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ABSTRACT: Sum-over-states density functional perturbation theory (SOS-DFPT)
(Malkin, V. G.; Malkina, O. L.; Casida, M. E.; Salahub, D. R. J Am Chem Soc 1994, 116,
5898) has been successful as a method for calculating nuclear magnetic resonance
(NMR) chemical shifts. The key to this success is the introduction of an ad hoc
correction to the excitation energies represented by simple orbital energy differences in
uncoupled density functional theory. It has been suggested (Jamorski, C.; Casida, M. E.;
Salahub, D. R. J Chem Phys 1996, 104, 5134) that the good performance of this
methodology could be partly explained by the resemblance of the corrected excitation
energy to the orbital energy difference given by time-dependent density functional
theory (TDDFT). In fact, according to exact (wave function) time-dependent
perturbation theory, both magnetic and electric perturbations may be described using
essentially the same simple SOS expression. However in adiabatic TDDFT, with no
explicit relativistic or current density functional dependence, the functional is
approximate and so the magnetic and electric SOS expressions are different. Because
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TDDFT (neglecting relativistic and current density functional dependence) is formally
exact for electric perturbations but not magnetic perturbations and because the two SOS
expressions should have the same form, we propose that the SOS expression for electric
perturbations should also be used for magnetic perturbations. We then go on to realize our
theory by deriving a “Loc.3” approximation that is explicitly designed by applying the
electric field SOS expression to magnetic fields within the two-level model and Tamm–
Dancoff approximation. Test results for 13 small organic and inorganic molecules show
that the Loc.3 approximation performs at least as well as the “Loc.1” and “Loc.2”
approximations of SOS-DFPT. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 91: 67–83,
2003

Key words: sum-over-states density functional perturbation theory; NMR chemical
shifts; time-dependent DFT; magnetic perturbations

1. Introduction

T he general importance of nuclear magnetic
resonance (NMR) for the study of large mol-

ecules has continued to fuel the search for new
ways to calculate NMR shielding constants [1– 8].
The challenge here is to find a computational
method that is simultaneously rigorous, compu-
tationally efficient, and reliable in comparison
with experiment. Sum-over-states density func-
tional perturbation theory (SOS-DFPT), as imple-
mented in deMon-NMR by Malkin and cowork-
ers [9], offers one efficient alternative to
expensive ab initio methods such as second-order
Møller–Plesset perturbation theory (MP2) and
coupled-cluster (CC) methods. However, the re-
liability of SOS-DFPT depends, in part, on the
introduction of an ad hoc correction to the uncor-
rected excitation energy initially calculated as a
simple orbital energy difference (“uncoupled the-
ory”). Following the original article [9], this exci-
tation energy correction is termed either “Loc.1”
or “Loc.2,” depending upon the particular choice
of correction. Despite the ad hoc nature of this
correction, it has been difficult to design a more
rigorous approach that performs as well as SOS-
DFPT within the context of density functional
theory (DFT) (see, e.g., [10].) In this article, we
suggest why the SOS-DFPT performs as well as it
does by showing how a similar theory can be
derived within the rigorous framework of time-
dependent DFT (TDDFT) without the use of ei-
ther relativity or current density functional. In so
doing, we elaborate on a previous observation
[11] that the singlet–singlet excitation energy in a
two-state model calculated with TDDFT offers
support for the approximations to the excitation
energy made in SOS-DFPT.

Neither relativistic DFT nor current DFT (CDFT)
are used in the present work. Instead, we rely on
the fact that electric and magnetic perturbations can
be treated in principle in an exact theory by using
formally identical SOS expressions. However, in
the absence of relativistic DFT or CDFT, approxi-
mate exchange correlation functionals lead to dif-
ferent TDDFT expressions for electric and magnetic
perturbations. We show how this dilemma can be
circumvented by using the Tamm–Dancoff approx-
imation (TDA) and how this can subsequently be
used to derive rigorous SOS-DFPT expressions that
agree as well with high-quality ab initio calculations
as does the previous ad hoc theory, consistent with
the previous good results for dynamic polarizabili-
ties and excitation energies obtained from TDDFT.
This provides us with a comprehensive formulation
of SOS-DFPT and TDDFT in which the electric and
magnetic fields are placed on the same footing.

This article is organized as follows. SOS-DFPT is
derived from TDDFT in Section 2. This leads to the
“Loc.3” correction. Computational details will be
given in Section 3. In Section 4, we present evidence
that the Loc.3 approximation does indeed perform
as well as the Loc.1 and Loc.2 approximations (and
better than the uncoupled approximation.) Section
5 provides a concluding discussion.

2. Theoretical Background

The DFT of NMR chemical shifts is usually ex-
plained in terms of the exact sum-over-states (SOS)
expansion describing the initial linear response of a
molecule to a perturbation. We will review this
briefly and then show why we think that there is
some degree of liberty in how SOS theory is used in
DFT.
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2.1. SOS EXPRESSIONS

The clearest derivation of the SOS expression in
linear response theory comes from time-dependent
perturbation theory (see, e.g., Ref. [12]). It can be
shown (Appendix A) that for a molecule initially in
its ground stationary state �0 the linear response of
the property described by a one-electron operator,
â, to a time-dependent perturbation, b̂ cos �t, has
the form

��â��t� � ��â�1���sin �t � ��â�2���cos �t. (2.1)

Here, the coefficients ��â�1(�) and ��â�2(�) are given
by the SOS formulae

��â�1��� � �
I�0

2�Im��0�â��I���I�b̂��0�

�I
2 � �2 (2.2)

and

��â�2��� � �
I�0

2�IRe��0�â��I���I�b̂��0�

�2 � �I
2 . (2.3)

