWCNTs 

which is between 416.67 and 1538.46. Choucair et al.167 have characterised the 

graphene used here as consisting of sheets that extend laterally in the range of  

1 × 10-7 to 1 × 10-5 m, however to accurately compare both materials,  it is best to 

consider their morphologies as they aggregate. In studying the effects of 

cutting SWCNTs, Haas et al.229 observed that decreasing the aspect ratio 

caused them to exhibit a more layered sheet–like assembly. This is very likely 

to have occurred in sonicating graphene samples as their sheet-like 

morphology favours π-stacking assembly that does not occur with untreated 

MWCNTs. This group also measured the porosity of the SWCNTs of different 

aspect ratios. They found that materials of larger aspect ratios displayed 

mesoporosity and larger pores were created in spaces between the bundles of 

SWCNTs. It was observed that SWCNTs of lower aspect ratios assembled into 

dense layered structures and this porosity was lost. It is likely that similar 

differences occurred between MWCNTs and graphene samples in this study, 

as other literature reports have also shown that MWCNTs tend to form 

bundles of networked nanotubes38 and that graphene can form more densely 

packed, layered coatings when cast on the electrode surface89.  
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It has been reported by Wang et al.90 that the inclusion of carbon 

nanoparticles in a graphene composite effectively increased the surface area by 

reducing stacking between graphene sheets. The incorporation of these 

nanoparticle resulted in an increase of the BET surface area from 77 to         

1256 m2 g-1. They attribute this increase in surface area to the formation of a 

mesoporous composite, and show the absence of mesopores in the composite 

prepared without nanoparticles, indicating a high level of re-stacking in 

graphene. The differences in calculated surface areas of the MWCNTs and 

graphene modified GCEs in this work agree well with the differences observed 

by Haas et al.229 in calculating the BET surface areas of the SWCNTs with 

different aspect ratios. However, although BET and methylene blue methods 

allow for sufficient calculation of the physical surface area of both materials, 

for the purpose of electrochemical characterisation, it can be seen that the use 

of the Randles Sevcik Equation to determine the electroactive surface areas of 

the modified electrodes is more accurate for defining the active or defect sites 

of modified electrodes. 
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Figure 3.22: Bar charts comparing the relative change in electroactive surface 

areas of modified GCEs with respect to the geometric surface area of the bare 

electrodes. Data are compared for GCEs modified with 5, 10, 15 and 20 µL ■ 

Graphene and ■ MWCNTs samples from 10 mg mL-1 DMF suspensions, 

sonicated for 1hr. Table inset illustrates calculated surface areas of each 

modified electrode. 
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3.3 Conclusion 

 

The electrochemistry at GCEs modified with MWCNTs and graphene has been 

evaluated in this chapter. Dispersed suspensions of 10 mg mL-1 MWCNTs and 

graphene were prepared in DMF using sonication and were compared to non-

sonicated samples. The redox couple of [Fe(CN)6]3-/[Fe(CN)6]4- was monitored 

using cyclic voltammetry and the peak potentials and peak currents were 

recorded. The rate constants for the redox couple were also calculated at the 

modified electrodes using both the Kochi and Klingler Equation and the 

Nicholson Theory as the diffusional nature of the reaction was confirmed. 

Overall it was found that GCEs modified with MWCNTs exhibited faster 

electron transfer kinetics than GCEs modified with graphene which has been 

explained by the mesoporous structure of MWCNTs providing superior 

electrochemical properties to the modified electrodes in this study, most likely 

due to thin layer diffusion processes. 

 

The electroactive surface areas of the modified electrodes were calculated from 

the peak currents using the Randles Sevcik Equation and it was found that 

modification of the GCE with sonicated MWCNTs provided a larger increase in 

surface area in comparison to that of graphene modified electrodes. In 

comparing the electrochemistry at MWCNTs modified electrodes to graphene 

modified electrodes (Table 3.6), the rate constants and electroactive surface 

areas are greater for the GCEs modified with MWCNTs. In recent reports, 

Borowiec et al.44 have attributed an improved electrochemical response to 

ketoconazole at similarly prepared MWCNTs modified electrodes to their 

increased surface area and also recognised their ability to promote electron 

transfer.  
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Table 3.6:  Surface areas and rate constants for GCE modified with 5 and 10 µL 

sonicated MWCNTs and graphene. 

 5 µL 10 µL 

graphene MWCNTs graphene MWCNTs 

Surface Area / cm2 0.092 0.377 0.085 0.568 

Rate of Reaction / cm s-1 8.16 × 10-4  2.36 × 10-3 1.02 × 10-3 2.35 × 10-3 
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Chapter 4:  

The Electrochemical Detection of 

Cr(VI) using Electrodes Modified 

with Multiwalled Carbon Nanotubes
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4.1 Introduction 

 

Chromium (VI) is a toxic metal ion which is found in many parts of the 

environment due to its ability to leach great distances in groundwater. 

Chromium metal is found naturally in many rocks and the hexavalent ion, 

Cr(VI), is therefore often leached into groundwater and can be found in soil 

and plants as a result. Cr(VI) is also a common waste product of industries 

such as mining and electroplating. As Cr(VI) is classified as a human 

respiratory carcinogen230 and is known to cause a multitude of skin disorders,6 

it is important to be able to detect it at low levels. The Environmental 

Protection Agency has set a mandatory limit of 9.61 × 10-7 M (50 µg L-1) Cr(VI) 

in drinking water.12 It is therefore crucial to enable its specific detection at low 

levels by a simple and fast method. As discussed in Chapter 1, there are many 

benefits to the use of electrochemical sensors in environmental monitoring of 

toxic species such as Cr(VI), including real-time analysis and on-site 

monitoring.  

 

A review of the current literature based on electrochemical sensors and the 

current methods used to detect Cr(VI) are presented in Chapter 1. Briefly, it 

can be noted that current methodologies used in the detection of chromium 

such as ICP-MS, do not provide real-time, on site detection and thus are 

costly, time consuming and can be exposed to contamination or other 

problems associated with the transport of samples before testing. 

Electrochemical sensors provide the opportunity to test on-site with remote 

operation which would be time saving and cost effective. The electrochemical 

detection of Cr(VI) in particular allows for its specific identification, as current 

methodologies do not distinguish between Cr(VI) and Cr(III), a less toxic 

chromium ion which is essential for glucose metabolism at low levels.  
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The drop cast method of modifying electrodes with MWCNTs was investigated 

in Chapter 3 and compared to the use of graphene as a modification material. 

It was found that the mesoporous structure of MWCNTs further enhanced the 

electron transfer abilities and provided a larger surface area than was seen at 

graphene modified electrodes. MWCNTs are therefore investigated in this 

chapter for their use in the electrochemical sensing of Cr(VI). The use of 

MWCNTs in electrochemical sensors has increased over the past decade,48, 196, 

231 as they have many desirable properties such as fast electron transfer43 and 

an immense length to diameter ratio.41 Many electrochemical sensors have 

been investigated using the drop cast method discussed here with successful 

results, for example in the detection of cytochromes and ketoconazole.44, 232 

However, concerns for the stability of the cast MWCNTs film have led to an 

increase in the development of carbon nanotube / polymer composites, using 

conducting polymers such as polyaniline233 and polypyrrole146. The 

conductivity of such polymers, however, can contribute to the large 

capacitance of the carbon nanotubes which can be overcome by the use of 

overoxidised polymers.234 The use of polypyrrole (Ppy), with its partial 

overoxidation, in the modification of electrodes with MWCNTs is therefore 

also explored in this chapter.  

 

The use of nanoparticles to modify MWCNTs has been reported with 

impressive enhancements in sensitivity of the resulting materials. Kun et al., 78 

for example have shown the impressive increase in peak currents of potassium 

ferricyanide redox reactions at Pt nanoparticle modified MWCNTs in 

comparison to a Pt nanoparticle modified GCE and a MWCNTs modified GCE, 

indicating an increase in surface area. The authors saw a correlated 

enhancement of current for the oxidation of propranolol hydrochloride at the 

Pt nanoparticle modified MWCNTs with this increase in surface area. As the 

peak currents for the reduction of Cr(VI) have been shown to be optimum at 

an Au substrate by Welch et al.,235 the modification of MWCNTs with gold 

nanoparticles (AuNPs) was explored in this chapter to enhance the detection 

of Cr(VI). 



Chapter 4 
 

121 
 

 

The work outlined in this chapter was aimed to investigate three main 

materials for their ability to sense Cr(VI) electrochemically; MWCNTs, 

MWCNT/Ppy composite films and MWCNT/AuNPs films. For the main part, 

the MWCNTs were not pre-treated, however for the modification of MWCNTs 

with AuNPs, both pristine and oxidised MWCNTs were used 

(MWCNTsOx/AuNPs). Investigations were carried out using solely the 

MWCNTs to determine the influence the pH of the solution, the conductivity 

of the solution, and the substrate had on the detection of Cr(VI). A study was 

also carried out to investigate the detection of Cr(VI) at MWCNTs in the 

presence of three possible interferants; Cl-, NO3
- and Cu2+ ions; and in real 

water samples. Finally, a study was carried out to investigate the use of 

differential pulse voltammetry and constant potential amperometry with a 

rotating disc electrode to improve the detection of Cr(VI). 
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4.2 Results and Discussion 

 

4.2.1 Investigating the use of a MWCNT Modified Electrode in the 

 Detection of Cr(VI) 

 

In Chapter 3, it was shown that MWCNTs could be reproducibly cast (20 µL) 

onto a glassy carbon surface (0.126 cm2) from a 10 mg mL-1 sonicated dispersion 

in DMF to produce an electrode with an increased electroactive surface area of 

0.580 cm2 (GCE/MWCNTs). In this section, the same dispersion and cast 

volume were used to modify a GCE for the detection of Cr(VI). Good surface 

coverage of the electrode was achieved and was confirmed using SEM imaging 

of the modified surface. Figure 4.1 (a) and (b) displays the micrographs 

obtained, confirming that the nanotubes were reasonably well dispersed with 

small agglomerations of networked MWCNTs formed, highlighted in Figure 4.1 

(b). 

 

(a)   (b) 

  

 

Figure 4.1: High resolution SEM micrographs at different magnifications (a) 

and (b) showing 20 µL cast on 4 mm diameter glassy carbon surface from       

10 mg mL-1 MWCNTs/DMF solution. 
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The electrochemical detection of Cr(VI) in this work was based on its 

reduction to the less toxic Cr(III) using cyclic voltammetry. As the reduction 

reaction is favoured in acidic solutions, according to Equation 4.1, it was 

initially carried out in an aqueous media of H2SO4 at pH 2.0.  

 

Cr2O72-(aq) + 14 H+(aq) + 6e-  →  2 Cr3+(aq) + 7 H2O(l)   

 4.1 

 

The detection of this reduction was compared at a bare glassy carbon electrode 

(GCE) and the MWCNTs modified GCE (GCE/MWCNTs). The electrodes were 

firstly cycled in the supporting electrolyte solution without Cr(VI) to obtain 

stable background readings and the voltammograms were recorded between    

-0.25 and +0.90 V vs. SCE, at 10 mV s-1. The detection of  6.00 × 10-4 M Cr(VI) at 

both bare GCE and at GCE/MWCNTs is compared in Figure 4.2, and the 

average (n=4) peak position (Ep) and peak current (Ip) values are tabulated 

inset. The bare GCE showed a broad reduction peak at approx. 0.25 V vs. SCE 

which is analogous to that seen by Welch et al.235 amongst others, who found 

the reduction peak to be electrochemically irreversible and controlled by 

diffusion. Upon modification of the GCE with MWCNTs, a shift in peak 

position was observed (Figure 4.2) to a more favourable position of 0.65 V vs. 

SCE, which could be attributed to the fast electron transfer properties of 

MWCNTs. In the reduction of Cr(VI) to Cr(III) many factors such as the 

increased wettability of the surface and the presence of defects,43 as well as the 

presence of oxygenated groups at defect sites on MWCNTs,46 may have 

contributed to this catalytic effect. In addition, thin layer diffusion may have 

led to higher local concentrations of Cr(VI) within the networked bundle, as 

seen in Chapter 3 for the ferricyanide couple.177  

 

It is of note that the reduction of Cr(VI) at GCE/MWCNTs in comparison to 

the bare GCE showed a significant increase in peak current from 3.02 × 10-6 to 

1.73 × 10-5 A (Figure 4.2). This can most likely be explained by the increased 

surface area of the electrode, and possibly an increased density of states at the 



Chapter 4 
 

124 
 

electrode/electrolyte interface. In 2001, Nugent et al.43 reported Nernstian 

behaviour at MWCNTs modified electrodes for a one-electron transfer process, 

where the nanotubes were well aligned in the form of micro-bundles. The 

researchers proposed that the density of states and wettability of electrodes 

modified with MWCNTs were responsible for increases in electron transfer 

rates.  

 

 

 

Figure 4.2: Cyclic voltammograms in 6.00 × 10-4 M Cr(VI) in H2SO4 pH 2.0, at 

10 mV s-1, of — bare GCE and — GCE modified with 20 µL 10 mg mL-1 

MWCNTs in DMF. Average electrochemical properties for n=4 repeated 

experiments are tabulated inset. 

 

A possible concern of using MWCNTs to develop an electrochemical sensor for 

Cr(VI) comes from recent reports by Gu et al.236 on the interactions of 

MWCNTs with Cr(VI) under highly acidic conditions (pH 1.0). These 

researchers showed, using Fourier transform infra-red (FTIR) spectroscopy to 

identify the modification imposed on the MWCNTs after Cr(VI) treatment, 

that Cr(VI) can spontaneously oxidise MWCNTs and thus itself be reduced. 

They confirmed however, that at pH 2.0 no measurable oxidation of the 

MWCNTs had occurred and as the Cr(VI) reduction process was 
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electrochemically monitored at pH 2.0 in this work, contribution from such 

competing processes was very unlikely. To confirm this, a cyclic voltammetry 

study was carried out to detect Cr(VI) as outlined above, but at pH 1.0, and the 

reduction reaction was not observed electrochemically.  

 

In examining the currents at approximately 0.40 V vs. SCE in Figure 4.2 a pair 

of distinctively reversible redox peaks was observed. They can be attributed to 

the presence of oxygen-containing species on the nanotube surface, recently 

identified by Zheng and co-workers.237 The researchers identified the presence 

of oxygen containing functional groups on the MWCNTs by FTIR 

spectroscopy. The electrochemical activity of the groups was observed by the 

authors using cyclic voltammetry and it was found that the peak positions 

were dependent on pH according to Equation 4.2,237 determined using an 

Ag+/AgCl reference. The observed processes were therefore assigned to the 

reduction of carbonyl groups on the carbon nanotubes by the authors. In this 

current work, as the peaks did not appear to interfere with the peak associated 

with the reduction of Cr(VI), the acidic solution was used in further studies. 

 

   4  

 

It is clear that overall, the detection of Cr(VI) was dramatically enhanced at 

the MWCNTs surface in comparison to the bare GCE by the shift in peak 

potential of 0.40 V vs. SCE and the increase in peak current of 5.7 fold. In 

summary, the results showed that that the reduction of Cr(VI) to Cr(III) at the 

MWCNTs surface exhibited a better defined peak at a more favourable 

position in comparison to the bare GCE, therefore this modified electrode was 

deemed promising for the detection of Cr(VI).  
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4.2.1.1 Investigation of the Parameters Affecting Cr(VI) Reduction at a 

 GCE modified with MWCNTs 

 

The effect of the conductivity of the supporting electrolyte and the pH of the 

sample solution on the detection of Cr(VI) was explored in the development of 

the sensor in this section. Where considered appropriate, statistical analysis 

was carried out on the recorded data in order to verify the significance of the 

parameters on the detection of Cr(VI). A one way ANOVA followed by a 

Bonferroni test was performed using Prism (GraphPad Software Inc., CA, 

USA). Significance levels were calculated based on the probability that the 

result was caused by varying the specific parameter, with P < 0.05 considered 

to be significant.  

 

4.2.1.1.1 Influence of Solution Conductivity on Cr(VI) 

 Reduction  

 

The supporting electrolyte plays a key role in electrochemical experiments as it 

is required to provide adequate conductivity for the transport of ions to the 

electrode surface and for the transfer of electrons from the solution to the 

working electrode (WE) in the electrochemical cell. A study was therefore 

conducted comparing the response at the GCE/MWCNTs electrode in 

electrolyte solutions of varying conductivities. To accurately compare the 

effects of such parameters on this reduction process, the data are compared 

from the 10th cycle in 1.00 × 10-3 M Cr(VI) with varying concentrations of 

Na2SO4 supporting electrolyte and the pH was adjusted to 2.0 using 

concentrated sulfuric acid. Table 4.1 highlights the influence of varying the 

conductivity on both the potential at which reduction occurred (Ep) and the 

amount of Cr(VI) that was reduced (Ip).  
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Table 4.1: Data comparing Ep and Ip values for the reduction of 1.00 × 10-3 M 

Cr(VI) in Na2SO4 at 0.10, 0.15 and 0.20 M concentrations. 

Supporting 

Electrolyte 

Conductivity / mS 

cm-1 

Ep / V 

vs. SCE 

Ip / A  

0.10 M Na2SO4 22.0 0.589 

(+/- 0.004) 

5.38 ×10-5 

(+/-1.3 × 10
-6

) 

0.15 M Na2SO4 26.5 0.537 

(+/- 0.001) 

4.10 ×10-5 

(+/- 1.17 × 10
-6

) 

0.20 M Na2SO4 32.8 0.549 

(+/- 0.002) 

3.26 × 10-5 

(+/- 1.40 × 10
-6

) 

 

It can be seen from Table 4.1 that changing the concentration of the 

supporting electrolyte correlatively increased the conductivity of the solutions, 

which, did not appear to affect the reduction peak potential of Cr(VI) at the 

modified electrode to the same extent. Statistical analysis showed in this case 

that the overall difference between the peak potentials was significant             

(F = 11.33; d.f. = 2,10; P < 0.01). However, it was calculated that the difference 

between the potentials recorded in 0.10 and 0.20 M solutions specifically was 

insignificant, using Bonferroni post-hoc analysis. As the changes in peak 

potential did not correlate with the changes in conductivity, it appears that 

they were not necessarily related and the changes observed could be an effect 

of slight changes in the pH of the solution, which is further explored in Section 

4.2.1.1.2. 