Here, ��I � EI � E0 (and � � 1) and EI and �I refer,
respectively, to excited-state energies and wave
functions. In most cases of interest, the product âb̂ is
real and only ��â�2(�) is of interest. Moreover,
��â�1(�) vanishes in the static limit. In what follows,
we will be concerned exclusively with a(�) �
��â�2(�). The static limit of a(�) is explicitly

a � �2 �
I�0

Re��0�â��I���I�b̂��0�

�I
. (2.4)

Concrete examples of SOS expressions include
the dynamic polarizability, describing the linear
response of the dipole moment to an applied dipole
electric field,

�x,z��� � �
I�0

2�I��0�x̂��I���I�ẑ��0�

�I
2 � �2 , (2.5)

and the paramagnetic component of the NMR
chemical shift tensor,

�x,z
p �N� � �2 �

I�0

Re��0�ĥx
pso�N���I���I�ĥz

orb��0�

�I
,

(2.6)

where ĥz
orb � l̂z is the z-component of the angular

momentum operator and ĥx
pso(N) � (1/c2)l̂x

NrN
�3 is

the paramagnetic spin–orbital operator for nucleus
N. Here, rN is the distance of the electron from
nucleus N and l̂ is the angular momentum operator.
For simplicity of notation, we have only written the
(x, z) components but the other components are
strictly analogous. The complete expression for the
chemical shift tensor is

�x,z�N� � �x,z
d �N� � �x,z

p �N�, (2.7)

where the diamagnetic component is given by

�x,z
d �N� � ���0�xzArA

�3��0�, (2.8)

with an additional contribution of ��0�r� � r�ArA
�3��0�

for the diagonal elements of the diamagnetic com-
ponent.

2.2. TDDFT RESPONSE THEORY

The SOS expressions given in Section 2.1 assume
that the exact energies and wave functions of the
unperturbed system are known. These expressions
cannot be used directly in quantum chemical appli-
cations of DFT for two reasons: First, DFT is nor-
mally formulated without any explicit reference to
the exact wave function; second, any wave function
that does appear in quantum chemical applications
of DFT is necessarily approximate in so far as it is
expressed in a finite basis set. Nevertheless, SOS
expressions analogous to the exact expressions of
Section 2.1 can be derived from TDDFT for quan-
tum chemical applications.

In TDDFT, the linear response of the Kohn–Sham
density matrix, �P� , to an applied time-dependent
perturbation, �v�appl, is given by the equation [12]

����1 0
0 1� � �A B

B A��� �P� ���
�P�*���� � ��v�appl���

�v�*appl����,

(2.9)

where

Aia�, jb� � �i, j�a,b��,��	a� � 	i�� � Kia�, jb� (2.10)

and

Bia�, jb� � Kia�,bj�. (2.11)
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Here, 	a� and 	b� are Kohn–Sham orbital energies
and Kia�, jb� � �via�

SCF/�Pjb� is the coupling matrix
describing the linear response of the self-consistent
field (SCF) to a change in the Kohn–Sham density
matrix. In the case of the dynamic polarizability, the
perturbation is real and a little linear algebra (Ap-
pendix B) then leads to

�x,z��� � 2x� †�A � B�1/ 2


 	�A � B�1/ 2�A � B��A � B�1/ 2 � �21
�1


 �A � B�1/ 2z�. (2.12)

In the case of the paramagnetic contribution to the
NMR chemical shift tensor, the perturbation is
purely imaginary and we are dealing with Im�P� (�)
and Im�v�appl(�). After some linear algebra (Appen-
dix B), it can be shown that

�x,z
p ��; N� � �2	�h�pso�x�N�
†�A � B�1/ 2


 	�A � B�1/ 2�A � B��A � B�1/ 2 � �21
�1


 �A � B�1/ 2h�z
orb. (2.13)

According to the exact SOS equations of Section
2.1, the dynamic polarizability and paramagnetic
part of the NMR chemical shift both have poles at
the excitation energies of the system. From Eq.
(II.12) this is when

�A � B�1/ 2�A � B��A � B�1/ 2F�1 � �2F�1. (2.14)

This is the equation normally solved in quantum
chemical implementations of TDDFT because the
matrix A � B is diagonal for generalized gradient
approximations [12]. The corresponding excitation
energy equation deduced from Eq. (2.13) is

�A � B�1/ 2�A � B��A � B�1/ 2F�2 � �2F�2. (2.15)

Equations (2.14) and (2.15) are easily seen to be
equivalent by setting F�2 � [(A � B)(A � B)]�1/2F�1.
Naı̈vely it might seem as though we could just
replace x� and z� in the dynamic polarizability ex-
pression [Eq. (2.12)] with (h�pso)x(N) and h�z

orb to ob-
tain the expression for the paramagnetic part of the
chemical shift [Eq. (2.13)], but this is not the case
because the real and imaginary parts of the transi-
tion density matrices figuring in the SOS expres-
sions are different. A priori only the electric form is
correct because TDDFT at this level is only formally
justified for electric perturbations.

Nevertheless, it is interesting to remark that both
the magnetic and electric forms become once again
equivalent within the TDA, which consists of set-
ting B � 0. Then, the excitation energies are given
by

AF� I � �IF� I, (2.16)

and

�x,z��� � 2x� †A1/ 2�A2 � �21��1A1/ 2z� (2.17)

�x,z
p ��; N� � �2	�h�pso�x�N�
†A1/ 2


 	A2 � �21
�1A1/ 2h�z
orb, (2.18)

which reduce to

�x,z � 2x� †A�1z� (2.19)

�x,z
p �N� � �2	�h�pso�x�N�
†A�1h�z

orb (2.20)

in the static limit. The TDA is well established in
Hartree–Fock-based theory and there is now con-
siderable evidence that the TDA normally has only
a minor effect on excitation spectra of molecules
near their equilibrium geometries and can actually
improve the description of excitation energies at
deformed geometries, near points of instability of
the ground-state wave function [13, 14]. We will use
this result in Section 2.3 to develop the Loc.3 ap-
proximation.

2.3. SOS DENSITY-FUNCTIONAL-
PERTURBATION THEORY

We are now in an excellent position to under-
stand SOS-DFPT. Traditional Hohenberg–Kohn–
Sham DFT applies only to external potentials that
are simple coordinate-dependent multiplicative
functions. This applies to the electric field case but
not to the general magnetic field case. Treatment of
this latter case would seem to require either a rel-
ativistic reformulation of DFT or the use of func-
tionals that depend upon the current density as
well as the charge density. Neither was done in
SOS-DFPT. Instead, an approximation was sought
using traditional density functionals that contain no
current density dependence.

Direct application of Eq. (2.13) leads to
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�x,z
p �N� � �2 �

i�occ,a�virt

Re��i�ĥx
pso�N���a���a�ĥz

orb��i�

�i3a
,

(2.21)

where the excitation energy

�i3a � 	a � 	i � �Ei3a
xc (2.22)

corresponds to the uncoupled approximation
(�Ei3a

xc � 0 in Table I). This already turns out to
work fairly well in approximating chemical shifts
[18]. However, two nonzero ad hoc corrections to
�i3a, called “Local 1” (Loc.1) and “Local 2” (Loc.2)
in Ref. [18], have been shown to provide significant
reductions in the errors of computed chemical shifts
compared to experiment. In fact, Wilson et al. [10]
recently confirmed that excitation corrections as lit-
tle as 0.4 eV can have a large influence on predicted
magnetic properties.

To understand why such corrections are so im-
portant for quantitative prediction of NMR shield-
ing tensors, let us consider a peculiar “magnetic
spectrum,” namely, that obtained by plotting the

individual terms in the SOS expression for the para-
magnetic contribution to the shielding tensor [Eq.
(2.6)] (i.e., the product of the expectation values of
ĥpso and ĥorb) against the corresponding excitation
energy in the denominator. The result is shown in
Figure 1 for CH2O. It is evident that the individual
contributions from different excitation energies to
the �p term are distributed in an almost symmetri-
cal fashion around the zero line. This means that a
great deal of cancellation occurs in calculating �p

and hence that there is a delicate balance between
positive and negative terms, which together must
somehow sum up to obtain a reasonable value. This
strongly suggests that part of “getting the right
answer for the right reason” is getting good singlet
excitation energies, �i3a, in the denominator in Eq.
(2.6), something that has already been demon-
strated to be possible through TDDFT.

In this article, we suggest that one rigorous way
to improve upon DFT methodology for calculating
NMR chemical shifts without recourse to either
relativistic DFT or current DFT can be based upon
the fact that traditional Hohenberg–Kohn–Sham
DFT is formally exact in the electric field case and
that in practice good results for dynamic polariz-
abilities and excitation energies are being obtained
from TDDFT in the electric field case. Hence, we

FIGURE 1. On the y-axis is plotted half the value of
the I � (k,a) term of the summation in Eq. (2.6); in the
x-axis are reported the relative excitation energies
(a.u.). The data correspond to a 13C chemical shift cal-
culation on CH2O performed with LDA exchange corre-
lation potential within the uncoupled Kohn–Sham ap-
proximation; the basis set used is III-IGLO.

TABLE I ______________________________________
Comparison of excitation energy corrections to
simple orbital energy differences obtained from
various theories within the two-level model.

Ansatz �Ei3 a
xc

UKSa No correction
Ab initio

CISb 2Kia � Jia

IVOc 2Kia

DFT

Loc. 1 �	 �i�r�
�	xc

LDA�r�
��1�r�

�a�r� dr

Loc. 2 �	 �i�r�
�vxc
1,LDA�r�

��1�r�
�a�r� dr

Loc. 3 2Kia �	 �i�r���vxc
1,LDA�r�

��1�r�
�

�vxc
1,LDA�r�

��2�r� ��a�r� dr

a Uncoupled Kohn–Sham.
b Singles configuration interaction. Equivalently the TDA ap-
plied to time-dependent Hartree–Fock.
c Improved virtual orbital [15, 16], basically the same as the
static exchange approximation (reviewed in Ref. [17]). Note
how the use of relaxed Hartree–Fock orbitals leads to the
elimination of the Coulomb integral Jia.

LOC.3 APPROXIMATION
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seek a formulation of TDDFT in which the electric
and magnetic fields are placed on the same footing.
One way to do this is to simply use the electric field
form of TDDFT response theory for magnetic per-
turbations. In practice, we actually use the fact that,
as shown in Section 2.2, the TDA [Eqs. (2.17) and
(2.18)] provides equivalent formulae for magnetic
and electronic perturbations.

To facilitate comparison with the SOS-DFPT ex-
pression [Eq. (2.21)], we will also assume that the
two-level model (2LM) applies, so that each transi-
tion may be approximated by promotions from an
occupied orbital �i to an unoccupied orbital �a to
form the singlet state �i3a � (1/
2)(âa1

† âi1 �
âa2

† âi2)�0. Once this is done, we obtain the (new)
Loc.3 approximation given in Table I. Note that
(contrary to what is stated in Ref. [18]) the fact that
we treat �0 as the monodeterminantal Kohn–Sham
wave function is not an approximation but follows
directly from TDDFT.