 

The peak currents for the reduction of Cr(VI) surprisingly appeared to 

correlatively decrease with increasing conductivity of the supporting 

electrolyte solution, which was also calculated to be significant (F = 32.48;    

d.f. = 2,10;  P < 0.0001). Bonferroni post-hoc analysis in this case showed 

significant differences, (P < 0.0001) between 0.1 and 0.2 M solutions and          

(P < 0.05) between 0.1 and 0.15 M solutions of Na2SO4. This decrease in peak 

current was unexpected, as it is generally observed that an increase in 

conductivity would enhance the electron transfer kinetics in a solution, thus 
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increasing the peak current. It can therefore be assumed that increasing the 

concentration of Na2SO4 may have led to some SO4
2- adsorption on the 

MWCNTs.238  

 

4.2.1.1.2 Influence of pH on Cr(VI) Reduction 

 

It was discussed previously, that the reduction of Cr(VI) to Cr(III) from Cr2O7
2- 

requires 6 electrons and 14 protons (Equation 4.1) and therefore is highly 

influenced by the pH of the sample solution.239 The potential at which this 

reduction reaction is observed electrochemically (Ep), is therefore also 

dependent on the pH of the solution. The Ep-pH relationship of the reduction 

of Cr(VI) to Cr(III), in the pH range of 0.00 to 6.75 can be described by 

Equation 4.3:239 

 

Ep =    

 

The effect of pH on the reduction of Cr(VI) was investigated specifically from 

pH 1.9 to 4.8 at a GCE/MWCNTs electrode using Na2SO4 as a supporting 

electrolyte modified with appropriate amounts of concentrated H2SO4.    

Figure 4.3 (a) compares voltammograms obtained for 6.00 × 10-3 M Cr(VI) in 

solutions of pH 1.9, 2.4 and 2.8. The shift in peak potential from 0.65 to 0.44 V 

vs. SCE with increasing the pH from 1.9 to 2.4 is characteristic of the decrease 

in H+ concentration. By further increasing the pH of the solution to 2.8 the 

reduction peak decreased to 0.39 V vs. SCE, however a second peak also 

appeared at this pH at 0.13 V vs. SCE, which is further discussed in Section 

4.2.1.1.2. The voltammograms seen in Figure 4.3 (b), also compare the 

reduction of Cr(VI) to Cr(III) at pH 4.8, 3.6 and at 2.8. It can be seen here that 

only the second reduction peak is observed at the higher pH values and that 

the peak potential decreased slightly from 0.13 V vs. SCE at pH 2.8, to 0.10 V vs. 

SCE at pH 3.6. It is noted that no further decrease in peak potential was seen 

in further increasing the pH to 4.8, indicating that Nernstian behaviour was 

not being followed. 



Chapter 4 
 

129 
 

(a) 

 

(b) 

 

 

Figure 4.3: Cyclic voltammograms showing reduction of 6.00 × 10-3 M Cr(VI) 

in 0.10 M Na2SO4 at 10 mV s-1 for (a) pH — 1.9, — 2.4 and — 2.8 and (b) pH 

— 2.8, — 3.6 and — 4.8. 
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The peak potentials for the reduction of Cr(VI) to Cr(III), predicted by 

Equation 4.3 (derived from the Nernst Equation) are shown in Figure 4.4 

where they show the linear response of Ep to pH. This relationship is compared 

to the experimentally recorded potentials (from Figure 4.3) and it can be seen 

that the linear response was not observed, further indicating that Nernstian 

behaviour was not followed. The large variation between the predicted 

potentials and the observed values may be explained to some extent by the 

reduction pathway followed by Cr(VI) reduction, which is further discussed in 

the next section. 

 

 

 

Figure 4.4: Plot comparing the peak potentials ■ predicted and ■ observed as 

a function of pH for the reduction of 6.00 × 10-3 M Cr(VI) in 0.1 M Na2SO4 

modified with H2SO4.   

 

The effects of changing the pH of the solution on the peak currents were also 

compared as can be seen in Figure 4.5. The lowest currents were recorded for 

the solution of pH 4.8 and the highest currents were found at pH 1.9, 

indicating that the reduction of Cr(VI) to Cr(III) at the modified electrode was 

most kinetically favourable in acidic conditions. It can be seen here that the 

error in the peak current dramatically increased at pH below 2.0, which as 

discussed earlier, could indicate the chemical oxidation of MWCNTs by Cr(VI) 
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which would have altered the concentration of Cr(VI) in solution. The 

optimum pH for the electrochemical detection of Cr(VI) was therefore chosen 

to be 2.0. 

 

 

 

Figure 4.5: Plot of peak current for the reduction of 6.00 × 10-3 M Cr(VI) in 0.1 

M Na2SO4 modified with H2SO4 as a function of pH (n=3).  

 

(i)Evidence for the Reduction Pathway of Cr(VI) to Cr(III) 

 

It is clear from the relationship between the reduction peak potential of Cr(VI) 

and pH in Section 4.2.1.1.2, that the electrochemical reaction does not follow 

simple Nernstian behaviour at the GCE/MWCNTs electrode. A reduction 

mechanism of Cr(VI) to Cr(III) was proposed by Welch et al.,235 whereby the 

initial reduction of Cr(VI) occurred via a rate determining, one electron 

transfer step to form Cr(V), seen in Equation 4.4. They suggested that at low 

pH levels, this Cr(V) can rapidly form Cr(III), via a disproportionation reaction 

illustrated in Equations 4.5 and 4.6. Welch et al.235 observed a pre-shoulder 

wave for the reduction of Cr(VI) at a GCE similar to that observed in Figure 

4.3, in a 0.010 M HCl solution that they did not observe in 0.100 or  0.001 M 

HCl solutions. They attributed this shoulder peak to the reduction of Cr(VI) to 
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Cr(V) and found it to be more electrochemically reversible than the more 

dominant reduction peak.  

 

    

  

 

    

 4  

 

                        

 4  

or     

  

    

  

 

In the work shown here; at pH 1.9, it can be assumed that the high 

concentration of protons enabled the fast electron transfer at the MWCNTs 

modified electrode, which produced a voltammogram with one intense sharp 

reduction peak, as seen in Figure 4.3 (a). It is therefore possible that by 

increasing the pH of the solution to 2.8, the rate of reduction of Cr(VI) to 

Cr(V) decreased and was observed as a pre-shoulder peak at 0.40 V vs. SCE 

(Figure 4.3 (a)). The rate of disproportionation of Cr(V) to Cr(III) was therefore 

also decreased so that the direct reduction of Cr(VI) to Cr(III) was observed at 

0.13 V vs. SCE. 

 

In comparing the voltammogram at pH 2.8 to those at pH 3.6 and 4.8, seen in 

Figure 4.3 (b) the rapid reduction of Cr(VI) to Cr(III) was observed with a 

successive decrease in peak potential, however the pre-shoulder peak 

representing Cr(VI) reduction to Cr(V) was not observed at higher pH values. 

This was most likely because the initial reduction of Cr(VI) to Cr(V) is a slow, 

proton dependent step. In a less acidic medium this reaction would be less 
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favourable and also be of small magnitude and therefore the peak representing 

the reduction of Cr(VI) to Cr(V) would have shifted to lower potentials and 

would possibly occur at the same potential as the reduction of Cr(VI) to 

Cr(III). This appeared as one reduction peak representing the entire process at 

0.10 V vs. SCE for pH 3.6 and 4.8. Figure 4.6 (c) confirms that the reduction of 

Cr(VI) to Cr(V) had become even more difficult with the increase in pH, as this 

feature appeared at a less favourable potential. It showed the feature identified 

previously as the reduction of Cr(V) to Cr(III) to occur as the dominant feature 

in the plot, and the reduction of Cr(VI) to Cr(V) to occur as a pre-wave that 

was not observed by cyclic voltammetry. 

 

To investigate the observation of the possible slow reduction step from Cr(VI) 

to Cr(V) at higher pH values, the voltammograms from Figure 4.3 were further 

analysed. The change in currents were analysed with respect to the change in 

potential to identify any secondary processes contributing to the observed 

reduction peaks. By calculating dI, the differential of the current and dE, the 

differential of the potential and plotting dI/dE as a function of potential, the 

contributing processes were observed  for the reduction of Cr(VI) at pH 1.9, 2.8 

and 3.6 (Figure 4.6 (a), (b) and (c)). The results obtained in analysing these 

data coincided well with the original observations, that in acidic conditions, 

the reduction of Cr(VI) to Cr(III) is very fast and by decreasing the 

concentration of protons, the slower reduction of Cr(VI) to Cr(V) can be 

observed electrochemically. Figure 4.6 (a) illustrates the efficient reduction of 

Cr(VI) to Cr(III) under acidic conditions (pH 1.9), indicated by the symmetry 

of the feature, crossing the x-axis at the reduction peak potential and clarifies 

that only one process can be observed. The increase in pH to 2.8 in Figure 4.6 

(b) allowed for a second feature to be observed clearly and highlighted the 

decrease in peak potential as well as the decrease in currents, which were also 

observed in the voltammograms (Figure 4.6). This is indicative of the slow 

reduction of Cr(VI) to Cr(V) and the observation of Cr(V) reduction to Cr(III).  
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(a) 

 

(b) 

 

(c) 

 

Figure 4.6: Analysis of voltammograms recorded at (a) pH 1.9, (b) pH 2.8 and 

(c) pH 3.6. Data are presented for the changes in current (dI) with respect to 

the changes in potential (dE) and are displayed as a function of potential. 
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4.2.2 Evaluation of a MWCNTs Modified Electrode as an 

 Electrochemical Sensor for Cr(VI) Detection 

 

To evaluate the use of MWCNTs modified electrodes for their use in the 

detection of Cr(VI), their stability, selectivity and sensitivity were evaluated. 

This was carried out using a GCE modified as described in Section 4.2.1 

whereby 20 µL of a 10 mg mL-1 sonicated dispersion of MWCNTs in DMF was 

cast on a 4 mm diameter GCE (GCE/MWCNTs). The electrode was then dried 

at an IR lamp. The detection of Cr(VI) was evaluated at this electrode from a 

solution of Na2CrO7.2H2O in  H2SO4 at pH 2.0. 

 

4.2.2.1 Stability of a MWCNTs modified Electrode in Cr(VI) 

 

The stability of the peak current for Cr(VI) reduction was monitored as a 

function of cycle number at the GCE/MWCNTs electrode using cyclic 

voltammetry. The modified electrode was cycled in 6.00 × 10-4 M Cr(VI) at      

10 mV s-1 for 100 cycles. It was found that the current dropped by approx. 50% 

over the first 10 cycles until it reached a steady state, as displayed in Figure 4.7. 

The currents remained relatively constant at this point over the remaining 90 

cycles, showing reasonable stability in the acidic solution. This suggested that 

the electrode was not spoiled by adsorbing molecules under these conditions. 

All current responses were therefore recorded after 10 cycles to ensure a stable, 

reliable value. Reasonable electrochemical stability has also been reported for 

similarly prepared electrodes both in investigating their capacitive 

properties,240 and in the detection of other molecules such as morphine.241  
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Figure 4.7: Plot representing the stability of the peak current for the reduction 

of 6.00 × 10-4 M Cr(VI) at 10 mV s-1 over 100 cycles (n=3) using GCE/MWCNTs. 

The currents are measured as a percentage of the initial magnitude of the peak 

and are plot as a function of cycle number.  

 

4.2.2.2 Selectivity of Cr(VI) Detection at a MWCNTs Modified Electrode 

 

The efficiency of the sensor in the presence of potentially interfering 

substances is very important as the sensor response may be impaired or the 

electrode surface may be spoiled in real water samples. Nitrate (NO3
-) 

pollution is widespread and therefore is very likely to be found in real water 

samples, according to recent reports from the EPA12 which show that in 

Ireland some exceedances of the NO3
- mandatory limit were recorded in 2010. 

The presence of Cl- in water is generally utilised as an indication of pollution 

from sewage or industrial effluent,12 therefore it is also likely to be present in 

contaminated water samples. The efficiency of the sensor in Cr(VI) reduction 

was also tested in the presence of Cu2+ ions as both metal ions are known 

pollutants from similar industrial waste, for example electroplating and timber 

treatment facilities.15 In this section, the interference of Cu2+, Cl- and NO3
- 

were investigated over a range of concentrations based on their individual 

parametric values. Standard parametric values are the mandatory limits 
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allowed in drinking water, as outlined by the EPA. The limits for each species 

are given in Table 4.2, with the respective concentrations in molarity.  

 

Table 4.2: Standard parametric values (g L-1) and the equivalent 

concentrations (M) for Cr(VI) and the interferants tested.12 

Substance Concentration 

Chromium 50 µg L-1 9.6 × 10-7 M 

Copper 2 mg L-1 3.2 × 10-5 M 

Nitrate 50 mg L-1 7.0 × 10-4 M 

Chloride 250 mg L-1 7.0 × 10-3 M 

  

The GCE/MWCNTs was prepared as previously described in Section 4.3.1. The 

modified electrodes were then cycled in a solution containing 4.00 × 10-4 M 

Cr(VI) to provide an original reduction peak for comparison. The interferants 

were added to the sample solution in separate experiments and the 

concentration was increased gradually. The interferant solutions prepared 

were of relatively high concentration and contained both the supporting 

electrolyte and 4.00 × 10-4 M Cr(VI) to ensure the composition of the sample 

solution was not greatly altered. The stability of the sensor at the parametric 

concentration of each interfering substance was tested by continuous cycling 

without further addition of the interfering solution. 

 

In all cases, the peak potential of Cr(VI) reduction to Cr(III) did not shift with 

varying concentrations of interferants, which indicated that the substances did 

not interfere with the reduction process. The peak currents were also 

investigated with varying concentrations of each interferant. The recorded 

data were analysed by comparing the peak current (Ip) measured after each 

addition of interferant and measuring it as a percentage of the original peak 

current (recorded prior to the addition of the interferant), according to 

Equation 4.7. In other words, the original peak current was taken as 100% and 

the % change in peak current was monitored as a function of increasing 
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concentration of each interferant. All peak currents were measured after 

stability had been reached as mentioned previously in Section 4.2.2.1. 

 

  4  

 

The effect of Cl- on the reduction of Cr(VI) can be seen in Figure 4.8 (a). As the 

sites of Cr(VI) contamination are generally inland, the concentration of Cl- is 

not expected to exceed the parametric value specified by the EPA which takes 

into account areas of high Cl- such as coastal areas. The concentrations utilised 

in this study however ranged from 0.0 to 9.0 × 10-3 M Cl- to take any exceeding 

values into account. There was a slight decrease observed in Ip to 

approximately 75% with the addition of 2.0 × 10-3 M Cl-, however, the currents 

remained stable with further additions of Cl-, which suggested that the 

modified electrode was not greatly affected by this ion.  

 

The interference of Cu2+ ions was tested from 0.0 to 4.2 × 10-5 M as the 

parametric limit for copper in drinking water is approximately 3.20 × 10-5 M, as 

set by the EPA. The data obtained in this range are presented in Figure 4.8 (b), 

where it can be seen that the stability of the peak current was slightly 

increased by the presence of this substance until the parametric value was 

exceeded. To further analyse this interferant, statistical analysis was carried 

out using a paired t-test. It was found that the addition of 6.00 × 10-6 to       

4.20 × 10-5 M concentrations of Cu2+ had no significant effect on the Cr(VI) 

reduction peak current with P > 0.05 in all cases.  
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The addition of NO3
- ion to the Cr(VI) solution was monitored over the 

concentration range 0.0 to 7.0 × 10-4 M. There was some increase in peak 

current in the case of this substance, suggesting it interfered with the 

detection of Cr(VI). As can be seen in Figure 4.8 (a), the currents increased to 

approximately 120% of the original peak current after addition of relatively low 

concentrations of nitrate. The currents decreased with further increase in NO3
- 

concentration and at higher concentrations the currents increased greatly with 

large errors recorded between repeated experiments. This variable response 

can be explained by possible adsorption of NO3
-
 to the electrode surface and its 

subsequent reduction which would contribute to the reduction current 

measured.242 This indicated that for this modified electrode to work efficiently 

in the detection of Cr(VI), any nitrate contamination of the sample should be 

firstly removed.   
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(a) 

 

(b) 

 

(c) 

 

 

Figure 4.8: Stability of peak current for the reduction of 4.00 × 10-4 M Cr(VI) at 

10 mV s-1 ■ with increasing concentration of interferant and ■ without 

interferant for (a) Cl-, (b) Cu2+ and (c) NO3
-.  
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The stability of Cr(VI) reduction at the parametric value of each interferant 

was also tested over 10 cycles. It was found that the Cr(VI) reduction peak 

current decreased to 90% in the presence of 7.0 × 10-3 M Cl-, 81% in the 

presence of 3.2 × 10-5 M Cu2+ and 87% in the presence of 7.0 × 10-4 M NO3
-. This 

suggests that the GCE/MWCNTs electrode showed reasonable selectivity for 

Cr(VI) reduction in the presence of these common interferants, but from 

Figure 4.8 it should be noted that the nitrate response is not likely to be 

reliable. 

 

4.2.2.3 Limit of Detection of Cr(VI) at GCE modified with MWCNTs 

 

To assess the limits of detection for Cr(VI) at GCE/MWCNTs, a calibration 

curve was constructed by plotting the peak current response from cyclic 

voltammetry against Cr(VI) concentration. The calibration curve was 

constructed for Cr(VI) at pH 2.0 and a linear relationship was observed which 

can be seen in Figure 4.9. The limit of detection (LOD) at this electrode was 

determined using Equation 4.8; 

 

    

 

Where Cm denotes the error in the background signal, Sb is the standard 

deviation of the blank response and m is the slope of the linear region of the 

calibration curve. The error in the intercept of the calibration curve was 

accounted for by assuming the concentration (x value) at which no current 

was observed (where y = 0), illustrated in Equation 4.9, to be the lowest 

possible concentration detectable. This value was therefore added to Cm to 

give a more accurately calculated LOD.  
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Here, y represents the peak current (mA), x indicates the concentration (mM) 

and m and c are the slope and gradient from the resulting plot of peak current 

vs. concentration. It was determined using these calculations that the lowest 

detectable concentration of Cr(VI) at GCE/MWCNTs by cyclic voltammetry 

was 1.95 × 10-4 M, which is significantly higher than the mandatory limit of   5.2 

× 10-6 M set by the EPA. This high LOD can be explained by the poor linearity 

observed at lower concentrations of Cr(VI) as shown in the plot inset of Figure 

4.9. 

 

 

 

Figure 4.9: Calibration curve measuring the current response from cyclic 

voltammograms of a GCE modified with 20 µL 10 mg mL-1 MWCNTs/DMF at 

various concentrations of Cr(VI) in H2SO4 (pH 2.0) (n=3).                                  