Comparison of the Loc.1, Loc.2, and Loc.3 for-
mulae shows that they are all different types of
exchange or exchange correlation integrals. As
such, they might be expected to give similar results
(and they do!); however, Loc.3 is firmly grounded
in TDDFT and gives us hope that any improve-
ments in our understanding of how to calculate
excitation energies from TDDFT will be reflected in
subsequent improvements of NMR chemical shifts.

3. Computational Details

All calculations have been performed within the
deMon suite of programs. In particular, the self-
consistent solution of the Kohn–Sham equations
was performed with Version 3.5 of deMon-KS [19];
TDDFT calculations were preformed with a modi-
fied version (3.1) of deMon-DynaRho; and NMR
shielding tensor calculations were performed with
a slightly modified version (1.2) of deMon-NMR [9,
18].

In deMon-NMR the gauge origin problem is
solved by using the individual gauge for localized
orbitals (IGLO) method developed by Kützelnigg et
al. [1]. We follow the recommendations of Malkin
and coworkers [9, 18] and use the III-IGLO orbital
basis set for all atoms.

deMon-KS and deMon-DynaRho make use of
numerical grids and sets of auxiliary basis functions
to evaluate exchange correlation integrals and elim-
inate four center integrals. The same grids and aux-
iliary basis functions were used in running the two

programs. For the grid, we used the EXTRAFINE
option (194 points per radial shell) in combination
with a 64-point radial grid. The auxiliary basis func-
tions used were taken from the deMon basis set
library. Specifically, they are the (5, 2; 5, 2) set for
carbon, nitrogen, oxygen, and fluorine and (5, 1; 5,
1) for hydrogen.

Several exchange correlation functionals have
been used to establish their effect on calculated
NMR shielding tensors. For the local density ap-
proximation (LDA), we use the Vosko, Wilk, and
Nusair (VWN) parameterization of the exchange
correlation functional [20]. Generalized gradient
approximations used were the 1986 exchange-only
functional of Perdew and Wang [21] combined with
the 1986 correlation functional of Perdew [22] (to-
gether these two functionals will be referred to as
PD86) and the 1991 functional of Perdew and Wang
(PD91) [23]. We also used the asymptotically cor-
rected LDA (AC-LDA), which is obtained from the
LDA by introducing a constant shift to incorporate
the effect of derivative discontinuity and a spliced
asymptotic correction in the large r region [24, 25].
The constant shift required to bring the LDA func-
tional inline with the exact potential is given by the
difference between the energy of the highest occu-
pied molecular orbital (HOMO) calculated with the
LDA functional and the exact HOMO energy, �H,
which in practice is approximated as minus the
ionization potential calculated as the difference of
total energies obtained from two self-consistent
LDA calculations, one on the N electron system and
the other on the N � 1 electron system (�SCF
method),

� � 	H
LDA � �H. (3.1)

For the asymptotic region the correct behavior is
obtained combining the shifted LDA exchange cor-
relation potential in the bulk region with the van
Leeuwen Baerends potential (LB94) [26] in the large
r region, taking the switchover point between the
two potentials to be where they cross,

vxc
AC-LDA�r� � Max	vxc

LDA�r� � �, vxc
LB94�r�
 (3.2)

4. Results

In this section, we compare the behavior of the
more rigorous Loc.3 correction with that of the
previous ad hoc Loc.1 and Loc.2 corrections for use
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in the SOS-DFPT calculation of NMR chemical
shifts. To do this, we have chosen the linearized
coupled cluster doubles (L-CCD) values of Cybul-
ski and Bishop [27] as reference values. The geom-
etries used in our calculations are the same as those
reported by Cybulski and Bishop. The NMR chem-
ical shifts are for the nuclei 1H, 13C, 17O, 15N, and
17F.

Mean absolute errors (��) calculated by the equa-
tion

�� �
1
N � �

i

N

��i
Calc. � �i

L-CCD��, (4.1)

are given in Table II. Here, N is the total number of
the test molecules, �i

Calc. is the value of the isotropic
shielding calculated for the ith test molecule, and
�i

L-CCD is the value of the isotropic shielding for the
ith molecule calculated with the L-CCD methodol-
ogy [27]. Table II confirms that the rigorous Loc.3
correction performs, on average, as well as the ad
hoc Loc.1 and Loc.2 corrections, all of which per-
form better than the UKS theory. Different values
are also given in Table II for different choices of
functionals for the exchange correlation potential,
vxc. Because the Loc.1, Loc.2, and Loc.3 corrections
are always calculated using the LDA, the most con-
sistent choice is undoubtedly to use the LDA vxc. In
this particular case, the Loc.3 correction appears to
be the best compromise for NMR chemical shifts for
both heavy atoms (C, N, O, F) and hydrogen. As
pointed out in the original SOS-DFPT article [9],

improved results can be obtained by using a vxc

obtained via a generalized gradient approximation
(GGA). Table II confirms this in the case of the PD86
and PD91 functionals. For the PD86 functional, the
Loc.3 correction appears to slightly outperform the
Loc.1 and Loc.2 corrections. For the PD91 func-
tional, the ad hoc Loc.1 functional seems to be the
best compromise for NMR chemical shifts for both
heavy atoms (C, N, O, F) and hydrogen.

Surprisingly, the AC-LDA gives inferior results
compared with those of the simple LDA, regardless
of the choice of excitation energy correction, despite
the fact that the AC-LDA gives a better excitation
spectrum [14]. A similar result was found by Wil-
son et al. [10]. As pointed out earlier (Fig. 1), the
relation between excitation energies and the para-
magnetic component of the isotropic chemical shift
is not simple. However, it is known that the asymp-
totic correction leads to a better spacing of the
excitation energies by avoiding a variational col-
lapse due to an artificially low ionization threshold
[14]. Naı̈vely this would be expected to increase the
average denominators in the SOS expression Eq.
(2.21), hence producing the observed decrease in
the magnitude of the paramagnetic component.
This may also simply be an indication of the impor-
tance of using a consistent functional for both vxc

and the Loc. corrections.
Figure 2 provides a graphical overview of er-

rors in the different approximations for chemical
shifts. Not a repetition of Table II, Figure 2 shows
that there are at least four points above about 200
ppm that are well approximated regardless of
what excitation energy correction is used. These
are the heavy atom shifts for CH4, NH3, H2O, and
HF, and a similar statement can be made about
their hydrogen shifts and for H2. The real differ-
ences occur for the unsaturated molecules C2H2,
CH2O, HNC, HCN, CO, F2, and N2, although
important differences between different excita-
tion energy approximations are also seen for
H2O2. Unsaturated molecules have lower-lying
valence-type excitations, absent in the simple sat-
urated molecules, which are dominated by Ryd-
berg-type excitations. Thus, it is not entirely sur-
prising from an SOS point of view that the
unsaturated molecules are the most sensitive to
corrections to the excitation energies.

Tables III–VI provide a detailed quantitative
comparison between the effect of different excita-
tion energy corrections and different functionals for
vxc for isotropic shielding constants. For the LDA,
the Loc.3 approximation performs on average as

TABLE II _____________________________________
Mean absolute error (�� ) calculated for the different
exchange correlation functionals.

Mean absolute error, �� (ppm)

UKS Loc.1 Loc.2 Loc.3

LDA
C, N, O, F 29.6 15.0 11.0 12.7
H 0.9 0.9 1.2 0.8

AC-LDA
C, N, O, F 30.4 23.9 22.4 20.4
H 0.6 0.5 0.5 0.4

PD86
C, N, O, F 23.7 11.0 10.3 9.2
H 0.5 0.4 0.4 0.4

PD91
C, N, O, F 18.2 7.4 8.0 10.0
H 0.5 0.5 0.4 0.4

LOC.3 APPROXIMATION
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well as the Loc.1 and Loc.2 approximations. How-
ever, improved results are obtained from the Loc.3
approximation for H2O2 and HNC. The Loc.3 ap-
proximation has the same difficulty as the Loc.1
and Loc.2 approximations in reproducing the refer-
ence numbers for H2CO and C2H2. CO and F2 are
two examples where the Loc.3 performs worse than
the Loc.1 and Loc.2 approximations when it comes
to reproducing the L-CCD reference numbers. Sim-
ilar trends are also observed for the two GGAs
(PD86 and PD91), although for HNC the Loc.3 ap-
proximation is actually further from the L-CCD
results than are the Loc.1 and Loc.2 approxima-
tions, which are already good. The AC-LDA isotro-
pic chemical shift tensor is sometimes larger in

magnitude than the corresponding L-CCD value
and sometimes smaller, but on average (as already
mentioned) use of the AC-LDA vxc leads to inferior
isotropic chemical shifts.

5. Conclusion

The main objective of this article has been to
show how the ad hoc Loc.1 and Loc.2 approxima-
tions of SOS-DFPT can be replaced by a more rig-
orous Loc.3 approximation derived via TDDFT. In
particular, after having noted that the formal simi-
larity of the electric and magnetic response theory
expressions expected in an exact theory are not

FIGURE 2. Absolute isotropic shielding data for 13C, 15N, 17O, and 19F calculated with different exchange correla-
tion potentials and LDA vxc plotted against the corresponding L-CCD reference values: (a), LDA; (b), AC-LDA; (c),
PD86; (d), PD91. (Summary of detailed information is given in Tables III–VI.)
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present in TDDFT expressions, we point out that
this is expected because nonrelativistic TDDFT
without any current density dependence is for-
mally exact only for electric perturbations. How-
ever, because it is exact for electric fields and there

is a formal similarity that should hold in a correct
(relativistic or current density dependent) theory,
we feel that it is justified to use the electric field
linear response expression in TDDFT for magnetic
perturbations.

TABLE III ____________________________________________________________________________________________
Isotropic shielding � calculated with the LDA exchange correlation potential within the
IGLO approximation [1].

Isotropic shielding, � (ppm)

LDA

L-CCDa
Ref.