R2 = 0.99, y = 0.0321x - 0.0049, LOD = 1.95 × 10-4 M. 
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4.2.2.4 Cr(VI) Detection in Real Water Samples 

 

To investigate the application of this Cr(VI) sensor, real water samples were 

obtained from Emerald Environmental who obtained the samples from local 

rivers in north Kildare. The analytical data provided with the samples is 

illustrated in Table 4.3, showing that samples A and B only differed in their 

ammonia and chloride content and both had a pH value of ~5.0.  

 

Table 4.3: Analytical data provided with real water samples. 

Concentration / mg L-1 A 

(pH 4.96) 

B 

(pH 4.97) 

Solids <1 <1 

Total Phosphorous 0.05 0.05 

Ammonia 0.03 0.02 

Nitrate <0.3 <0.3 

Nitrite <0.002 <0.002 

Orthophosphate 0.03 0.03 

Chloride 8.4 8.1 

 

The real water samples were tested after modification with concentrated 

H2SO4 to obtain a pH level of 2.0, as this level provided the largest current 

response for the reduction of Cr(VI) in Section 4.2.1.1.2. Both samples were 

tested with the addition of various concentrations of Cr(VI) and exhibited 

reduction peaks at 0.57 V vs. SCE, as was also seen in laboratory prepared 

samples. The results are displayed in Table 4.4 and calibration curves for both 

samples with gradients of 0.033 mA mM-1 and 0.027 mA mM-1 calculated for 

samples A and B respectively, can be seen in Figure 4.10. These values are 

similar to the 0.032 mA mM-1 gradient calculated for the samples prepared in 

de-ionised water, showing the similarity between the results (illustrated inset 

of Figure 4.10). The poor reproducibility in the real water samples however was 

indicated by the large error bars seen in the calibration curves in Figure 4.10. 

This signifies that the water samples were unsuitable for the electrochemical 
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detection of Cr(VI) which may be due to the solid content in both cases, which 

may have adsorbed some of the Cr(VI).7 

 

Table 4.4: Data illustrating the average peak current (n=3) for the reduction of 

Cr(VI) in real water samples A and B at pH 2.0. 

[Cr(VI)] added 

/ M 

Average Ip / mA 

Sample A Sample B 

1.7 × 10-4 1.12 × 10-3 7.73 × 10-4 

3.2 × 10-4 4.58 × 10-3 3.68 × 10-3 

4.7 × 10-4 9.54 × 10-3 7.23 × 10-3 

6.0 × 10-4 1.58 × 10-2 1.30 × 10-2 

 

 

 

 

Figure 4.10: Calibration curves obtained from cyclic voltammograms of 

GCE/MWCNTs in real water samples ■ A (m = 0.033 mA mM-1) and  ■ B        

(m = 0.027 mA mM-1). Plot inset compares calibration curves of real water 

samples — A and — B to — de-ionised water sample from Figure 4.9 (m = 

0.032 mA mM-1). 
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4.2.3 The Screening of Various Electrode Materials for the 

 Electrochemical Detection of Cr(VI) 

 

The electrochemical reduction of Cr(VI) to Cr(III) is well known to occur at a 

range of electrode substrates such as glassy carbon and gold.235  In this section 

a study was carried out to investigate if the electrochemical response analysed 

in Section 4.2.2 could be enhanced to improve the detection of Cr(VI). A 

number of different approaches were attempted and in this Section, the 

preparation and characterisation of the electrode materials and a voltammetric 

study, to screen their ability to sense Cr(VI), is described. 

 

4.2.3.1 Detection of Cr(VI) at a Gold Electrode Modified with MWCNTs  

 

As the method employed for the modification of a GCE was shown to be 

successful in Section 4.3.1.1, the same procedure was carried out using a gold 

substrate (Au/MWCNTs). The Au electrode was polished and cast with 20 µL 

MWCNTs/DMF from a 10 mg mL-1 solution. The electrode was dried under an 

IR lamp and SEM micrographs were again obtained as can be seen in        

Figure 4.11. The images show that a similar coverage of the Au electrode 

surface was obtained as was seen previously for the GC substrate in Figure 4.1.  
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(a)   (b) 

  

 

Figure 4.11: High resolution SEM micrographs at different magnifications (a) 

and (b) showing a 20 µL cast on a 4 mm diameter Au surface from 10 mg mL-1 

MWCNTs/DMF suspension. 

 

The reduction of Cr(VI) at the Au/MWCNTs electrode is compared to that at a 

bare Au electrode in Figure 4.12 with the relevant properties tabulated inset. 

The reduction peak appears at 0.41 V vs. SCE at the bare Au electrode, which 

shows a more efficient reduction of Cr(VI) in comparison to that seen at the 

bare GCE in Section 4.3.1.1, as it appears at a more favourable potential with a 

more symmetrical and intense peak. This is also comparable to the study by 

Welch et al.235 The reduction peak at the Au/MWCNTs electrode appears at a 

more favourable potential  of 0.57 V vs. SCE, in comparison to that seen at the 

bare electrode, however the peak currents in this case appear to be enhanced 

only by 1.6 fold at the electrode modified with MWCNTs. The reversible peaks 

at approx.   0.40 V vs. SCE are visible again at the Au/MWCNTs electrode, 

similar to that seen in Figure 4.2 due to the presence of oxygen containing 

molecules.237 
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Figure 4.12: Cyclic voltammograms of — bare Au and — Au modified with 

20 µL 10 mg mL-1 MWCNTs in DMF recorded in 5.0 × 10-4 M Cr(VI) in H2SO4 

pH 2.0, at 10 mV s-1  The relevant electrochemical properties are tabulated 

inset. 

 

It can be seen that the reduction peak at the Au/MWCNTs electrode (0.57 V 

vs. SCE), is very similar in shape and position to that seen in Section 4.3.1.1 at 

GCE/MWCNTs. The peak currents are also comparable at both substrates 

when modified with MWCNTs. This highlights that the MWCNTs dominated 

the detection at both modified electrodes, irrespective of the substrate. The 

peak currents at the bare Au substrate appear to be comparable to that seen at 

the Au/MWCNTs, however it is noteworthy that the reproducibility of the bare 

Au electrode was poor in comparison to the MWCNTs modified electrodes.  
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4.2.3.2 Detection of Cr(VI) at a Gold Electrode Modified with MWCNT- 

 Polypyrrole Composites 

 

Many literature studies report the modification of electrodes with MWCNTs 

by drop casting the MWCNTs directly on the electrode surface from solution 

but there are some concerns about the electrode stability. One means reported 

of overcoming this issue is to immobilise the MWCNTs in a polymer matrix 

which is strongly adherent to the electrode surface. A number of studies have 

investigated the use of polypyrrole in this regard, for example Prakash et al.243 

used MWCNT drop cast on a polypyrrole film as a nitrous oxide (NO) sensor 

which showed evidence of catalysis and increased surface area. The catalytic 

properties of such CNT/polypyrrole composites are reportedly due to the 

conductivity of the polymer providing an enhanced connection for the 

MWCNTs to the underlying substrate.244 Another method employed by many 

researchers is similar to that reported by Arami et al.245 who deposited 

polypyrrole on a copper substrate in the presence of MWCNTs, forming a co-

deposited composite. The researchers observed the deposition of polypyrrole 

on the nanotubes and used thermo-gravimetric analysis to show that the 

incorporation of nanotubes enhanced the thermal stability of the polymer film.  

 

In this section, MWCNT-polypyrrole composite electrodes were formed in two 

ways; the first composite was prepared by modifying a gold substrate with a 

polypyrrole film and then drop casting a layer of MWCNTs on the surface 

(Ppy/MWCNTs), using an adaptation of the method outlined by             

Prakash et al.243 The second composite formed was prepared by polymerisation 

of pyrrole in the presence of MWCNTs to form a co-deposited composite 

(PpyMWCNTs) similar to that carried out by Arami et al.245  
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4.2.3.2.1 Formation and Characterisation of Ppy and PpyMWCNTs 

 

The Ppy and PpyMWCNTs films were electrochemically deposited on the 

electrode surface from 0.10 M pyrrole in H2SO4 (pH 2.0) using a potentiostatic 

method which involved the application of a constant potential of 0.75 V vs. 

SCE to the gold WE surface to initiate oxidation of the monomer and sustain 

the growth of the polymeric film.171 The potential was applied until a specific 

charge of 0.03 C was consumed which allowed for the production of uniform 

polymers in each experiment.246 The current values given for the deposition of 

both polymers has been normalised to the geometric surface area of the WEs. 

 

In the first instance, a Ppy film was deposited and in the second case, a 

PpyMWCNTs film was deposited. The growth profiles outlined in             

Figure 4.13 (a) and (b) compare the electropolymerisation of pyrrole, to that 

containing 0.07 mg mL-1 MWCNTs. Figure 4.13 (a) shows the currents 

monitored as a function of polymerisation time where it can be seen that that 

the initial current for electrodeposition was slightly lower for the solution 

containing MWCNTs. Similar results were obtained by Hu et al.247 in the co-

deposition of acid-treated MWCNTs and non-conducting polymers which they 

ascribed to the “inferior mobility of the anionic CNTs”. Although the 

MWCNTs in this work were unfunctionalised, it is likely that sonication in 

H2SO4 introduced some anionic moieties to the ends of the nanotubes and/or 

to defect areas,72, 248 allowing them to partially dope the Ppy. 

 

Higher currents were observed from 0.1 s onwards for the electrodeposition of 

the polymer from the solution containing MWCNTs and H2SO4 (1.67 × 10-2 A 

cm-2) compared to that deposited from H2SO4 alone (1.24 × 10-2 A cm-2) which 

is illustrated in Figure 4.13 (a). This is consistent with the work reported  by   

Hu et al.247 who also observed higher currents for the electrodeposition of the 

polymer in comparison to that prepared from KCl. This can likely be attributed 

to the physical entrapment of MWCNTs during polymerisation increasing the 

conductivity of the resultant polymer with possible partial doping of the 
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polymer by the MWCNTs. Snook et al.151 have observed the doping of Ppy with 

oxidised carbon nanotubes. This group accredit the increase in the 

conductivity of the material to the incorporation of MWCNTs into the 

polymer structure created, as they provided ion and electron conducting paths 

in the polymer matrix. The nanotubes used in the present research were not 

pre-treated and this should have led them to exhibit a higher aspect ratio 

which is known to contribute to the conductivity of resulting composites as 

discussed by Bai et al.38  

 

The charge-time plot in Figure 4.13 (b) shows a linear relationship for both 

polymers between the charge consumed and polymerisation time. This 

indicates that polymerisation occurred efficiently and formed a uniform film 

across the substrate in both cases. The slope of the charge-time plot for the 

Ppy film was 1.15 × 10-2 C cm-2 s-1, lower in comparison to that for the Ppy film 

containing MWCNTs which was 1.56 × 10-2 C cm-2 s-1, indicating a faster rate of 

polymerisation.  This can be attributed to the aggregation of MWCNTs at the 

electrode/electrolyte interface. Due to the immense length to diameter ratio of 

MWCNTs, it is likely that their large active surface area would allow for faster 

formation of the polymer film.245 Moreover, the mesoporosity of MWCNTs 

would make the resultant surface more accessible to the electrolyte, which 

would in turn increase the rate of polymerisation.39 Khajeamiri249 similarly 

used H2SO4 as a supporting electrolyte in depositing the conducting polymer 

polyaniline, modified with MWCNTs, and found the incorporation of 

MWCNTs to increase the surface area of the polymer during deposition. 
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(a)   (b)  

  

     

 

Figure 4.13: The electropolymerisation of 0.1 M pyrrole in 0.1 M H2SO4          

— without and — with 0.07 mg mL-1 MWCNTs, grown at 0.75 V vs. SCE on a 

4 mm diameter gold substrate displayed as (a) current vs. time and (b) charge 

vs. time. 

 

The reproducibility of both films was tested to ensure that the electrochemical 

polymerisation of the pyrrole solution produced consistent films, particularly 

with the incorporation of MWCNTs. The polymerisation data of three 

repeated experiments for both Ppy and PpyMWCNTs are presented as current-

time plots in Figure 4.14 (a) and (b) respectively. For each repeat of the 

experiment, the gold substrate was polished (as outlined in Chapter 2) and a 

fresh polymerisation solution was prepared.  The data for the three repeated 

experiments almost directly overlapped in all cases, showing that the 

electrochemical polymerisation of the solutions provided reproducible films.  
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(a)   (b)  

  

 

 

Figure 4.14 Current-time plots showing the reproducibility of (a) Ppy growth 

and (b) PpyMWCNTs growth on a gold substrate. All polymers were grown at    

0.75 V vs. SCE to 0.03 C from 0.10 M pyrrole in 0.10 M H2SO4 solutions with (b) 

containing 0.07 mg mL-1 MWCNTs. 

 

The Ppy films prepared from H2SO4 with and without MWCNTs were 

compared for their electrochemical activity using cyclic voltammetry in H2SO4 

(pH 2.0), seen in Figure 4.15. Redox waves arose in both polymers as they were 

cycled from their oxidised to neutral forms, due to anion intercalation and 

loss, to balance the charge. The cyclic voltammograms of both polymers were 

relatively similar and showed the general shape of an anion exchange polymer, 

whereby the oxidation peak is distinctly sharper than that of the reduction 

peak. This has been attributed to the high mobility of the anions and to the 

ionic concentration gradient between the bulk electrolyte and the polymer.250 

Therefore, the oxidation of the polypyrrole film involving the incorporation of 

SO4
2- ions from the solution phase into the film is a relatively fast and efficient 

process, whereas the reduction of the polymer is slower due to the slow release 

of the SO4
2- ions. Similar voltammograms were observed by Mangold et al.250 

for Ppy, using Na2SO4 as an electrolyte. This would indicate that the major 

dopant to balance the charge for the PpyMWCNTs film is the SO4
2-. This 

would suggest that the MWCNTs are mainly neutral in charge and are just 

held within the PPy film due to physical entrapment. 

0.00

0.01

0.02

0.03

0.04

0 10 20 30

C
u

rr
e

n
t 

/ 
A

 c
m

-2

Time / s

0.00

0.01

0.02

0.03

0.04

0 5 10 15 20 25

C
u

rr
e

n
t 

/ 
A

 c
m

-2

Time / s



Chapter 4 
 

153 
 

 

 

 

Figure 4.15: Cyclic voltammograms of — Ppy and — PpyMWCNTs cycled in 

H2SO4 (pH 2) at 10 mV s-1. 

 

Direct evidence for the incorporation of MWCNTs into the Ppy for the 

PpyMWCNTs film was obtained using SEM. The images of both the 

PpyMWCNTs and the Ppy surfaces obtained using SEM are displayed in  

Figure 4.16. The polymers in this case were grown to a higher charge (0.30 C) 

to produce thicker films, as thinner films were difficult to image. It can be 

assumed that for the thinner polymer the morphology was somewhat 

different.138, 139 However, one aim of this characterisation was to confirm that 

Ppy maintained its regular cauliflower morphology when grown in the 

presence of MWCNTs, which would not likely depend on the film thickness. 

The image in Figure 4.16 (a) shows the overall surface morphology with 

agglomerations of MWCNTs which appeared to be coated by the PPy visible 

throughout the film. Snook et al.151 recorded SEM micrographs of a composite 

consisting of polypyrrole and acid-treated MWCNTs prepared by cyclic 

voltammetry, shown in Figure 4.17 (a) and (b). They also observed 

agglomerations of the MWCNTs across the polymer surface, although these 

appeared to be smaller in size compared to those observed in the current 

work. This is likely due to the fact that the MWCNTs used here were not acid-
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treated and so even though sonication was employed to disperse the MWCNTs 

in solution, they would have a greater probability of forming agglomerations 

even in well dispersed solutions.53  

 

 On closer inspection of the agglomerations in the work presented here, it was 

found that many of the agglomerated nanotubes formed distinct spherical 

clusters which were coated in Ppy (Figure 4.16 (b)). The mesoporous nature of 

the MWCNTs could be identified in Figure 4.16 (c) where pores between the 

networked agglomerations of MWCNTs were coated in Ppy. Very similar 

images were obtained by Arami et al.,245 who deposited PpyMWCNTs films on 

a copper substrate using a potentiometric technique. The cauliflower 

morphology observed in Figure 4.16 (d), a magnification of the coated 

aggregate, was identical to that observed in the Ppy film produced without 

MWCNTs, seen in Figure 4.16 (e) and (f). This morphology is characteristic of 

Ppy electrosynthesis in aqueous solutions,132,251 indicating that the MWCNTs 

did not alter the growth morphology. 
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(a)   (b) 

  

(c)   (d) 

  

(e)   (f) 

  

 

Figure 4.16: High resolution SEM micrographs of (a) – (d) PpyMWCNTs and 

(e) & (f) regular Ppy film. Both films grown on a gold substrate at 0.75 V vs. 

SCE to a charge of 0.30 C from 0.10 M  pyrrole solutions in H2SO4 at pH 2.0, 

with (a) – (d) containing 0.07 mg mL-1 MWCNTs. 
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Figure 4.17: SEM images reprinted from Snook et al.151 showing (a) a 

pyrrole/carbon nanotube layer deposited onto the quartz crystal using cyclic 

voltammetry. In (b) is shown the details of the region enclosed in the box 

indicated in (a). 

 

EDX analysis was carried out on two differing regions of the PpyMWCNTs film 

prepared in this work, and is displayed in Figure 4.18 (a) and (b). Analysis of an 

aggregation of MWCNTs coated in Ppy is shown in the spectrum in          

Figure 4.18 (a) and in an aggregate free region in the spectrum in              

Figure 4.18 (b). A signal for sulfur was present in both spectra confirming that 

the SO4
2- ion was extensively doping the PPy as previously indicated by the 

voltammogram of the PpyMWCNTs film.   
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(a)   (b) 

  

 

Figure 4.18: EDX spectra of PpyMWCNTs (a) obtained at the rough, clustered 

region of the surface and (b) obtained from the smooth region of the surface. 

Au peaks arise as the film was sputtered coated with gold before EDX analysis. 

 

4.2.3.2.2 Formation and SEM characterisation of Ppy/MWCNT 

 

In the modification of GC with the Ppy/MWCNTs film; the Ppy polymer was 

grown as outlined above, with only H2SO4 used as a supporting electrolyte and 

the coating was rinsed with distilled water. A 10 L aliquot was drop cast onto 

the surface from a 7.0 mg mL-1 MWCNTs dispersion in DMF and the surface 

was dried under an IR lamp. High resolution SEM images were obtained of the 

formed films (Figure 4.19), and show that the MWCNTs formed aggregates on 

the surface (illustrated in Figure 4.19 (a)). Upon magnification of these 

aggregates (Figure 4.19 (b) and (c)) the structure of the aggregates appeared to 

be quite irregular, having both smooth and porous regions. Further 

magnification of these areas however revealed networked entanglements of 

nanotubes in the agglomerations of MWCNTs (Figure 4.19 (d),(e) and (f)). 