valuebUKS Loc.1 Loc.2 Loc.3

HCCH
C 102.4 104.9 105.7 105.2 122.6 121.8
H 29.7 29.6 29.6 29.6 30.6 —

H2CO
C �39.7 �29.0 �25.7 �24.8 6.1 8.2
O �504.9 �449.4 �432.5 �430.3 �418.0 �379.1
H 20.3 20.7 20.8 20.8 22.6 22.4

CH4

C 193.3 194.4 194.8 194.3 198.6 198.9
H 31.1 31.1 31.1 31.1 31.5 31.6

H2O2

O 99.0 112.1 116.2 135.6 133.9 —
H 23.7 24.0 24.1 24.5 25.3 —

NH3

N 263.9 265.4 265.8 264.6 268.8 270.7
H 31.1 31.1 31.1 31.0 31.7 31.6

H2O
O 330.1 332.3 333.1 335.6 335.9 337.9
H 30.6 30.6 30.6 30.5 31.2 30.9

HNC
C �0.5 13.9 18.2 28.9 28.5 —
N 87.1 96.0 98.7 105.2 105.5 —
H 27.1 27.1 27.1 27.1 28.3 —

HCN
C 67.7 73.0 74.6 78.4 86.4 86.3
N �54.2 �39.7 �35.2 �23.8 �14.4 �13.6
H 28.4 28.3 28.3 28.2 29.4 29.0

CO
C �16.9 �0.8 3.9 21.1 3.9 5.6
O �83.9 �60.1 �53.0 �20.9 �57.4 �52.9

HF
F 412.7 415.1 415.9 422.8 417.6 418.6
H 29.0 28.9 28.9 28.6 29.4 29.2

F2

F �275.3 �229.7 �215.7 �146.0 �194.5 �186.5
N2

N �88.3 �71.4 �66.2 �64.1 �55.7 �58.1
H2

H 26.4 26.4 26.4 26.4 26.7 26.7

a From Ref. [27].
b Introduced in [27] as reference values.
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A few more steps were necessary to go from
this realization to the Loc.3 approximation for
SOS-DFPT. The first was to make the TDA. As in
time-dependent Hartree–Fock theory, there is
now considerable evidence that the TDA nor-
mally has only a minor effect on excitation spec-

tra of molecules near their equilibrium geome-
tries and can actually improve the description of
excitation energies at deformed geometries, near
points of instability of the ground-state wave
function [13, 14]. In this case, it also allows us to
recover the formal similarity of the electric and

TABLE IV ____________________________________________________________________________________________
Isotropic shielding � calculated with the AC-LDA [14, 24] within the IGLO approximation [1].

Isotropic shielding, � (ppm)

ACLDA

L-CCDa
Ref.

valuebUKS Loc.1 Loc.2 Loc.3

HCCH
C 92.4 95.2 96.1 95.6 122.6 121.8
H 30.1 30.0 30.0 30.0 30.6 —

H2CO
C �37.0 �27.0 �23.9 �23.0 6.1 8.2
O �506.1 �451.4 �434.8 �432.4 �418.0 �379.1
H 20.4 20.8 21.0 20.1 22.6 22.4

CH4

C 193.4 194.6 195.0 194.9 198.6 198.9
H 31.5 31.5 31.5 31.5 31.5 31.6

H2O2

O 95.6 108.6 112.7 132.8 133.9 —
H 24.3 24.6 24.7 25.1 25.2 —

NH3

N 256.4 258.1 256.6 257.7 268.8 270.7
H 31.4 31.5 31.5 31.5 31.7 31.6

H2O
O 317.8 320.4 321.2 320.0 335.4 337.9
H 31.1 31.1 31.1 31.1 31.2 30.9

HNC
C �23.9 �7.3 �2.5 10.3 28.5 —
N 78.5 88.9 92.0 99.8 105.5 —
H 27.5 27.5 27.5 27.5 28.3 —

HCN
C 55.9 61.5 63.3 67.5 84.4 86.3
N �61.3 �46.1 �41.4 �29.3 �14.4 �13.6
H 28.8 28.8 28.8 28.7 29.4 29.0

CO
C �5.3 9.0 13.2 22.0 3.9 5.6
O �56.3 �35.1 �28.7 �11.0 �57.4 �52.9

HF
F 404.6 407.2 408.3 406.3 417.6 418.6
H 29.4 29.4 29.3 29.4 29.4 29.2

F2

F �186.2 �150.3 �139.2 �135.0 �194.5 �186.5
N2

N �120.2 �101.0 �95.1 �88.8 �55.7 �58.1
H2

H 26.3 26.3 26.3 26.3 26.7 26.7

a From Ref. [27].
b Introduced in [27] as reference values.
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magnetic response theory expressions lost in or-
dinary TDDFT.

The second step made in going to the Loc.3
approximation was the use of the 2LM. This is often
a good approximation in TDDFT because the fact

that the occupied and unoccupied orbitals see the
same potential, and hence the same number of elec-
trons, means that they are prepared to be a good
starting point for describing excitations. However,
the 2LM will break down when symmetry consid-

TABLE V _____________________________________________________________________________________________
Isotropic shielding � calculated with the PD86 exchange correlation potential within the
IGLO approximation [1].

Isotropic shielding, � (ppm)

PD86

L-CCDa
Ref.