These micrographs provided an indication of the magnitude by which the 

surface area increased with the addition of MWCNTs to the polymer surface 

and highlighted the morphology of the resulting surface which suggests an 

improved wettability of the electrode. 
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(a)   (b) 

  

(c)   (d) 

  

(e)   (f) 

  

 

Figure 4.19: High resolution SEM micrographs of the Ppy film modified with 

cast MWCNTs at various magnifications (a) – (f). The polypyrrole film was 

deposited at 0.75 V vs. SCE to a charge of 0.30 C from a solution containing   

0.1 M pyrrole in H2SO4 at pH 2.0. A volume of 10 µL was cast on the surface 

from a 7.0 mg mL-1 MWCNTs suspension. 
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4.2.3.2.3 Chromium(VI) Detection at Electrodes modified with 

 MWCNTs Composites 

 

A number of researchers have used Ppy modified electrodes for the sensing of 

Cr(VI). For example; Ansari et al.252 developed an ion selective electrode by 

growing a Ppy film in the presence of CrO4
2- under basic conditions and        

Ge et al. 253 used an overoxidised Ppy and the Cr(VI) was pre-concentrated at 

the polymer surface by holding the electrode at a potential of 0.80 V vs. SCE. It 

is of note that the sensors described above are all based on the ability of Ppy to 

adsorb the Cr(VI) anion. The ability of PPy to adsorb Cr(VI) is well known 

from remediation studies in which the anion exchange properties can assist in 

the removal of Cr(VI) from waste water.254 This adsorption was therefore taken 

into consideration as a possible method of detection at the polymer-modified 

electrodes. A further concern with using a Ppy modified electrode for Cr(VI) 

detection is that it is also known that, as Cr(VI) is a strong oxidising agent, it 

can spontaneously (or upon electrochemical reduction of the Ppy) oxidise Ppy, 

as shown by Wei et al. and Senthurchelvan et al. repectively.53,50 This chemical 

reaction could compete with the electrochemically monitored electron transfer 

process and alter the concentration of Cr(VI) in the sample solution. In order 

to avoid the chemical reduction of Cr(VI) by the PPy-MWCNT composites, 

prior to cycling in the Cr(VI) solution, both polymers were cycled in the 

supporting electrolyte, H2SO4, to partially overoxidise the Ppy.255, 256  The Ppy-

MWCNT were cycled in H2SO4 at pH 2.0 between -0.25 and +0.90 V vs. SCE for 

10 cycles at 10 mV s-1. A striking reduction in the capacitance current was 

observed, indicating that the polymer conductivity had decreased, which in 

turn would limit the chemical reduction of Cr(VI).  

 

The detection of Cr(VI) at both MWCNTs composites; PpyMWCNTs and 

Ppy/MWCNTs is compared in Figure 4.20 and the relevant electrochemical 

properties can be seen in the table inset. The peak potential for the reduction 

of Cr(VI) occurred at 0.47 V vs. SCE for the PpyMWCNTs modified electrode 
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and was shifted to a more positive potential of 0.65 V vs. SCE at the 

Ppy/MWCNTs modified electrode. This suggested that the electron transfer 

was further facilitated by the direct access of Cr(VI) to the MWCNTs on the 

electrode surface, in comparison to the PpyMWCNTs film. A partially 

overoxidised Ppy modified electrode was also tested for its ability to 

electrochemically reduce Cr(VI) to Cr(III). The polymer displayed a reduction 

peak for Cr(VI) at 0.40 V vs. SCE which is the same potential as that observed 

at the bare Au electrode in Section 4.2.3.1. This suggested that the polymer was 

sufficiently degraded so that any reduction of Cr(VI) was actually occurring at 

the gold substrate.256  This did not appear to be the case for the electrode 

modified with Ppy/MWCNTs, as the reduction peak potential was more 

favourable than seen previously for the MWCNTs modified Au electrode. This 

suggested that the polypyrrole film assisted in the reduction of Cr(VI) despite 

its pre-treatment. 

 

In comparing the peak currents (Table inset of Figure 4.20), observed at the 

PpyMWCNTs film to those at the Ppy/MWCNTs modified electrode, there is 

an impressive enhancement with the latter modification. The dramatic 

improvement in detection may be partially accredited to the increased 

wettability of the MWCNTs as they were at the electrode/electrolyte interface, 

allowing for their properties to be fully exploited. By casting MWCNTs at the 

polymer/electrolyte interface in the case of Ppy/MWCNTs, the mesoporous 

morphology and increased surface area of the nanotubes likely enhanced the 

electrolyte access, thus improving the ionic conductivity of the surface.146 This 

would account for the 4.7 fold increase in capacitive currents and the increase 

in faradaic currents from 6.97 × 10-6 to 1.67 × 10-5 A (2.4 fold) observed at the 

Ppy/MWCNTs film. However, the Ppy film without the incorporation of 

MWCNTs was not completely overoxidised, as evident by the Ppy redox 

currents seen in Figure 4.20. This suggested that chemical reduction of Cr(VI) 

by the polymer may have occurred and this would alter the concentration of 

Cr(VI) in the sample solution, making electrochemical detection unreliable. 
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Further studies using Ppy were not pursued due to this contribution which is 

further discussed later in Section 4.2.3.4. 

 

 

 

Figure 4.20: Cyclic voltammograms of modified gold electrodes in a              

6.0 × 10-4 M Cr(VI) in H2SO4 (pH 2.0) at 10 mV s-1. Plot shows gold electrode 

modified with — PpyMWCNTs compared to — MWCNTs/Ppy. 
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4.2.3.3 Detection of Cr(VI) at a Gold Electrode Modified with Gold 

 Nanoparticles and MWCNTs 

 

The modification of MWCNTs with gold nanoparticles (AuNPs) has been 

implemented in this section with the aim of improving the LOD of Cr(VI). 

AuNPs were chosen as a means of modification due to the impressive peak 

currents observed in Section 4.2.3.1 at an Au compared to a GC substrate. It has 

been reported that Au can exhibit catalytic behaviour when prepared as 

particles in the nanometre range,257 which spurred the use of AuNPs in 

sensing. The modification of MWCNTs with AuNPs has been reported for 

many uses such as protein detection,258 humidity detection,259 and mercury ion 

detection.79 It has been reported that AuNPs can increase the conductivity and 

catalytic redox activity of MWCNTs,243 and they have been described as 

electron antennae on MWCNTs when shown to further improve in the 

efficiency of electron transfer.80  In 2007, Liu et al.260 reported the detection of 

Cr(VI) at a screen-printed electrode modified with AuNPs in a medium with a 

pH value of 4.6. The detection was based on the adsorption of Cr(VI) which 

they did not observe at lower pH values, and was enhanced 10 fold in 

comparison to that observed at the solid Au substrate. As Zakharova et al.261 

have more recently shown the detection of Cr(VI) at Au microelectrodes with 

good sensitivity for linear potential sweep voltammetry using acidic 

conditions, the use of MWCNTs/AuNPs in acidic solutions was used here for 

the diffusion-controlled detection of Cr(VI) at pH 2.0.  

 

The modification of MWCNTs with nanoparticles generally involves the initial 

oxidation of MWCNTs to assist in their dispersion and the carboxylate groups 

have been reported to provide binding sites for nanoparticles to be 

deposited,77 therefore both pristine MWCNTs and oxidised MWCNTs 

(MWCNTsOx) were modified with Au nanoparticles,262 and compared as 

materials for the detection of Cr(VI).  
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4.2.3.3.1 Formation and Characterisation of MWCNTs/AuNPs and 

MWCNTsOx/AuNPs 

 

The modification of MWCNTs with AuNPs was carried out by another 

member of the research group, Mr David Branagan,263 via a method similar to 

that reported by Alexeyeva et al.262 in 2006. Briefly, in the preparation of 

MWCNTs/AuNPs, the pristine MWCNTs were used as received and in the case 

of MWCNTsOx/AuNPs the MWCNTs were acid treated to modify any defect 

areas with oxygen containing functional groups. The MWCNTsOx and pristine 

MWCNTs were both firstly dispersed in SDS by sonication in highly 

concentrated solutions (1% w/v). This step provided well dispersed 

suspensions and is likely to have provided nucleation sites for the AuNPs to 

form.77 The AuNPs were formed by the addition of an aqueous solution of 

HAuCl4 to the MWCNTs suspension under vigorous stirring, and the 

subsequent slow addition of NaBH4 aqueous solution. The modified 

suspension was then filtered and rinsed with copious amounts of H2O. 

 

The MWCNTsOx/AuNPs were characterised physically using transmission 

electron microscopy (TEM) and both the MWCNTs/AuNPs and 

MWCNTsOx/AuNPs were characterised using atomic adsorption (A.A.) 

spectroscopy. The TEM analysis was carried out at the C.R.A.N.N. centre based 

in TCD, Dublin by Mr Clive Downing and the A.A. spectroscopy was carried 

out by a member of the research group, Mr David Branagan, using a 1 mg mL-1 

Au standard solution in 0.50 M HCl. It was found using A.A. spectroscopy that 

the MWCNTsOx/AuNPs samples used in this work consisted of 2% wt. Au and 

the MWCNTs/AuNPs samples consisted of 1% wt. The TEM images taken at 

various magnifications can be seen in Figure 4.21 (a)-(d). It was found using 

this sensitive imaging, coupled with EDX analysis, that the MWCNTs were 

indeed decorated with AuNPs. The image in Figure 4.21 (a) shows the overall 

view of a MWCNT agglomeration with AuNPs scattered throughout and in 

Figure 4.21 (b) it would appear that the AuNPs are adsorbed on the outer walls 

of the MWCNTs. Figure 4.21 (c) shows the distribution of various sizes of the 
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AuNPs in a magnified image of the MWCNTs agglomeration and Figure 4.21 

(d) highlights the spherical morphology of the AuNPs.  

 

The distribution of the particle sizes (diameter) was analysed and is displayed 

as a histogram in Figure 4.21 (e). It was found that the majority of the particles 

measured were of 7.5 nm in diameter; and the range of sizes was 5.5 to 12.5 nm. 

This analysis is direct evidence that the Au particles used to modify the 

MWCNTs were nanoparticulate.  
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(a)   (b) 

    

(c)   (d) 

     

(e) 

 

 

Figure 4.21: (a)–(d). TEM images of MWCNTsOx/AuNPs at various 

magnifications and (e) Particle size distribution histogram of 100 AuNPs. 
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4.2.3.3.2 Chromium(VI) Detection at Electrodes modified with 

 MWCNTs and Au Nanoparticles 

 

The MWCNTsOx/AuNPs and MWCNTs/AuNPs suspensions were prepared by 

dispersing 10 mg mL-1 modified MWCNTs in DMF via sonication for 30 min. 

The Au electrodes were then drop cast with 20 µL MWCNTsOx/AuNPs or 

MWCNTs/AuNPs and dried under an IR lamp. The voltammetric response of 

MWCNTsOx/AuNPs and MWCNTs/AuNPs is compared in Figure 4.22 in the 

reduction of 5.00 × 10-4 M Cr(VI) in H2SO4 at pH 2.0 with the peak potentials 

and currents tabulated inset. The broad redox pair at 0.20/0.30 V vs. SCE seen 

at the MWCNTsOx/AuNPs modified electrode most probably arose from the 

oxygen functionalities on the oxidised MWCNTs, as has previously been 

reported in the literature.262, 264 There was no clear reduction peak observed at 

this modified electrode, likely as a result of this redox pair masking the peak, 

however rough estimates of both peak potential and peak current were made 

from the voltammogram. The approximate peak position of 0.52 V vs. SCE and 

peak current of 8.11 × 10-6 A, appear to be lower than those seen at the 

MWCNTs/AuNPs. It would appear, however, that cyclic voltammetry was 

unsuitable for the detection of Cr(VI) at the MWCNTsOx/AuNPs modified 

electrode. 

 

A clear reduction peak was observed at the electrode modified with 

MWCNTs/AuNPs, where it is of note that there was a shift in peak position 

from 0.56 V at bare MWCNTs to 0.60 V vs. SCE at MWCNTs/AuNPs. This 

indicates that some sensing occurred at both the AuNPs surface and the 

MWCNTs, which resulted in a lower over-potential than for the MWCNTs 

alone. The peak currents in this case were 8.92 × 10-6 A for the reduction of 5.0 

× 10-4 M Cr(VI).  
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Figure 4.22: Cyclic voltammograms of modified gold electrodes in a               

5.0 × 10-4 M Cr(VI) in H2SO4 (pH 2.0) at 10 mV s-1. Plot shows gold electrode 

modified with — MWCNTsOx/AuNPs compared to — MWCNTs/AuNPs. 

The relevant electrochemical properties are tabulated inset.  

*Approximate peak position and current values were determined from cyclic 

voltammetry. 

 

4.2.3.4 Comparison of the Electrode Materials Studied with respect to 

 Cr(VI) Reduction using Cyclic Voltammetry 

 

To accurately compare the various electrodes, their sensitivity was calculated 

from the observed current response with respect to the concentration of 

Cr(VI) tested (Current / Concentration). The resulting sensitivities are shown 

in Figure 4.23. In comparing the bare substrates studied, the peak current for 

the reduction of Cr(VI) was clearly larger at the Au electrode in comparison to 

the GCE. Signals were observed for the reduction of Cr(VI) at the MWCNT 

modified electrodes, the polypyrrole MWCNT composite electrodes and the 

MWCNTs/AuNPs modified electrode. As cyclic voltammetry was deemed 
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unsuitable for use in monitoring the detection of Cr(VI) reduction at the 

MWCNTsOx/AuNPs modified electrode, it was not compared in this table.  

 

 

Figure 4.23: Bar chart comparing the current response of the various modified 

and bare electrodes for the detection of Cr(VI), with respect to the 

concentration of Cr(VI) tested. 

  

It is clear from the screening study that the largest current response in relation 

to the concentration of Cr(VI) observed via cyclic voltammetry was at the Au 

electrode modified with MWCNTs (Au/MWCNTs). Furthermore, it appeared 

that the next most promising material for sensing Cr(VI) using cyclic 

voltammetry was the polypyrrole modified electrode (Ppy/MWCNTs), 

however the amount of MWCNTs cast in both cases differed.  Therefore 

further analysis of the data was carried out in order to compare the 

performance of these two electrodes. The casting was carried out from a        

7.0 mg mL-1 MWCNTs suspension in both cases to investigate the role of the 

underlying Ppy film. As can be seen in Table 4.5, the peak potential recorded 

at the Au electrode cast with MWCNTs was the same as that recorded at the 

Ppy film cast with MWCNTs. In comparing the peak currents however, there 

was a slight increase observed at MWCNTs/Ppy in comparison to the 

Au/MWCNTs electrode, suggesting that the polymer layer contributed to the 

process in some way most likely by Cr(VI) adsorption as discussed earlier.  
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Table 4.5: Comparison of peak potential and peak current values for the 

detection of 6.0 × 10-4 M Cr(VI) at electrodes cast with 7.0 mg mL-1 MWCNTs, 

both with and without the underlying Ppy film.  

Electrode Ep / V vs. SCE Ip / A  

MWCNTs  0.65 1.41 × 10-5 

Ppy/MWCNTs  0.65 1.67 × 10-5 

 

In comparing the stability of the Ppy/MWCNTs electrode to the MWCNTs, 

seen in Figure 4.24, it was clear that over the course of 10 cycles in Cr(VI), the 

polymer layer of the Ppy/MWCNTs degraded gradually as the currents 

dropped off to a similar level observed for the MWCNTs casting, which 

exhibited a relatively constant current over the 10 cycles. This suggested that 

in the early cycles, the Ppy component of the electrode contributed to Cr(VI) 

detection but that the Ppy was not stable in the Cr(VI) solution. Therefore as 

Ppy provided no benefit to the construction of the sensor, it was concluded 

that the most efficient detection of Cr(VI) in this work was achieved at the 

electrode modified with solely MWCNTs and Ppy was no longer utilised in the 

modification of the electrode.  
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Figure 4.24: Comparison of peak current stability over 10 cycles for                   

■ Ppy/MWCNTs and ■ MWCNTs. 
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4.2.4 Investigating the Limit of Cr(VI) Detection at Various  Electrode 

Materials using Different Electrochemical Techniques  

 

The screening study highlighted that the best current response was observed 

at an electrode cast with MWCNTs from a DMF suspension, a bare gold 

electrode and a gold electrode cast with AuNPs modified MWCNTs therefore 

the LODS of these electrodes are further investigated herein. The electrode 

cast with MWCNTsOx/AuNPs is also further investigated in this section as 

cyclic voltammetry was deemed as an unsuitable technique for its evaluation 

in Cr(VI) detection (Section 4.2.3.3.2).  

 

The use of differential pulse voltammetry (DPV) and constant potential 

amperometry at a rotating disc electrode (CPA/RDE) are investigated in this 

section to improve the limit of Cr(VI) detection. Both techniques are described 

in Chapter 2 which briefly illustrates that the improved sensitivity of DPV 

occurs as it allows for decaying of the capacitive currents and the improved 

sensitivity of CPA/RDE arises from enhanced mass transport to the electrode 

surface. 

 

In all cases the LOD of the electrode towards the reduction of Cr(VI) was 

calculated by constructing calibration curves from plots of peak current vs. 

Cr(VI) concentration. The relationship between the slope of the calibration 

curve and the standard deviation of the background signal was used to 

calculate the LOD, as was illustrated in Section 4.2.2.3.  

 

4.2.4.1 Detection of Cr(VI) using Cyclic Voltammetry 

 

In Section 4.2.2.3 the limit of Cr(VI) detected at GCE/MWCNTs using cyclic 

voltammetry was calculated to be 1.95 × 10-4 M. The screening study in Section 

4.2.3.4  showed that the reduction of 6.00 × 10-4 M Cr(VI) was also promising at 

the bare Au electrode, the Au/MWCNTs electrode and the 

Au/MWCNTs/AuNPs electrode using cyclic voltammetry. The calibration 
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curves of these electrodes can be seen in Figure 4.25 (a) to (c). It can be seen at 

the bare Au electrode in Figure 4.25 (a) that although the reproducibility was 

poor, good linearity was achieved between 1.22 × 10-4 M and 5.00 × 10-4 M 

Cr(VI). The LOD was calculated as 7.47 × 10-5 M, which is lower than that 

detected at GCE/MWCNTs. A calibration curve for the Au substrate cast with 

20 µL 10 mg mL-1 MWCNTs can be seen in Figure 4.25 (b). The LOD achieved 

at this modified electrode, using cyclic voltammetry, was shown to be           

1.45 × 10-4 M. The higher LOD at this electrode in comparison to the bare Au 

electrode can possibly be explained by the use of cyclic voltammetry. At the 

lower concentrations, poor linearity was observed in the calibration curve, 

therefore the LOD was calculated from the slope between 2.22 × 10-4 and     

5.80 × 10-4 M Cr(VI). This is indicative of the slow diffusion of Cr(VI) through 

the MWCNTs film, as discussed in Chapter 3.  