valuebUKS Loc.1 Loc.2 Loc.3

HCCH
C 108.4 110.7 111.5 110.9 122.6 121.8
H 30.1 30.0 30.0 30.0 30.6 —

H2CO
C �28.4 �18.8 �15.8 �15.1 6.1 8.2
O �463.7 �413.7 �398.4 �396.7 �418.0 �379.1
H 21.0 21.4 21.5 21.5 22.6 22.4

CH4

C 188.6 189.8 190.1 189.8 198.6 198.9
H 31.5 31.5 31.5 31.5 31.5 31.6

H2O2

O 91.1 104.2 108.3 127.7 133.9 —
H 24.3 24.7 24.8 25.2 25.2 —

NH3

N 258.6 260.2 260.7 259.5 268.8 270.7
H 31.6 31.6 31.6 31.6 31.7 31.6

H2O
O 324.4 326.8 327.5 326.1 335.4 337.9
H 31.2 31.2 31.2 31.2 31.2 30.9

HNC
C 7.9 21.2 25.2 35.0 28.5 —
N 96.2 104.6 107.1 113.1 105.5 —
H 27.4 27.4 27.5 27.5 28.3 —

HCN
C 72.5 77.5 79.0 82.5 84.4 86.3
N �41.9 �28.2 �24.0 �13.4 �14.4 �13.6
H 28.7 28.7 28.7 28.6 29.4 29.0

CO
C �11.6 3.5 8.0 17.3 3.9 5.6
O �74.8 �51.9 �45.0 �26.1 �57.4 �52.9

HF
F 408.7 411.2 412.0 410.4 417.6 418.6
H 29.8 29.7 29.6 29.7 29.4 29.2

F2

F �267.1 �223.0 �209.5 �204.9 �194.5 �186.5
N2

N �82.3 �65.9 �60.8 �54.2 �55.7 �58.1
H2

H 26.7 26.7 26.7 26.7 26.7 26.7

a From Ref. [27].
b Introduced in [27] as reference values.
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erations imply that more than two orbitals are
needed to describe an excitation or in cases where
there is nontrivial correlation due to accidental de-
generacies, such as near an avoided crossing.

The results of the calculations on the test mole-
cules, analyzed in Section 4, show that the Loc.3

approximation performs as well as the local ap-
proximations Loc.1 and Loc.2 and always better
than the UKS approximation, consistent with our
theoretical expectations and consistent with our
contention that the reason for the good perfor-
mance of the Loc.1 and Loc.2 approximations in

TABLE VI ____________________________________________________________________________________________
Isotropic shielding � calculated with the PD91 exchange correlation potential within the
IGLO approximation [1].

Isotropic shielding, � (ppm)

PD91

L-CCDa
Ref.

valuebUKS Loc.1 Loc.2 Loc.3

HCCH
C 111.8 114.0 114.7 114.1 122.6 121.8
H 30.0 30.0 29.9 30.0 30.6 —

H2CO
C �18.5 �9.4 �6.6 �6.0 6.1 8.2
O �448.0 �399.4 �384.5 �382.9 �418.0 �379.1
H 21.3 21.6 21.7 21.8 22.6 22.4

CH4

C 192.3 193.6 194.0 194.1 198.6 198.9
H 31.4 31.4 31.4 31.5 31.5 31.6

H2O2

O 107.3 118.9 122.5 139.0 133.9 —
H 24.5 24.8 24.9 25.2 25.2 —

NH3

N 262.4 263.9 264.4 263.3 268.8 270.7
H 31.4 31.4 31.4 31.4 31.7 31.6

H2O
O 327.7 329.9 330.7 329.3 335.4 337.9
H 30.9 30.9 30.9 30.9 25.2 30.9

HNC
C 14.9 28.1 32.0 41.9 28.5 —
N 93.2 101.8 104.5 110.7 105.5 —
H 27.3 27.3 27.3 27.3 28.3 —

HCN
C 78.3 83.1 84.6 87.8 84.4 86.3
N �42.7 �29.3 �25.1 �15.0 �14.4 �13.6
H 28.6 28.6 28.6 28.5 29.4 29.0

CO
C �8.3 7.0 11.5 20.9 3.9 5.6
O �84.8 �60.6 �53.4 �33.7 �57.4 �52.9

HF
F 407.8 410.1 410.9 409.4 417.6 418.6
H 29.5 29.5 29.4 29.5 29.4 29.2

F2

F �238.0 �196.7 �183.9 �179.5 �194.5 �186.5
N2

N �80.7 �64.0 �58.9 �52.3 �55.7 �58.1
H2

H 26.7 26.7 26.7 26.7 26.7 26.7

a From Ref. [27].
b Introduced in [27] as reference values.
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SOS-DFPT lies in their similarity to the TDDFT-
TDA response expression for electronic properties.
This general observation seems to be independent
of the choice of functional used for evaluating the
exchange correlation potential. In the cases where
we noticed that the Loc.3 gives less good agreement
in comparison with the reference values, compared
to the ones obtained with the Loc.1 and Loc.2 ap-
proximations, we also suspect a breakdown of the
two-level approximation. The critical test of this
hypothesis, of course, is to redo the calculations
using only the TDA and not the TDA and 2LM. We
are already taking steps to remove the restriction
imposed by the 2LM and the results will be pre-
sented in a future article.
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Appendix A: Linear Response from
Time-Dependent Perturbation Theory

We will derive Eqs. (2.1), (2.2), and (2.3), that is,
we will show that the linear response of the prop-
erty described by an operator, â, to a time-depen-
dent perturbation,

b̂�t� � b̂ cos �0t, (A1)

is


�â��t� � ��
I�0

2�IRe��0�â��I���I�b̂��0�

�0
2 � �I

2 �cos �0t

� ��
I�0

2�0Im��0�â��I���I�b̂��0�

�I
2 � �0

2 �sin �0t. (A2)

We will use the Fourier transform convention,
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f��� � 	
��

��

e�i�tf�t� dt

f�t� �
1

2� 	
��

��

e�i�tf��� d�. (A3)

It is easy to show that

	
��

��

e�i�tcos �0t dt � �	��� � �0� � ��� � �0�


	
��

��

e�i�tsin �0t dt �
�

i 	��� � �0� � ��� � �0�


(A4)

using the usual mneumonic

	
��

��

e�i����0�t dt � 2���� � �0�. (A5)

And, of course,

1
2� 	

��

��

e�i�t�	��� � �0� � ��� � �0�
 � cos �0t

1
2� 	

��

��

e�i�t
�

i 	��� � �0� � ��� � �0�
 � sin �0t.