 

The GCE modified with 10 mg mL-1 MWCNTs/AuNPs also showed efficient 

detection of Cr(VI) in the screening study in Section 4.2.3.4, therefore its LOD 

was also calculated from the calibration curve in Figure 4.25 (c). For the 

MWCNTs/AuNPs modified electrode, a detection limit of 1.55 × 10-4 M was 

determined using cyclic voltammetry, which is also higher than that achieved 

at the bare Au electrode. This high LOD occurred again as a result of the 

deviation from linearity at lower concentrations of Cr(VI) in the cyclic 

voltammetry experiments. In this case the LOD was calculated from the slope 

between 2.22 × 10-4 and 5.00 × 10-4 M Cr(VI). This LOD was very similar to that 

recorded at the bare MWCNTs, which agrees well with the physical 

characterisation of the sample that shows a low loading of Au on the pristine 

MWCNTs. 
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 (a) 

 

 (b) 

 

 (c) 

 

 

Figure 4.25: Calibration curves measuring the current response from cyclic 

voltammograms of (a) a bare Au electrode (b) Au/MWCNTs and (c) 

GCE/MWCNTs/AuNPs at various concentrations of Cr(VI) in H2SO4 (pH 2.0, 

n=3).  
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4.2.4.2 Detection of Cr(VI) at a MWCNTs modified Glassy Carbon 

 Electrode using Differential Pulse Voltammetry 

 

An attempt was made to further improve the LOD of the MWCNTs modified 

electrode by implementing differential pulse voltammetry to reduce Cr(VI) to 

Cr(III). DPV is detailed in Chapter 2, briefly it involves applying the potential 

in pulses which allows the capacitive current to decay, preventing its build up. 

This generally enhances the redox signals, making it a more sensitive 

technique. It was shown in Chapter 3 that MWCNTs are highly capacitive, 

therefore DPV was used in this section to lower the limit of Cr(VI) detection at 

the MWCNTs modified electrode. The conditions utilised for differential pulse 

voltammetry measurements are outlined in Table 4.6.  

 

Table 4.6: Relevant parameters used in differential pulse voltammetry 

experiments. 

Parameter Value 

Initial Potential 0.80 V vs. SCE 

Final Potential -0.25 V vs. SCE 

Potential Increment 5 mV 

Pulse Amplitude 50 mV 

Pulse Period 0.30 s 

Sample Width 0.01 s 

Pulse Width 0.15 s 

 

In principle, DPV should be very useful in this system as MWCNTs are highly 

capacitive40 thus, as the background currents were relatively large, it appeared 

that they masked the faradaic currents. However, a calibration curve was 

constructed to determine the LOD achieved and it can be seen from Figure 

4.26 that the linearity of the current response was extremely poor, in particular 

at lower concentrations. This was likely due to the limitations of diffusion 
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through the mesoporous MWCNTs layer. This technique was therefore 

discounted for further use. 

 

 

 

Figure 4.26: Peak currents for the reduction of Cr(VI) in 0.1 M H2SO4 recorded 

at GCE/MWCNTs using differential pulse voltammetry, plot as a function of 

Cr(VI) concentration.  R2 = 0.98 for n=3. 
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4.2.4.3 Detection of Cr(VI) using Constant Potential Amperometry at a 

 Rotating Disc Electrode 

 

The use of rotating disc voltammetry and constant potential amperometry are 

shown in this section to lower the limit of Cr(VI) detection at the various 

electrodes. The use of rotating disc electrodes in electrochemical detection is 

often implemented to aid in the transport of the analyte to the electrode 

surface by removing diffusion limitations by means of convection. This 

technique could therefore possibly be utilised to enhance diffusion of an 

analyte through the mesoporous MWCNTs layer. This technique is generally 

coupled with constant potential amperometry as the sufficient transport of the 

analyte to the surface ensures a consistent supply from the bulk solution, 

which therefore can provide sensitive detection. Calibration curves for this 

technique are constructed using the standard addition method and produce 

staircase amperograms. Based on the response obtained in Section 4.2.3 using 

cyclic voltammetry, the bare rotating disc Au electrode was tested for its 

response to Cr(VI) reduction at a constant applied potential of 0.20 V vs. SCE. 

The use of an RDE in these experiments was to ensure fresh reactant was 

brought to the working surface which is achieved when the electrode is rotated 

at a particular rotation speed in solution.  The calibration curves (n=1) for the 

bare electrode at two different rotation speeds; 900 and 1900 rpm,  are shown 

in Figure 4.27 where it can be seen that the rotation speed of 1900 rpm showed 

a more  sensitive current response by the higher currents.  
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Figure 4.27 : Staircase amperograms (n=1) comparing the current response of 

bare Au electrodes at various concentrations of Cr(VI) in H2SO4 at pH 2.0, 

measured at a constant potential of 0.2 V vs. SCE for a rotation speed of ■ 900 

and ■ 1900 rpm. Plot inset shows (n=1) calibration curves recorded at both 

speeds. 

 

A calibration curve was constructed of the bare Au rotating disc electrode at 

the rotation speed of 1900 rpm, which can be seen in Figure 4.28 (a). It can be 

seen here that the bare electrode exhibited poor reproducibility, causing the 

plot to deviate from linearity at lower concentrations (inset Figure 4.28 (a)). A 

LOD of 5.07 × 10-5 M was calculated from the linear region of the plot at the 

bare Au substrate using this technique. A gold rotating disc electrode modified 

with MWCNTs (20 µL 10 mg mL-1 MWCNTs/DMF) was also tested using 

constant potential amperometry to introduce convection in the 

electrochemical cell. A constant potential of      0.40 V vs. SCE was applied to 

the Au/MWCNTs electrode to ensure a sufficient over-potential was applied to 

achieve complete conversion of Cr(VI) to Cr(III) based on the cyclic 

voltammetry experiments in Section 4.2.3. A calibration curve was then 

constructed for the Au/MWCNTs electrode using constant potential 

amperometry at 0.40 V vs. SCE on a rotating disc at 1900 rpm. It can be seen 

that a linear response with good reproducibility was produced using this 

technique and lower LOD of 2.22 × 10-6 M Cr(VI) was achieved. 
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(a) 

 

(b) 

 

 

Figure 4.28: Calibration curves representing the current response of (a) a bare 

Au electrode and (b) an Au electrode modified with 20 µL 10 mg mL-1 

MWCNTs to various concentrations of Cr(VI) in H2SO4 at pH 2.0, at a constant 

potential (0.2 and 0.4 V vs. SCE, respectively) using a rotating disc electrode at 

1900 rpm.  
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The physical characterisation of the modified MWCNTs showed that 

MWCNTsOx/AuNPs had a higher loading of Au than the pristine 

MWCNT/AuNPs, therefore the MWCNTsOx/AuNPs were solely investigated 

in this case. The constant potential amperogram was measured for the 

reduction of Cr(VI), similarly to that in Figure 4.27, at 900 and 1900 rpm. It can 

be seen in Figure 4.29 (a) that the faster rotation speed of 1900 rpm, showed an 

increase in the current response of this electrode also. A calibration curve was 

therefore constructed of the Au/MWCNTsOx/AuNPs electrode and is 

displayed in Figure 4.29 (b). A LOD of 1.20 × 10-6 M was calculated, at a 

constant potential of 0.40 V vs. SCE and a rotation speed of  1900 rpm, which is 

in the region of the mandatory limits set by the EPA. The excellent 

reproducibility of this modified electrode is highlighted by the small error bars 

and linear current response. The lower limit of detection can be accredited to 

the increased amount of AuNPs (2% wt.) which are known to act as electron 

antennae in electrochemical sensing.80  
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(a) 

 

(b) 

 

 

Figure 4.29: Calibration curves recorded for the reduction of various 

concentrations of Cr(VI) in H2SO4 at pH 2.0 measured at a constant potential 

of 0.40 V vs. SCE using an Au electrode modified with 20 µL 10 mg mL-1 

MWCNTsOx/AuNPs (a) (n=1) for a rotation speed of ■ 900 and ■ 1900 rpm 

and (b) (n=3) at 1900 rpm.  
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The limits of detection (LOD) that have been calculated for various electrodes 

using cyclic voltammetry and constant potential amperometry with rotating 

disc electrodes (CPA/RDE) are shown in Table 4.7. It is clear from this table 

that the most sensitive electrode using cyclic voltammetry for the detection of 

Cr(VI) was the bare Au electrode which was slightly enhanced  by the use of 

CPA/RDE. A lower LOD was achieved by the use of CPA/RDE for the 

MWCNTs modified electrodes, with almost 100 fold increase achieved at the 

Au electrode modified with MWCNTs. This can most likely be explained by 

the increase in mass transport obtained with the use of an RDE. The lowest 

LOD of Cr(VI) was achieved at the MWCNTsOx/AuNPs, where the detection 

was enhanced 2 fold further by the modification of MWCNTs with AuNPs. The 

use of CPA/RDE with the MWCNTsOx/AuNPs modified Au electrode provided 

a LOD of 1.20 × 10-6 M (62 µg L-1) which is approaching the mandatory limit set 

by the EPA of 9.61 × 10-7 (50 µg L-1). 

 

Table 4.7: Limits of detection (LOD) for Cr(VI) at the various modified 

electrodes using cyclic voltammetry and constant potential amperometry at a 

rotating disc electrode (CPA/RDE). 

Electrode Limit of Detection  / M Cr(VI) 

Cyclic Voltammetry CPA/RDE 

Au 7.47 × 10-5  5.07 × 10-5 

Au/MWCNTs 1.45 × 10-4 2.22 × 10-6 

GCE/MWCNTs  1.95 × 10-4 † 

Au/MWCNTs/AuNPs 1.55 × 10-4 † 

Au/MWCNTsOx/AuNPs ‡ 1.20 × 10-6 

 

† Electrodes were not tested for Cr(VI) detection using this technique. 

‡ Technique was not suitable for Cr(VI) detection at this electrode. 
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4.3 Conclusion 

 

In this chapter it was found that a MWCNTs modified glassy carbon electrode 

could be used to detect the electrochemical reduction of Cr(VI). The reduction 

peak was monitored at 0.65 V vs. SCE using cyclic voltammetry and a LOD of 

1.95 × 10-4 M was determined. A reasonably stable peak current was monitored 

over 30 cycles which was not influenced by the potential interferants Cl- and 

Cu2+. Some interference was noted in the presence of NO3
- however, and poor 

reproducibility was seen in real water samples. As expected, the peak potential 

for the reduction of Cr(VI) to Cr(III) was influenced greatly by the pH of the 

sample solution, however, it did not follow simple Nernstian behaviour. 

Surprisingly, the peak current did not increase with an increase in the 

conductivity of the sample solution, perhaps due to adsorption of SO4
2- on the 

MWCNTs surface.  

 

Different modifications were explored in the construction of the Cr(VI) sensor 

in attempt to enhance the limits of detection. Ppy was initially utilised as a 

scaffold for the MWCNTs due to its ease of preparation, good conductivity and 

relative stability.265, 266 The growth of PpyMWCNTs was compared to that of 

Ppy under the same conditions and PpyMWCNTs was characterised 

electrochemically using cyclic voltammetry and imaged using SEM. The 

inherent properties of Ppy are known to both spontaneously adsorb267 and 

reduce268 Cr(VI) therefore, partial overoxidation of the Ppy film was carried 

out to supress any chemical interference. The electrochemical properties of the 

resultant films showed Ppy redox activity that was supressed by overoxidation 

in the acidic Cr(VI) solution by cycling in a large potential window at a 

relatively slow scan rate of 10 mV s-1. The current response for the reduction of 

Cr(VI) to Cr(III) was markedly improved by the presence of MWCNTs  in the 

Ppy matrix. This modification of the electrode was then further enhanced by 

the addition of MWCNTs as a drop-cast coating on Ppy (MWCNTs/Ppy). This 

modification was compared to the original MWCNTs modified electrode, 

without the use of the Ppy matrix. Initial cycles showed an enhanced current 
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response at the MWCNTs/Ppy modified electrode, however, the signal was 

unstable possibly due to a chemical reaction between the Ppy film and Cr(VI). 

As similar detection was achieved at both electrodes by the 10th cycle, it was 

concluded that the use of MWCNTs alone was preferential for the 

electrochemical reduction of Cr(VI) to Cr(III). The second modification of the 

electrode with MWCNTs investigated to optimise the detection of Cr(VI) was 

by the incorporation of AuNPs. Samples of MWCNTs both pristine and 

oxidised were modified with AuNPs and it was found, using atomic adsorption 

spectroscopy, that the MWCNTsOx contained substantially more AuNPs than 

the pristine MWCNTs after modification. A LOD of 1.55 × 10-4 M was achieved 

at the Au/MWCNTs/AuNPs, which was quite similar to that obtained for 

GCE/MWCNTs. A LOD was not calculated, however for 

Au/MWCNTsOx/AuNPs using cyclic voltammetry due to the electroactivity of 

the MWCNTsOx.  

 

Constant potential amperometry at a rotating disc electrode was therefore 

investigated as a means of decreasing the limit of Cr(VI) detection. This 

technique was used to compare the various electrodes; bare Au, Au/MWCNTs, 

and Au/MWCNTsOx/AuNPs using a rotating speed of 1900 rpm. The lowest 

LOD achieved using this technique was 1.20 × 10-6 M at the 

Au/MWCNTsOx/AuNPs electrode.  

 

In summary, although it would appear that simple modification of an 

electrode with MWCNTs can be used to detect Cr(VI), there are problems with 

its LOD. The AuNPs modified MWCNTs however show enhanced detection of 

Cr(VI). Future recommendations for this work would include optimising the 

modification of the MWCNTs with AuNPs to maximise the amount of AuNPs 

on the modified surface. Studies to investigate the selectivity of the optimised 

electrode and its use in real water samples would also be recommended. 
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The Electrochemical Detection of 

Cu(II) in Aqueous Solutions using 

N,N-Diethyldithiocarbamate
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5.1 Introduction  

 

Copper is a transition metal that is found naturally in some rock sediments 

and forms monovalent and divalent cations in solution. Its pollution generally 

stems from anthropogenic uses such as copper piping and wiring where it can 

be leached into drinking water. Although it is an essential dietary requirement, 

it can cause organoleptic (taste) problems when ingested at levels above 1 mg 

L-1. At lower doses it can cause symptoms typical of food poisoning, and the 

acute lethal dose for adults lies between 1 and 400 mg of copper (II) per kg of 

body weight.15 As copper is found naturally in the environment at low 

concentrations, its sensitive detection is very important. The EPA have thus 

imposed a parametric value, i.e. a mandatory limit, of 3.15 × 10-5 M Cu(II) in 

drinking water in Ireland. For the most part, copper is detected using 

techniques such as ICP-MS, which are expensive, time-consuming and do not 

provide real-time analysis. The development of electrochemical sensors for 

metal ion detection would allow for simple, on-site detection remote access to 

data, making it a very attractive technique for environmental monitoring. The 

electrochemical detection of metals has mainly been reported using stripping 

voltammetry,158, 269, 270 and ion selective membranes.271, 272, 273 Recently, there 

have been developments in the production of voltammetric sensors for the fast 

and simple detection of copper which include the use of self assembled 

monolayers and ion-selective ligands.274, 275 The main advantages of these 

electrodes are that they are quickly and simply prepared at a relatively low cost 

and they have the potential for being used on a miniature scale for use in 

disposable sensors such as screen printed electrodes.274, 276 

 

Herein, both a glassy carbon electrode (GCE) and platinum (Pt) mesh 

electrode are modified with a diethyldithiocarbamate (DDC) ligand. 

Dithiocarbamates are simple analogues of carbamates whereby both oxygen 

atoms are replaced by sulfur atoms, as illustrated in Figure 5.1 (a). They have 

been investigated for several decades in the detection of copper as the sulfur 

atoms are known to co-ordinate with transition metal cations.271 They are 
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known to form highly stable complexes with copper, in particular copper 

diethyl-dithiocarbamate (Cu(DDC)2), which is illustrated in Figure 5.1 (b), has 

a reported stability constant in EtOH of log K = 28.8. The complex is poorly 

soluble in water (log ksp = -31)277 which was beneficial in this work as the 

complex formed on the electrode surface and was not easily leached into the 

aqueous sample solution.  

 

(a)                  (b)   

  

 

Figure 5.1: Structure of (a) the diethylammonium salt of 

diethyldithiocarbamate (DDC) and (b) Cu(DDC)2, the complex formed 

between diethyldithiocarbamate and Cu(II). 

 

The detection of Cu(II) in this chapter is based on the formation of the 

Cu(DDC)2 complex278 at the electrode surface, using cyclic voltammetry to 

detect the presence of copper. As highlighted in Chapter 1, the Cu(DDC)2 

complex is generally studied in organic solvents as it is poorly soluble in 

aqueous media. Many reports have been made of the interactions between 

copper and dithiocarbamates in solution122, 279 and in polymeric matrices,280 

however in this work we discuss the use of a Nafion perfluorinated ionomer 

film as a structured support for the formation of the copper complex. Nafion is 

chemically and thermally inert, non-electroactive and insoluble in water and is 

therefore, particularly suitable for the modification of electrodes.158, 281 It has 

been shown particularly by Chen et al.,124 that electrodes modified with DDC 

and Nafion can be used for the detection of metal ions in stripping 

voltammetry, a technique that involves the deposition of the metal on the 

electrode surface. The technique investigated herein involves cycling the metal 
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ion between its oxidation states within the formed complex which would allow 

for the fast detection of the metal ion without the need for multiple steps.282 

 

5.2 Results and Discussion 

 

5.2.1 The Electrochemical Characterisation of Modified Electrodes 

 

The use of DDC/Nafion modified electrodes in aqueous systems is investigated 

in this section. Firstly, the simple drop-cast method is used to modify a GCE to 

investigate the electrochemical properties of the film as a basis for an 

electrochemical sensor. The use of a Pt mesh WE is then explored to provide a 

flexible electrode with potential application in spectrophotometric studies.  

 

5.2.1.1 The Electrochemical Characterisation of DDC immobilised in a 

Nafion film on a GCE  

 

The modified electrode was prepared using the drop-casting method whereby 

0.030 g of DDC was dispersed in 1.50 mL 5% wt. Nafion (in lower aliphatic 

alcohols and 15-20% water) to form the DDC/Nafion solution. A 10 µL aliquot 

of DDC/Nafion was cast on a polished GCE surface which was then dried for 10 

min under an IR lamp. Cyclic voltammetry was performed on the modified 

electrode in 0.10 M NaCl at 50 mV s-1 for 10 cycles each in two different 

potential windows, -0.10 to +1.10 V and -0.10 to +0.90 V vs. SCE which can be 

seen in Figure 5.2 (a). The electrochemical oxidation of the DDC can be seen 

here at 0.20 V vs. SCE in the first cycle in both potential windows. The 

voltammograms in Figure 5.2 (b) compare the first and final cycles of the 

voltammograms cycled between -0.10 and +1.10 V vs. SCE. Here it can be seen 

that with continued cycling, the oxidation peak diminished which indicated 

the complete and electrochemically irreversible oxidation of DDC under these 

conditions. 
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(a) 

 

 

(b) 

 

 

Figure 5.2: Cyclic voltammograms of GCE cast with 10 µL of DDC/Nafion 

(0.030 g / 1.50 mL) in 0.10 M NaCl (a) comparing the initial cycles when 

scanned from -0.10 to — +1.10 and — +0.90 V vs. SCE and (b) comparing the 

— initial and — final cycle (cycle 10) when scanned between -0.10 and +1.10 V 

vs. SCE. 
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The electrochemical activity of the immobilised DDC, can most likely be 

identified as the oxidation of DDC to its radical DDC˙, according to the 

mechanism illustrated in Scheme 5.1. This has been shown both chemically283 

and electrochemically284 in the literature to be subsequently followed by its 

rapid coupling to form Bis(N,N-diethylthiocarbamoyl) disulfide, better known 

as disulfiram (DSF). The further chemical oxidation of DSF to 

bis(dialkyliminium)tetrathiolane dication (Bitt-42+) has also been reported by 

Cen et al.,283 which can also be seen in Scheme 5.1 and was also considered as a 

possible electrochemical step herein. 

 

The oxidation of a dissolved DDC polymer in solution was shown by Lieder285 

to occur as a prewave from 0.1 to 0.30 V and a dominant oxidation peak at  

0.70 V vs. SCE. The author describes how the polymer was prepared by 

reacting a linear poly(ethylenimine) polymer with CS2, to give a DDC polymer 

which was dissolved in organic solvent for electrochemical analysis. The 

dominant peak at 0.70 V vs. SCE was assigned by Lieder284, 285 to the oxidation 

of DDC to its radical, DDC˙, and the pre-wave observed between 0.1 and 0.30 

V vs. SCE was assigned to the oxidation of DDC bound to the electrode 

surface, occurring at a relatively low potential due to a decrease in activation 

energy. In the initial oxidation cycle of the modified electrode in this current 

work a similar decrease in activation energy can be attributed to the ligand 

being attached to the electrode surface, as no radicals would be present in this 

case. This would allow for the oxidation of DDC to occur at the lower potential 

of 0.20 V vs. SCE. 
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It is notable that the oxidation of the ligand in the larger potential window was 

further verified by a hysteresis loop, highlighted inset in Figure 5.2 (a). Here 

the currents of the reverse scan were higher than the forward scan between    

1.10 and 1.00 V vs. SCE, and crossed to form a loop in the voltammogram. 

Hysteresis loops are generally regarded as an indication of polymerisation or 

deposition in cyclic voltammetry,286, 287 and have been explained by Smie et 

al.288 as a slow second order coupling step between dimeric species in the case 

of the oligimerisation of 3-methylthiothiophene. In this present case, it is 

therefore possible that the dimerisation of DDC˙ to form DSF was observed as 

a hysteresis loop. 

 

 

 

Scheme 5.1: Schematic illustration283 of the possible mechanism for the 

oxidation of DDC to DSF and of DSF to Bitt-42+. 

  

The lower limit of the potential window was then extended to scan from -1.00 

to 0.90 V vs. SCE, and cycles 1 and 10 are again shown in Figure 5.3 (a). 

Similarly to that seen in Figure 5.2, an oxidation peak was observed at 

approximately 0.20 V vs. SCE in the initial cycle which was not visible in the 

final cycle. In this larger potential window however, a small reduction peak 

was observed at -0.70 V vs. SCE which increased with cycle number, indicating 

that some DSF was reduced back to DDC under these conditions. The control 

experiment of the GCE cast with 5% wt. Nafion (in lower aliphatic alcohols and 
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15-20% water) alone can be seen in Figure 5.3 (b) where the large oxidation 

peak is absent. In the initial cycle of Figure 5.3 (b), smaller redox peaks can be 

observed which may be attributed to reactions of the solvated protons fixed on 

the SO3
- sites, as described by Sanmatias et al.289 according to reaction 5.1.  

 

     

 

The uptake of water in Nafion films has been discussed in the literature with 

reference to its effect on the morphology of the film and its conductivity,290 

however,  regardless of the origin of these small redox peaks, it is clear that the 

large oxidation peak at 0.20 V vs. SCE observed in Figure 5.3 (a) must occur 

due to the presence of DDC. 
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(a) 

 

 

(b) 

 

Figure 5.3: Cyclic voltammograms of GCE cast with 10 µL of (a) DDC/Nafion 

0.030 g / 1.50 mL  and (b) 5% wt. Nafion (in lower aliphatic alcohols and        

15-20% water); in 0.10 M NaCl comparing the — initial and — final cycles 

when scanned between -1.00 and +0.90 V vs. SCE. 
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5.2.1.2 The Electrochemical Analysis of DDC/Nafion on a Pt mesh 

 Electrode  

 

5.2.1.2.1 The Electrodeposition of DDC/Nafion on a Pt mesh 

 electrode 

 

A Pt mesh working electrode (WE) was investigated as a substrate for 

modification with DDC/Nafion due to its small apertures allowing for its 

possible use in UV-vis spectroscopy as well as electrochemical experiments. As 

drop-casting the DDC/Nafion solution onto the mesh gave poorly controlled 

coverage and immeasurable loading of the film to the substrate, the 

DDC/Nafion solution was electrodeposited onto the mesh. This involved the 

application of a positive potential to the WE so as to attract the negatively 

charged Nafion and DDC ions from solution to the electrode surface, resulting 

in a relatively even coverage. The deposition required a larger volume of 

DDC/Nafion solution to allow for complete coverage of the mesh in the 

electrochemical cell and a high concentration of DDC to ensure its sufficient 

loading. A solution consisting of 0.240 g DDC dispersed in 6.00 mL 5% wt. 

Nafion (in lower aliphatic alcohols and 15-20% water) was prepared, giving a 

0.2 M solution of DDC. The charge-time plot in Figure 5.4 shows the linear 

increase in charge passed with time by applying 1.00 V vs. SCE to the mesh for 

120 s, indicating a gradual and controllable increase in the thickness of the film 

in this work. The plot highlights the reproducibility achieved in the 

electrodeposition, with 4 repeated experiments showing an error of 0.016 C 

(3.4%). The solvent was evaporated as before by drying the modified mesh 

under an IR lamp for 10 min (Pt/DDC/Nafion). This method has been used by 

many, for example, Hashemi et al.291 have shown it to provide thin, uniform 

coatings of Nafion to carbon micro-fibre electrodes. 
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Figure 5.4: Plot showing the increase in charge as a function of time for the 

electrodeposition of DDC/Nafion on Pt mesh from a 0.02 M DDC 5% wt. 

Nafion solution at 1.00 V vs. SCE for 120 s (n=4). 

 

5.2.1.2.2 Oxidation of DDC/Nafion on a Pt Mesh Electrode 

 

The electrochemical characterisation of the modified electrode 

(Pt/DDC/Nafion) was carried out as discussed before in Section 5.2.1.1, by 

cycling the modified mesh in 0.10 M NaCl at 50 mV s-1 for 10 cycles. The 

potential window in this case was limited to cycle between -0.50 and 0.90 V vs. 

SCE. As can be seen in Figure 5.5, the oxidation peak potential, for the 

oxidation of DDC to its radical, was the same as that previously observed for 

the modified GCE in the same potential window (0.20 V vs. SCE). The film 

thickness, and therefore the amount of DDC deposited on the sensor could 

possibly be increased by varying the duration of electrodeposition. In this 

work, however, the electrodeposition time was kept at 120 s and a reproducible 

amount of DDC was incorporated into the Nafion film, confirmed by the 

intensity of the oxidation peak for each experiment. Figure 5.5 also shows the 

complete oxidation of DDC to DDC˙ after 10 cycles and the hysteresis loop 

indicating the dimerisation of the radicals to form DSF, similar to that seen in 

Section 5.2.1.1.  
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Figure 5.5: Cyclic voltammograms showing cycles — 1 and — 10 of the 

oxidation of DDC/Nafion coating on a Pt mesh in 0.10 M NaCl at 50 mV s-1. 

 

5.2.1.2.3 Stability of DDC/Nafion on a Pt mesh Electrode 

 

After DDC was electrochemically converted to DSF within the Nafion film, the 

stability of Pt/DDC/Nafion was investigated. The modified electrode was 

placed in a fresh solution of 0.10 M NaCl and scanned for 100 cycles at             

50 mV s-1 between -0.50 and +0.90 V vs. SCE. Figure 5.6 (a) shows every 10th 

cycle scanned and it can be seen that small oxidation and reduction peaks 

appeared at +0.80 and -0.50 V vs. SCE respectively in the initial cycles. The 

peak currents diminished over the first 40 cycles, and then reached a steady 

state. These are possibly due to the oxidation and reduction of platinum and 

its oxide. The stability of the modified Pt mesh was therefore investigated in a 

smaller potential window by repeating the experiment but scanning the 

potential from -0.10 to +0.60 V vs. SCE. It can be seen from Figure 5.6 (b), 

where every 10th cycle again is displayed, that there was no redox process 

occurring in 0.10 M NaCl within this potential window. The electrode 

remained stable throughout the 100 cycles tested, indicating a more controlled 

and reliable background for further experiments. 
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(a) 

 

(b) 

 

Figure 5.6:  Cyclic voltammograms of the DDC/Nafion film on a Pt mesh 

electrode showing stability over 100 cycles in 0.10 M NaCl at 50 mV s-1 

comparing the potential windows of (a) -0.50 to +0.90 V vs. SCE and (b) -0.10 

to +0.60 V vs. SCE.  
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5.2.1.2.4 The Electrochemical Characterisation of Nafion/DSF on a Pt 

 mesh Electrode 

 

The electrochemical characterisation of both GCE and Pt mesh modified with 

DDC in Nafion showed the oxidation of DDC which indicated that the 

resulting modified electrodes consisted of DSF in the Nafion film. To confirm 

this, the Pt mesh electrode was modified with DSF/Nafion directly from a 

solution containing 0.030 g DSF in 6.00 mL 5% wt. Nafion (in lower aliphatic 

alcohols and 15-20% water). The electrode was modified via electrodeposition 

at 1.00 V vs. SCE for 120 s and dried under an IR lamp for 10 min as in Section 

5.2.1.2.1.  The electrochemical characterisation of this modified electrode was 

carried out similarly to the DDC/Nafion modified electrode, whereby the 

modified mesh was cycled in 0.10 M NaCl for 10 cycles at 50 mV s-1. Figure 5.7 

(a) and (b) compares the first and final cycles of this electrochemical 

characterisation carried out in two different potential windows. Figure 5.7 (a) 

displays voltammograms in the smaller potential window of -0.10  to +0.60 V 

vs. SCE, which shows very little change between the initial and final cycles, 

and shows no significant redox reactions. This shows that both oxidised 

DDC/Nafion and DSF/Nafion modified electrodes show no electrochemical 

activity under these conditions, producing a suitable background 

voltammogram.  

 

Figure 5.7 (b) conversely shows the reduction of DSF at -0.70 V vs. SCE, which 

was visible as the window was extended to scan from -1.00 to +1.00 V vs. SCE. 

This is analogous to the reduction peak seen in the final cycle of Figure 5.3 (a) 

where the DDC/Nafion modified GCE was cycled in a similar potential 

window. In the previous case, the reduction was seen after the DDC had been 

converted to DSF; however in this case, the reduction can be seen in the initial 

cycle as the DSF is readily available. This further supports evidence of DSF 

formation from the oxidation of DDC. There is no coupled oxidation peak to 

the reduction of DSF, showing an electrochemically irreversible reaction, 

suggesting that when the small amount of DSF was reduced to DDC, it was 
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leached from the Nafion film. This is likely to occur as DDC is a water soluble 

anion whereas DSF is poorly soluble in aqueous solutions, and is therefore 

likely to have remained in the Nafion film until it was reduced to DDC. It was 

therefore deduced that the smaller potential window was most suitable to 

prevent the loss of DSF from the Nafion film.  

 

(a) 

 

(b) 

 

Figure 5.7: Cyclic voltammograms showing cycle — 1 and — 20 of the 

DSF/Nafion modified Pt mesh in 0.10 M NaCl at 50 mV s-1 in various potential 

windows (a) -0.10 to +0.60 V vs. SCE and (b) -1.00 to +1.00 V vs. SCE. 
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5.2.2 Copper Detection at a Modified Pt mesh Electrode 

 

The Pt mesh electrode that was characterised in Section 5.2.1 is used in this 

section for the detection of Cu(II). Firstly, the complexation of DDC and DSF 

to Cu(II) is explained with reference to the literature. A calibration curve is 

then used to examine the sensitivity of Pt/DDC/Nafion in the detection of 

Cu(II). The formation of Cu(DDC)2 at Pt/DDC/Nafion is then verified using 

cyclic voltammetry and UV-vis spectroscopy.  

 

5.2.2.1 The complexation of DDC and DSF to Cu(II) 

 

It has been shown that the oxidation of a Pt mesh electrode modified with 

DDC/Nafion film results in the formation of a DSF/Nafion modified electrode. 

The formation of Cu(DDC)2 from DSF is therefore discussed herein.283, 292   

Tonkin et al.,293 for example, propose that its formation occurs via the 2 

electron reduction of DSF to DDC and Victoriano294 describes the oxidising 

properties of  DSF with the reduction of the ligand breaking the S-S bond. In 

particular, Burkitt et al.121 have demonstrated the formation of Cu(DDC)2 from 

DSF in the presence of Cu(II) using electron paramagnetic resonance (EPR). 

They propose a mechanism whereby with the oxidation of either Cu(I) to 

Cu(II) or Cu(II) to Cu(III), DSF can undergo a one electron reduction to form 

the DDC anion and one thiyl radical, as illustrated in Scheme 5.2. Two DDC 

anions are reported to coordinate with Cu(II) to form the square planar 

Cu(DDC)2 complex. Similar reactions have also been reported by Jeliakova and 

Doicheva295 in studying mixed ligand complexes. 
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Scheme 5.2 Schematic representation of the complexation of DSF to Cu(II) via 

the chemical reduction of DSF to DDC and DDC˙. 

 

Although in the work discussed herein, Cu(II) was added to the sample 

solution, the redox cycling would enable the production of Cu(I) which in turn 

would facilitate the formation of the Cu(DDC)2 complex. The further oxidation 

of DSF to Bitt-42+ has also been discussed as a possible reaction, depending on 

the upper limit of the potential window and Cen et al.283 have shown that it is 

possible for Bitt-42+ to react with Cu(I) to make the Cu(DDC)2 complex. They 

synthesised the complex shown in Scheme 5.3, and showed that under 

hydrolysis it can form Cu(DDC)2. Accordingly, it is possible that DDC, DSF 

and Bitt-42+ all form the Cu(DDC)2 complex in the presence of Cu(II) or 

Cu(I).283  
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(a) 

 

 

 

(b) 

 

 

 

Scheme 5.3: Schematic representation of (a) oxidation of DSF to Bitt-42+ in the 

presence of Cu(II), and (b) the hydrolysis of [Bitt-4][CuCl2] forming 

Cu(DDC)2.
283 

 

5.2.2.2 The Electrochemical Detection of Cu(II) at Nafion/DDC on a Pt 

Mesh Electrode 

 

The detection of Cu(II) was investigated in this section at a Pt mesh electrode 

modified with DDC/Nafion using cyclic voltammetry. The Pt mesh was 

modified as before and cycled in 0.10 M NaCl for 10 cycles to complete the 

oxidation of DDC to DSF and retrieve a steady baseline. The modified 

electrode was transferred to a fresh solution of 0.10 M NaCl and a solution 

containing Cu(II) was added gradually by standard addition. Figure 5.8 shows 

the electrochemical response of the modified electrode to 2.44 × 10-5 M CuCl2 

in comparison to the background of 0.10 M NaCl. The reduction peak at 0.08 V 

vs. SCE is indicative of the reduction of Cu(II) to Cu(I), also seen at a bare GCE 

(data not shown) and the coupled oxidation peak at 0.32 V vs. SCE is most 

likely the oxidation of Cu(I) to Cu(II). Significantly, the redox couple exhibited 
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in Figure 5.8 is similar to that seen by Bond and Wallace who observed the 

oxidation of Cu(DDC)2 in 0.10 M acetonitrile which occurred at 0.40 V and 

0.47 V vs. Ag/AgCl at a platinum electrode.122 The peak separation for the 

redox couple seen in Figure 5.8 is 0.24 V, which is larger than the values of 

0.06 V and 0.15 V reported in tetra-n-butyl ammonium bromide 

(TBAB)/acetone and EtOH respectively, by Dunbar et al.296 for the Cu(DDC)2 

complex. This is possibly due to the immobilisation of the complex in the 

Nafion film which is poorly conducting, making electron transfer less efficient. 

The E1/2 value in this case is 0.22 V which is lower than the values reported of 

0.57 V and 0.51 V in TBAB and EtOH respectively,296 indicating a more 

thermodynamically favoured reaction, which can be attributed to the 

immobilisation of the complex on the electrode surface. In restricting the 

lower potential to -0.10 V vs. SCE, and thus probably inhibiting the reduction 

of Cu(I) to Cu(0), the majority of Cu(I) was oxidised to Cu(II), resulting in 

good electrochemical reversibility, indicated by the ratio of the peak currents 

of 1.28.  

 

 

Figure 5.8: Cyclic voltammogram of Pt mesh modified with DDC/Nafion 

cycled at 50 mV s-1 in — 0.10 M NaCl and — 0.10 M NaCl with 2.44 × 10-5 M 

CuCl2. Electrochemical properties of the redox couple are tabulated inset.  
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Figure 5.9 (a) shows the detection of various concentrations of Cu(II) at 

Pt/DDC/Nafion where it can be seen that the peak currents increased linearly 

(R2 = 0.96) with increasing concentration of Cu(II). The stability of the 

modified electrode after the final addition of CuCl2, in the solution of           

2.44 × 10-5 M CuCl2,  can be seen inset of Figure 5.9 (a) which displays every 10th 

cycle for 50 cycles. The modified electrode showed good stability in this case, 

as both the peak potentials and currents remained stable throughout the 50 

cycles. A calibration curve was constructed relating the peak current to 

increasing Cu(II) concentration, and is displayed in Figure 5.9 (b). The 

standard deviation of the background signal and the slope of the calibration 

curve were used to calculate the limit of detection of 5.40 × 10-5 M at 

Pt/DDC/Nafion. This is close to the recommended limit of 3.15 × 10-5 M set by 

the EPA for drinking water.12 
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(a) 

  

(b) 

 

 

Figure 5.9: Detection of Cu(II)at Pt/DDC/Nafion (a) Cyclic voltammograms 

scanned between -0.10 and 0.60 V vs. SCE at 50 mV s-1 in 0.10 M NaCl and     

— 0.00, — 4.98 × 10-6, —  9.90 × 10-6,  — 1.48 × 10-5, — 1.96 × 10-5 and              

— 2.44 × 10-5 M CuCl2. Inset plot shows stability of electrode in 2.44 × 10-5 M 

CuCl2 over 50 cycles. (b) Plot showing the correlation between the peak 

current and the concentration of Cu(II) used to calculate a limit of detection of 

5.40 × 10-5 M. (R2=0.96). 
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5.2.2.2 The Verification of Complex Formation at Modified Pt mesh 

 Electrodes 

 

5.2.2.2.1 Electrochemical Investigation to Complex Formation  

 

To confirm that the detection of Cu(II) observed in Section 5.2.2.1 occurred via 

the formation of Cu(DDC)2, and that the electrochemical response monitored 

was characteristic of the complex immobilised on the Pt mesh electrode, a 

number of control experiments were carried out. Firstly, to ensure that the 

redox response was due to complex formation, the various components of the 

modified electrode were compared for their response to Cu(II) detection under 

the same conditions. The detection of Cu(II) is then compared at 

Pt/DDC/Nafion and at Pt/DSF/Nafion to investigate the complexation 

mechanism outlined in Section 5.2.2.1. 

 

 (i) Bare Pt mesh and Pt/Nafion 

 

Figure 5.10 (a) shows voltammograms of the bare Pt mesh under the specified 

conditions used previously in Figure 5.8 at two concentrations of Cu(II): 3.50 × 

10-5 M and 1.00 × 10-3 M and Figure 5.10 (b) shows the same voltammograms for 

the Pt mesh coated in 5% wt. Nafion (in lower aliphatic alcohols and 15-20% 

water). It can be seen from these voltammograms that at the relatively low 

concentration of 3.50 × 10-5 M Cu(II) (red traces), in the specific potential 

window of -0.1 to 0.60 V vs. SCE, no copper signal could be identified at either 

electrode. The voltammogram of the bare Pt electrode cycled in a significantly 

higher concentration, 1.00 × 10-3 M of Cu(II), (Figure 5.10 (a) blue trace) shows 

oxidation peaks at 0.17 and 0.40 V vs. SCE and a reduction peak at  0.05 V vs. 

SCE. The Pt mesh electrode modified with Nafion (Figure 5.10 (b) blue trace) 

shows oxidation peaks at -0.05 and 0.12 V vs. SCE, and shows a reduction peak 

at -0.05 V vs. SCE. The absence in both cases of the second reduction peak is 

likely due to the limit of the potential window; however the voltammograms 
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indicate the poor sensitivity of the Pt mesh and of the Pt mesh modified with 

Nafion under these conditions in comparison to Pt/DDC/Nafion. 

 

(a) 

 

(b) 

 

 

Figure 5.10: Cyclic voltammograms of (a) bare Pt mesh electrode and (b) Pt 

mesh electrode modified with 5% wt. Nafion (in lower aliphatic alcohols and 

15-20% water) via electrodeposition at 1.00 V vs. SCE for 120 s; cycled in         

— 3.50 × 10-5 M and — 1.00 × 10-3 M Cu(II) in 0.10 M NaCl at 50 mV s-1. 
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 (ii) Pt/DSF/Nafion 

 

The electrochemical conversion of DDC to DSF was carried out in Section 

5.2.1.2, which indicated that both electrodes inevitably contained DSF, 

therefore, the Pt mesh electrode modified with DSF/Nafion was investigated 

for its ability to detect Cu(II). In Figure 5.11 (a) the detection of Cu(II) can be 

identified by a redox couple similar to that seen in Figure 5.8 for the oxidised 

DDC/Nafion modified electrode. Here the predominant oxidation peak can be 

seen at 0.34 V vs. SCE and the reduction peak can be seen at 0.09 V vs. SCE 

which are analogous to those seen at the oxidised DDC/Nafion modified 

electrode.  

 

 In Figure 5.11 (b), the detection of Cu(II) at the DSF/Nafion modified mesh is 

compared to that at the DDC/Nafion modified mesh. It is noteworthy that the 

concentration of DDC in DDC/Nafion was ten fold that of DSF in DSF/Nafion 

due to their different solubility. It was also noted that the amount of DSF 

deposited on the mesh was not measured but was expected to be less than 

DDC, as DSF is neutral and electrodeposition is dominated by the attraction of 

opposite charges. In the case of DDC and Nafion, which both are negatively 

charged, the amount of ligand deposited was therefore expected to be larger 

and better controlled. The peak currents observed for the detection of Cu(II) 

at the modified electrodes are therefore only compared relative to their 

preparation in this preliminary study and as expected, the currents were 

significantly larger at the oxidised DDC/Nafion modified electrode. Under the 

specific conditions used here, the use of DDC as opposed to DSF in the 

preparation of this electrode resulted in a significant increase in the peak 

currents for the detection of Cu(II) which is illustrated in the table inset of 

Figure 5.11 (b). The peak positions, however, indicated that the oxidised DDC 

and DSF modified electrodes detected Cu(II) by the same means, most likely 

via the formation of Cu(DDC)2. 
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(a) 

 

(b) 

 

 

Figure 5.11: Cyclic voltammograms of (a) DSF/Nafion modified Pt mesh  in  

— 0.00 M and — 4.10 × 10-5 M Cu(II) in 0.10 M NaCl at 50 mV s-1 and (b) Pt 

mesh modified with — DDC/Nafion (firstly oxidised by cycling in 0.10 M NaCl 

at 50 mV s-1 for 10 cycles) and — DSF/Nafion cycled in 1.40 × 10-5 M Cu(II) in 

0.10 M NaCl at 50 mV s-1 with peak current values tabulated inset. 
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 (iii) Pt/Cu(DDC)2/Nafion 

 

To confirm that the detection of Cu(II) at the modified electrodes occurred via 

the formation of Cu(DDC)2, a Pt mesh electrode was modified with 

commercially available Cu(DDC)2. This was carried out by mixing 0.060 g 

Cu(DDC)2 with 3.00 mL 5% wt. Nafion (in lower aliphatic alcohols and 15-20% 

water). This provided a 0.06 M solution of Cu(DDC)2, which, according to the 

Beer-Lambert law, when confined to the Pt mesh electrode, would give a 

sufficient absorbance to be detected by UV-vis spectroscopy. The Pt mesh 

electrode was modified with Cu(DDC)2/Nafion similarly to that in Section 

5.2.1.2.1 by electrodeposition at  1.00 V vs. SCE for 120 s; and drying under an IR 

lamp for 10 min.  

 

The electrochemical activity of Cu(DDC)2 has been shown previously in 

organic solution,296 however it has not been investigated whilst confined to an 

electrode in aqueous solution. The electrochemical activity of the complex 

immobilised in Nafion on the Pt mesh electrode was therefore measured by 

cyclic voltammetry in 0.10 M NaCl and can be seen in Figure 5.12. Here, a redox 

couple can be seen at Pt/Cu(DDC)2/Nafion  similar to that seen at 

Pt/DDC/Nafion which had previously been cycled in 0.10 M NaCl and          

3.45 × 10-5 M Cu(II). The increased magnitude and slight shift in peak position 

can be attributed to the both the difference in the Nafion content of both 

modified electrodes and the different amounts of Cu(DDC)2 in both films 

which would result in a difference in the conductivity and thickness of the 

film. However, the similarity in the symmetry of the peaks and their 

reversibility supports previous evidence that the complex formed at the 

DDC/Nafion modified electrode is the Cu(DDC)2 complex.  
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Figure 5.12: Cyclic voltammograms comparing the redox activity of a Pt mesh 

electrode modified with — Cu(DDC)2/Nafion and — DDC/Nafion cycled in 

3.45 × 10-5 M Cu(II); both electrodes cycled in 0.10 M NaCl at 50 mV s-1. 

 

5.2.2.2.2 UV-vis Analysis of Complex Formation at Modified Pt mesh 

 Electrode 

 

In Section 5.2.2.2 a Pt mesh electrode was modified with Nafion and DDC, and 

used to detect Cu(II) via cyclic voltammetry. Electrochemical data in Section 

5.2.2.2.1 indicated that the detection occurred as a result of Cu(DDC)2 

formation. UV-vis spectroscopy was therefore used in this section to help 

confirm that the complex formed on the electrode surface was in fact 

Cu(DDC)2. To investigate the formation of Cu(DDC)2 at the modified Pt mesh 

electrode, the absorbance spectra of the ligand, DDC and commercially 

available Cu(DDC)2, were compared to the absorption spectra of the modified 

electrodes used in the detection of Cu(II). 
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 (i) UV-vis analysis of DDC and Cu(DDC)2 

 

As can be seen in  Figure 5.13 (a) and (b), respectively, the absorbance 

spectrum of 1.70 × 10-5 M DDC was recorded in 0.1 M NaCl and shows 

absorbance bands at 257 and 282 nm, representing electronic transitions 

associated with the S-C=S and the N-C=S moieties, respectively.112 The linear 

correlation between the absorbance of the peaks with increasing concentration 

was used to calculate the extinction coefficients (ε) for DDC as 9941 and 10078 

M cm-1, giving absorptions bands of log ε = 4.0 in both cases which agrees with 

literature reports by Shankaranarayana and Patel.112  

 

The colorimetric reaction between DDC and copper, was discovered by Callan 

and Henderson in 1929,114 whereby the addition of Cu(II) to the solution of 

DDC resulted in the formation of the Cu(DDC)2 complex, indicated by its 

golden-brown colour. According to Dunbar et al.,296 the complex exhibits 

absorbance bands at 269, 289 and 433 nm in EtOH, with respective extinction 

coefficients of 11,900, 6,400 and 5,100 M-1 cm-1. The spectrum of 4.20 × 10-6 M 

Cu(DDC)2 was recorded in EtOH which can be seen in Figure 5.13 (b). The 

spectrum shows absorbance bands at 434, 270 and 290 nm with absorbance 

ratios of 2.6 : 1.8 : 1 which agree reasonably well with the literature values 

reported by Dunbar et al.296 
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(a) 

 

(b) 

 

 

Figure 5.13: Uv-vis absorbance spectra of (a) 1.70 × 10-5 M DDC in 0.10 M NaCl 

and (b) 4.20 × 10-6 M Cu(DDC)2 in EtOH with absorbance data for relevant 

peaks tabulated inset. 

 

 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

220 260 300 340 380 420 460 500 540 580 620

A
b

so
rb

a
n

ce
 

Wavelength / nm

Sample Absorbance

282  nm 257 nm

- DDC in 0.10 M NaCl 0.473 0.469

0.00

0.04

0.08

0.12

0.16

220 260 300 340 380 420 460 500 540 580 620

A
b

so
rb

a
n

ce

Wavelength / nm 

Sample Absorbance

434  nm 270 nm 290 nm 

- Cu(DDC)2 in EtOH 0.046 0.121 0.067



Chapter 5 
 

213 
 

 (ii) UV-vis analysis of Nafion Films dissolved in EtOH 

  from Modified Electrodes 

 

To confirm that the complex formed at the DDC/Nafion modified electrode 

was Cu(DDC)2, the UV-vis spectra of the modified electrodes used in Section 

5.2.2.2 were obtained by dissolving the Nafion films in EtOH. This was carried 

out for the mesh modified with DDC/Nafion oxidised and used to detect 

Cu(II) and for the Pt mesh modified with Cu(DDC)2/Nafion. The resulting 

spectra can be seen in Figure 5.14 where absorbance peaks at 434, 290 and    

270 nm can be seen in both cases. The ratio of the absorbance of the peaks, 

(434 nm: 290 nm: 270 nm) were calculated for each sample and it was found 

that the ratios were 2.4 : 1.9 : 1 and 2.3 : 2.0 : 1 which agree reasonably well with 

the extinction coefficients reported in the literature.296 This further indicates 

that the complex formed at the electrode surface was most likely to be 

Cu(DDC)2. 

 

 

 

Figure 5.14: UV-vis spectra of Nafion films containing — Cu(DDC)2 and         

—DDC and Cu(II) dissolved in EtOH.   
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 (iii) UV-vis Analysis of Modified Pt mesh Electrodes 

 

The Pt mesh was used as a WE to allow for the characterisation of the 

modified electrode using UV-vis spectroscopy. Spectra were therefore obtained 

of the electrode modified with DDC/Nafion that had been cycled in Cu(II) and 

the Pt mesh modified with Nafion/Cu(DDC)2 by suspending the electrodes in 

cuvettes containing H2O. The resulting spectra can be seen in Figure 5.15 (a) 

with a magnification of the DDC/Nafion modified electrode inset. Absorbance 

peaks at 261 nm can be observed in both spectra, however, the absorbance 

bands in the visible region of the spectra are slightly different at each 

electrode, which is highlighted in the magnification of the spectra inset of 

Figure 5.15 (a). At the Pt mesh modified with Cu(DDC)2, the absorbance shows 

a λmax at 416 nm, however, for the complexed DDC/Nafion modified electrode, 

the absorbance appears to have a λmax of 406 nm.  This is likely due to the poor 

signal to noise ratio causing asymmetry of the latter peak and poor accuracy in 

the determination of λmax, as a much lower concentration of the complex was 

formed at this electrode. However, it is noteworthy that the absorbance peaks 

occur in the same region (480 – 360 nm) in both cases. This further supports 

evidence that the complex formed at the electrode surface was Cu(DDC)2, 

however, further use of the modified mesh electrode in spectrophotometric 

analysis was not recommended due to its poor sensitivity under these 

conditions. It is noteworthy, however, that the peaks observed at the modified 

electrode however, did not coincide with those observed from solution based 

samples in Figure 5.14, therefore, the film used in Figure 5.14 (a) was dissolved 

in EtOH to ensure that the peaks were in fact characteristic of the Cu(DDC)2 

complex. Figure 5.15 (b) shows UV-vis spectra of the complex immobilised on 

the Pt mesh electrode in comparison to that dissolved in EtOH. It can be seen 

here that the peak in the visible region has shifted from 434 to 416 nm, 

confirming that the absorbance band observed in Figure 5.15 (a) was that of 

Cu(DDC)2 and indicates that the immobilisation of the complex on the 

electrode caused the shift in wavelength.  
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(a) 

 

 

(b) 

 

 

Figure 5.15: UV-vis absorbance spectra of Nafion films (a) immobilised on Pt 

mesh containing — Cu(DDC)2 (λ = 262 and 416 nm) and  — DDC cycled in 

Cu(II) (λ = 261 and 406 nm), both suspended in H2O and (b) containing 

Cu(DDC)2 — immobilised on Pt mesh electrode in H2O (λ = 262 and 416 nm) 

and  — dissolved in EtOH (λ = 270, 290 and 434 nm).    
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5.2.3 Investigating the use of MWCNTs to Enhance the Detection of 

 Cu(II) at a DDC/Nafion Modified Pt mesh Electrode 

 

It has been shown that a Pt mesh electrode modified with Nafion and DDC has 

the potential to be used as a Cu(II) sensor thus far, therefore, an attempt was 

made in this section to enhance the sensitivity of the sensor. MWCNTs have 

been widely used in the formation of composites51, 297 and have shown to be 

very beneficial in electrochemical sensors as the MWCNTs can increase the 

conductivity and electrochemical performance of the resulting film.298 This is 

particularly true of Nafion films as they are poorly conducting, which can 

hinder their electrochemical performance.165 In this section, MWCNTs were 

incorporated into the Nafion film to investigate their effect on the detection of 

Cu(II).  

 

5.2.3.1 The Electrochemical Oxidation of DDC at DDC/Nafion/MWCNTs 

 Modified Pt mesh Electrode  

 

There are many variations reported in the literature for the preparation of 

nanotube composites,70 including the modification of MWCNTs , and 

generally it is found that acid-treated MWCNTs provide a well dispersed 

matrix.281 It was found in Chapter 4 however, that acid-treated MWCNTs 

exhibit a large, broad redox couple at 0.20/0.30 V vs. SCE which is very close to 

the redox couple of Cu(II) monitored in this work (0.08/0.32 V vs. SCE), 

therefore large amounts of interference was expected from their use. Pristine 

MWCNTs were therefore used in the formation of Nafion/MWCNTs 

composites in this work with note taken that some agglomerations would be 

present.46, 299 In this preliminary testing, a 1.0 mg mL-1 solution of pristine 

MWCNTs in 5% wt. Nafion (in lower aliphatic alcohols and 15-20% water) was 

prepared using sonication for 30 min. The ligand (0.20 M DDC) was added to 

the Nafion/MWCNTs solution and stirred for 10 min. The Pt mesh electrode 

was modified with DDC/Nafion/MWCNTs by electrodeposition, as before, by 

applying 1.00 V vs. SCE to the WE for 120 s. The composite was then dried 
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under an IR lamp for 10 min. As discussed in Section 5.2.1.1.1, the oxidation of 

DDC to its radical was observed by cycling the modified electrode in 0.10 M 

NaCl at 50 mV s-1 for 10 cycles. Figure 5.16 (a) shows the initial and final cycles 

of this oxidation step, where it can be seen that the oxidation peak at 0.03 V vs. 

SCE had diminished by the 10th cycle. In this case however, unlike the 

DDC/Nafion modified electrode, a reduction peak was observed at 0.06 V vs. 

SCE. With continued cycling, the reduction peak increased and an oxidation 

peak appeared at 0.38 V vs. SCE. This could indicate the oxidation of DSF to 

Bitt-42+ and its reduction back to DSF, possibly facilitated by the fast electron 

transfer properties of the MWCNTs. The redox couple reached stable currents 

and in Figure 5.16 (b) it can be seen that a stable background voltammogram 

was obtained in a fresh solution of NaCl. 
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(a) 

 

 

(b) 

 

 

Figure 5.16: Cyclic voltammograms in 0.10 M NaCl at 50 mV s-1 of a Pt mesh 

electrode modified with DDC/Nafion/MWCNTs from 0.20 M DDC and          

1.0 mg mL-1 MWCNTs in 5% wt. Nafion via electrodeposition at 1.00 V vs. SCE 

for 120 s (a) cycles — 1 and — 10 showing oxidation of DDC and (b) 10 

subsequent overlaying cycles showing the stability of the background. 
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5.2.3.2 Electrochemical Detection of Cu(II) at DDC/Nafion/MWCNTs 

 Modified Pt mesh Electrode  

 

The detection of Cu(II) was investigated at the oxidised 

DDC/Nafion/MWCNTs modified Pt mesh electrode, similarly to that in 

Section 5.2.2.1 whereby the electrode was cycled in 0.10 M NaCl and the 

concentration of Cu(II) was increased gradually by standard addition. It can be 

seen from these voltammograms, shown in Figure 5.17 (a), that upon addition 

of Cu(II), the redox couple seen in the background (at 0.06/0.38 V vs. SCE) 

gradually diminished and a redox pair similar to that seen at the DDC/Nafion 

modified electrode gradually appeared. This is indicative that the detection 

mechanism was similar in both cases, however, further work would be 

required to identify the significance of the background peaks.  The 

voltammograms in Figure 5.17 (b) compare the detection of Cu(II) at 

Pt/DDC/Nafion to that at Pt/DDC/Nafion/MWCNTs and the calculated 

electrochemical properties are tabulated inset. The peak positions of this redox 

couple recorded at Pt/DDC/Nafion/MWCNTs were 0.14/0.24 V vs. SCE giving 

an E1/2 value of 0.19 V with a ΔEp of 0.10 V in this case. These values are lower 

than the E1/2 = 0.22 and ΔEp = 0.24 V seen at Pt/DDC/Nafion which can be 

explained by the conductivity and the fast electron transfer properties of the 

MWCNTs. The peak currents were also dramatically enhanced (2.6 fold) by 

the incorporation of MWCNTs into the DDC/Nafion film and the 

electrochemical reversibility at the DDC/Nafion modified Pt mesh electrode 

was improved with the incorporation of MWCNTs; from Ipc/Ipa = 1.28, to    

Ipc/Ipa = 1.10. This is also a good indication that the incorporation of MWCNTs 

into the DDC/Nafion film would lead to more sensitive detection of Cu(II). To 

preliminarily screen the sensitivity of Pt/DDC/Nafion/MWCNTs in 

comparison to Pt/DDC/Nafion, the current response at each electrode was 

compared at the same concentration. The current response for the reduction 

of 3.45 × 10-5 M Cu(II) at Pt/DDC/Nafion was 1.16 × 10-6 A. The current response 

under the same conditions at Pt/DDC/Nafion/MWCNTs was recorded as     

4.71 × 10-5 A, which is an increase of over 40 fold.   
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(a) 

 

(b) 

 

 

Figure 5.17: Cyclic voltammograms of Pt mesh electrode modified with         

(a) —DDC/Nafion/MWCNTs from 0.20 M DDC and 1.0 mg mL-1 MWCNTs in 

5% wt. Nafion via electrodeposition at 1.00 V vs. SCE for 120 s; cycled in 0.10 M 

NaCl with additions of  — 0.00, — 7.09 × 10-6, —  1.40 × 10-5, — 2.10 × 10-

5,— 2.78 × 10-5 and — 3.45 × 10-5 M CuCl2 and (b) — DDC/Nafion/MWCNTs  

and —DDC/Nafion from 0.20 M DDC in 5% wt. Nafion, both in 0.10 M NaCl 

containing 3.45 × 10-5 M CuCl2 with relevant data tabulated inset. 
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5.2.3.3 Verification of Complex formation at DDC/Nafion/MWCNTs 

 Modified Pt mesh Electrode  

 

To confirm that the detection of Cu(II) at the DDC/Nafion/MWCNTs modified 

electrode was via the formation of the Cu(DDC)2 complex, the detection of 

Cu(II) was compared to that at a Pt mesh modified with Nafion/MWCNTs. 

The Pt mesh was modified via electrodeposition as before from a solution of 

1.0 mg mL-1 MWCNTs in 5% wt. Nafion (in lower aliphatic alcohols and 15-20% 

water) at 1.00 V vs. SCE for 120 s. The modified electrode was dried at an IR 

lamp for 10 min and cycled in the background electrolyte of 0.10 M NaCl to 

obtain a steady background current. The voltammogram in Figure 5.18 shows 

the response of the modified electrode to 3.45 × 10-5 M CuCl2 in comparison to 

that at the DDC/Nafion/MWCNTs modified Pt mesh. It is clear from this 

voltammogram that the detection at both electrodes is very different with the 

Nafion/MWCNTs modified mesh showing similar peak positions to the Nafion 

modified mesh seen in Figure 5.10 (b), but with enhanced peak currents. This 

indicates that the detection of Cu(II) at the DDC/Nafion/MWCNTs modified 

electrode occurred via the complexation of Cu(II) to DDC, which as shown 

previously, results in the formation of Cu(DDC)2 complex.  
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Figure 5.18: Cyclic voltammograms of Pt mesh electrode modified with         

— DDC/Nafion/MWCNTs from 0.20 M DDC and 1.0 mg mL-1 MWCNTs in 5% 

wt. Nafion, and — Nafion/MWCNTs from 1.0 mg mL-1 MWCNTs in 5% wt. 

Nafion, via electrodeposition at 1.00 V vs. SCE for 120 s, both in 0.10 M NaCl 

containing 3.45 × 10-5 M CuCl2. 

 

5.2.3.4 Reproducibility of DDC/Nafion/MWCNTs Modified Pt mesh 

 Electrode  

 

The reproducibility of the DDC/Nafion/MWCNTs modified Pt mesh was 

investigated in the detection of Cu(II) and 3 repeated experiments can be seen 

in Figure 5.19. The voltammograms highlight the poor reproducibility of the 

sensor which is most likely due to poor reproducibility in the incorporation of 

MWCNTs into the Nafion film. As discussed previously, the electrodeposition 

of Nafion and DDC is based on the attraction of their negatively charged 

moieties to the positive potential applied to the WE. As the MWCNTs used in 

this section were not modified and thus were expected to contain very few 

negatively charged sites, their incorporation into the Nafion film is likely to be 

predominantly due to physical entrapment. It is therefore suggested that the 

reported method of preparation is unsuitable for the modification of an 

electrode with MWCNTs. As the electrochemical response of the 
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DDC/Nafion/MWCNTs modified electrode was clearly enhanced as a result of 

the incorporation of MWCNTs, the experimental design should be revised to 

optimise its use for further work.  

 

Figure 5.19: Cyclic voltammograms of Pt mesh modified with 

DDC/Nafion/MWCNTs from 0.20 M DDC and 1.0 mg mL-1 MWCNTs in 5% wt. 

Nafion in 2.44 × 10-5 M CuCl2 in 0.10 M NaCl for repeated experiments             

— n=1 — n=2 and — n=3 showing poor reproducibility. 
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5.3 Conclusion 

 

This chapter has demonstrated the modification of a Pt mesh electrode with 

the ligand DDC immobilised in a Nafion film and its subsequent oxidation to 

DSF. It has been shown that this resulting modified electrode can be used as a 

simple sensor for the detection of Cu(II) ions in solution and a detection limit 

of 5.40 × 10-5 M was determined using cyclic voltammetry.  

 

The electrodeposition of the ligand, DDC, in Nafion on the Pt mesh and its 

electrochemical oxidation has been monitored using cyclic voltammetry. The 

oxidation of DDC was consistent with the formation of DSF, which was 

confirmed by independent studies, carried out on Pt/DSF/Nafion. Control 

studies involving Pt/DSF/Nafion, Pt/Nafion and bare Pt were also carried out 

to confirm that the sensing of Cu(II) occurred at the oxidised DDC/Nafion 

film. It was evident from these studies that the interactions of DSF/Nafion and 

oxidised DDC/Nafion with Cu(II) were very similar, however, it was found that 

due to its solubility and electroactivity, DDC was the favoured ligand for use in 

the preparation of the modified electrode.  

 

Studies were also carried out in this chapter to identify the complexation of 

Cu(II) at the modified electrode with the formation of Cu(DDC)2. In order to 

confirm the formation of the complex, cyclic voltammetry was carried out on a 

Cu(DDC)2/Nafion modified electrode and compared to the oxidised 

DDC/Nafion modified electrode cycled in Cu(II). A similar redox couple was 

observed at both electrodes. UV-vis spectroscopy of the Pt mesh was also 

utilised as a means of confirming the complexation of Cu(II) at the modified 

electrode. It was found however, that the poor signal to noise ratio at the Pt 

mesh electrode, due to the short path length, decreased the sensitivity of the 

absorbance spectra, and a definitive characterisation could not be made at the 

oxidised DDC/Nafion modified electrode. The spectra were obtained for the 

films deposited on both electrodes by dissolving the Nafion films in EtOH, and 

it was found that both films exhibited very similar absorbance spectra giving 
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good evidence that Cu(DDC)2 was formed at the oxidised DDC/Nafion 

modified electrode cycled in Cu(II). 

 

An attempt was made to enhance the sensitivity of the oxidised DDC/Nafion 

modified electrode towards the detection of Cu(II) by introducing MWCNTs 

into the film. Preliminary investigations suggested that the MWCNTs 

enhanced the electrochemical response of the modified electrode and a larger 

current response was observed, which would signify greater sensitivity. 

Problems arose with the reproducibility of this modified electrode however, 

with variable amounts of MWCNTs incorporated into each DDC/Nafion film 

formed.  

 

In summary these preliminary studies would indicate that an oxidised 

DDC/Nafion modified electrode could form the basis of a simple sensor for the 

detection of Cu(II) using cyclic voltammetry. Further studies would be 

recommended however to optimise the loading of DDC in the Nafion film and 

to optimise the film thickness. There is also the possibility of altering the 

morphology, and thus the physical properties of the film using heat 

treatments.300 Studies would also be required to determine the effects of 

interferants such as Pb(II) and Fe(III) which form well known complexes with 

DDC,122 on the electrochemical detection of Cu(II).  
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Chapter 6: 

Conclusions and Future Work 
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6.1 Introduction  

The work presented in this thesis has shown the characterisation and ultimate 

use of electrochemical sensors in the detection of metal ions. The design of the 

electrochemical sensors was based on the use of carbon nanomaterials on 

electrode substrates. The nanomaterials were characterised electrochemically 

using the redox probe: potassium ferricyanide [Fe(CN)6]3-/[Fe(CN)6]4- in 

Chapter 3 and the electrochemical detection of Cr(VI) and Cu(II) were 

explored in Chapters 4 and 5 respectively. 

  

6.2 Results 

 

6.2.1 The Electrochemical Characterisation of Carbon–based 

 Nanomaterials  

 

The basic electrochemical sensors prepared were (i) GCE/MWCNTs and (ii) 

GCE/graphene, for characterisation with the ferricyanide probe. In the 

characterisation of the GCE/MWCNTs, the currents and potentials were 

measured as a function of both scan rate and of the amount of the 

nanomaterial on the electrode surface using cyclic voltammetry. Analysis of 

the voltammograms showed that sonication of both materials combined with 

low casting volumes (5-10 µL) resulted in an enhanced electrochemical 

response to that exhibited at the bare GCE which is illustrated in Table 6.1.  

 

The capacitance values for the electrodes modified with MWCNTs and 

graphene were calculated from the background currents as a function of the 

amount of material on each electrode, i.e. the gravimetric capacitance. It was 

found that sonication of the MWCNTs provided a gravimetric capacitance of 

11.6 F g-1, which was significantly larger than that calculated at the electrodes 

modified with non-sonicated MWCNTs (5.0 F g-1). The capacitance measured 

at the GCE modified with 5 µL sonicated graphene was somewhat lower than 
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that measured at the MWCNTs modified electrodes, however, giving a 

gravimetric capacitance of 2.6 F g-1.   

 

The peak potentials representing the oxidation and reduction of the 

[Fe(CN)6]3-/[Fe(CN)6]
4- redox probe were also examined for the MWCNTs 

modified electrodes. Analysis of the peak separations with respect to the 

amount of material cast on the electrode and scan rate indicated that transport 

of the analyte through to the electrode surface inhibited electron transfer. It 

also indicated that when the sample had diffused into the MWCNT film, thin 

layer diffusion was an important contributor to the electrochemical response 

observed. The rate constants for the [Fe(CN)6]3-/[Fe(CN)6]4- redox couple were 

calculated from these peak separations using the Kochi and Klingler equation 

and the Nicholson Theory. Both equations provided different rate constants 

which is likely due to the fact that α=0.5 and that only semi-infinite planar 

diffusion of the analyte occurs in the Nicholson Theory.  In comparing the two 

methods of calculating the rate constant at the various modified electrodes, it 

was found that the Kochi and Klingler method gave a more accurate 

calculation. The heterogeneous rate of electron transfer was calculated in all 

cases and the GCE modified with 5 µL sonicated MWCNTs (2.36 × 10-3 cm s-1) 

was found to have  faster rate of electron transfer than the GCE modified with 

5 µL sonicated graphene (8.16 × 10-4 cm s-1).  

 

The peak currents measured at the modified electrodes were used to give an 

indication of the electroactive surface area at the modified electrodes. In 

general, the peak currents measured at the GCE modified with sonicated 

MWCNTs were larger then those seen at the GCE modified with sonicated 

graphene (illustrated in Table 6.1). The Randles Sevcik equation was used to 

calculate the electroactive surface areas of the modified electrodes, based on 

the diffusion coefficient at the bare GCE. As the diffusion of the analyte was 

expected to be different at both modified electrodes in comparison to the bare 

GCE, this surface area is used purely as a comparative tool. The so determined 

surface area of the MWCNTs modified electrode (0.377 cm2) was significantly 
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larger than the graphene modified electrode (0.092 cm2), which is likely due to 

the entangled morphology and large aspect ratio of the MWCNTs. It can be 

seen by the electrochemical characterisation illustrated in Table 6.1 that 

overall, the GCE modified with MWCNTs displayed more impressive 

properties than the GCE modified with graphene.  

 

Table 6.1: Electrochemical characterisation of GCE modified with 5 µL 

sonicated MWCNTs and graphene.  

 

Parameter MWCNTs Graphene 

Peak Current (Ipa / mA) 0.065 0.016 

Peak Separation (ΔEp / V) 0.075 0.088 

Capacitance (F g-1) 11.6 2.6 

Rate Constant (k / cm s-1) 2.36 × 10-3 8.16 × 10-4 

Surface area (cm2) 0.377 0.092 

 

 

6.2.2 The Application of a MWCNTs Modified Electrode in the 

 Detection of Cr(VI) 

 

The electrochemical detection of Cr(VI) was measured by the reduction of 

Cr(VI) to Cr(III) using a variety of electrochemical techniques. Initially, cyclic 

voltammetry was implemented to investigate the important factors affecting 

the electrochemical detection at a GCE modified with MWCNTs. It was seen 

that the reduction could be monitored by a reasonably stable peak at 0.65 V vs. 

SCE at this electrode. It was found that this process was not significantly 

affected by the conductivity of the sample solution or by the interference of Cl- 

or Cu2+. The presence of NO3
- however, interfered with the reduction peak 

current and poor reproducibility was noted when using real water samples. 

The most important parameter in the electrochemical detection of Cr(VI) was 

found to be the pH of the sample solution, however, the process did not follow 
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simple Nernstian behaviour. The optimum pH for Cr(VI) reduction in this case 

was found to be 2.0.  

 

 A wide range of modified electrodes were studied for their ability to reduce 

Cr(VI), which was generally measured by the peak potential and peak current 

using cyclic voltammetry. The range of modifications carried out on the 

electrodes included the use of polypyrrole and the use of Au nanoparticles. 

Limits of detection for the reduction of Cr(VI) were calculated using the slope 

of the calibration curve and the standard deviation of the background current. 

The sensitivity of the detection was also enhanced by the use of constant 

potential amperometry at a rotating disc electrode. The lowest limit of 

detection for the reduction of Cr(VI) was 1.20 × 10-6 M which was achieved at 

an Au rotating disc electrode modified with oxidised MWCNTs decorated with 

Au nanoparticles using constant potential amperometry. 

 

6.2.3 The Electrochemical detection of Cu(II) 

 

The detection of Cu(II) was measured by the complexation of Cu(II) to a DDC 

ligand and its subsequent reduction to Cu(I) and re-oxidation to Cu(II). This 

was carried out at a Pt mesh electrode modified with Nafion containing the 

DDC ligand using constant potential to electrodeposit the film on the 

substrate. The DDC ligand was oxidised prior to complexation to form DSF, 

however, UV-vis studies were carried out to show that the reaction of Cu(II) 

with DDC and DSF both resulted in the formation of Cu(DDC)2, therefore this 

was not an issue. As DDC was more suitable for the modification of the 

electrode, it’s use was continued. The oxidation and reduction cycling of the 

modified electrode in Cu(II), forming Cu(DDC)2, was used to electrochemically 

detect Cu(II). This provided a limit of detection of 5.40 × 10-5 M using cyclic 

voltammetry.  

 

MWCNTs were incorporated into the Nafion/DDC film in an attempt to 

increase the sensitivity of the detection. The peak currents for the oxidation 
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and reduction of Cu(I)/Cu(II) increased dramatically with this modification, 

however, reproducibility was poor which suggested that differing amounts of 

MWCNTs were incorporated into the Nafion film for each experiment.   

 

6.3 Future Work 

 

The most promising route to progress with the detection of Cr(VI) from 

Chapter 4, would involve the use of the rotating disc electrode and the use of 

Au nanoparticles. The parameters that could be optimised are the Au 

nanoparticle loading and the method of deposition for the Au nanoparticles. I 

would also suggest the use of an Au alloy nanoparticle such as Au-Pd. Further 

work on the detection of Cu(II) should involve optimising the incorporation of 

MWCNTs into the Nafion/DDC film as well as exploring the use of different 

electrochemical techniques, such as differential pulse voltammetry.  
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