(A6)

Consider now a system initially in its ground
stationary state with time-independent Schrödinger
equation,

Ĥ�I � EI�I; I � 0, 1, 2, . . . . (A7)

Adding the perturbation b̂(t) leads to a time-depen-
dent wave function,

�0�t� � 	�0 � ��0�t� � · · ·
e�iE0t, (A8)

where the linear response, ��0(t), is first order in
the perturbation, b̂(t). The corresponding linear re-
sponse of the expectation value of â is given by

��â��t� � ��0�â���0�t�� � ���0�t��â��0� (A9)

and its Fourier transform is

��â���� � ��0�â���0���� � ���0�����â��0�

(A10)

because

	
��

��

e�i�t��*0�t� dt � �	
��

��

e�i�t��0�t� dt�*

� 	�0����
*. (A11)

Thus, we need only work with the linear response
of the wave function and its Fourier transform.

Inserting Eq. (A8) into

	Ĥ � b̂�t�
�0�t� � i




t �0�t� (A12)

and keeping track of the order of perturbation gives
the first-order equation

b̂�t��0 � � i




t � Ĥ � E0���0�t�. (A13)

Fourier transforming this gives

b̂����0 � 	
��

��

e�i�t� i




t � Ĥ � E0���0�t� dt

� 	
��

��

e�i�t�� � Ĥ � E0���0�t� dt

� �� � Ĥ � E0���0���, (A14)

where the passage between the first and second line
is via integration by parts. We can now invoke
intermediate normalization,

��0���0���� � 0, (A15)

expand the first-order wave function,

��0��� � �
I�0

�IcI,0���, (A16)
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and follow the usual derivation of time-indepen-
dent Rayleigh–Schrödinger perturbation theory to
obtain

��0��� � �
I�0

�I

��I�b̂�����0�

� � �I
, (A17)

where

�I � EI � E0 (A18)

are the excitation energies of the unperturbed sys-
tem. Inserting Eq. (A17) into Eq. (A10) gives

��â���� � �
I�0

��0�â��I���I�b̂�����0�

� � �I

� �
I�0

��0�b̂������I���I�â��0�

� � �I

� �
I�0

�I

�2 � �I
2 ���0�â��I���I�b̂�����0�

� ��0�b̂������I���I�â��0��

� �
I�0

�

�2 � �I
2 ���0�â��I���I�b̂�����0�

� ��0�b̂������I���I�â��0��. (A19)

Because b̂(�) � b̂(��) [Eq. (A4)], we have that

��â���� � �
I�0

2�IRe��0�â��I���I�b̂�����0�

�2 � �I
2

� �
I�0

2�iIm��0�â��I���I�b̂�����0�

�2 � �I
2 . (A20)

More explicitly,

��â���� � ��
I�0

2�IRe��0�â��I���I�b̂��0�

�2 � �I
2

� �
I�0

2�iIm��0�â��I���I�b̂��0�

�2 � �I
2 �


 ��	��� � �0� � ��� � �0�
�

� ��
I�0

2�IRe��0�â��I���I�b̂��0�

�0
2 � �I

2 �


 ��	��� � �0� � ��� � �0�
�

� ��
I�0

2�0Im��0�â��I���I�b̂��0�

�I
2 � �0

2 �

 ��

i 	��� � �0� � ��� � �0�
� .

(A21)

Back Fourier transforming

��â��t� �
1

2� 	
��

��

e�i�t��â���� d� (A22)

with the help of Eq. (A6) gives the equation we
initially set out to derive, namely, Eq. (A2).

Appendix B: Explicit TDFT Electric
and Magnetic Linear Response
Expressions in a Finite Basis Set
Representation

We consider again the response of the expecta-
tion value of an operator â to an applied perturba-
tion b̂(t). In terms of the linear response of the
density matrix, �P̂,

��â��t� � tr â�P̂�t� (B1)

and

��â���� � tr â�P̂���. (B2)

Introducing a finite basis set representation using
the molecular orbitals of the unperturbed system

ars � ��r�â��s�

�Prs��� � ��r��P̂�����s� (B3)

allows us to rewrite Eq. (A24) as

��â���� � �
rs

a*rs�Prs���

� �
i

occ �
a

virt

�a*ia�Pia��� � a*ai�Pai����
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� �
i

occ �
a

virt

	�Reaia � iImaia��Re�Pia���

� iIm�Pia���� � �Reaia � iImaia��Re�Pia���

� iIm�Pia����


� 2 �
i

occ �
a

virt

ReaiaRe�Pia���

� 2 �
i

occ �
a

virt

Im aiaIm�Pia���

� 2a�†�P� ��� (B4)

(where “occ” and “virt” refer, respectively, to indi-
ces of occupied and unoccupied orbitals) because
the only nonzero matrix elements in the linear re-
sponse of the density matrix are off diagonal in
occupation number. [Note that Re �Pia(�) and Im
�Pia(�) refer, respectively, to the Fourier transforms
of the real and imaginary parts of �Pia(t) and not to
the real and imaginary parts of �Pia(�).] In the
electric case, both â and b̂(t) are real valued and

��â���� � 2a�†Re �P� ���. (B5)

In the magnetic case, both â and b̂(t) are purely
imaginary and

��â���� �
2
i a�†Im�P� ���. (B6)

The objective of this appendix is to show that

����1 0
0 1� � �A B

B A��� �P� ���
�P�*���� � � b����

b�*���� (B7)

implies

��â���� � 2a�†�A � B�1/ 2


 	�21 � �A � B�1/ 2�A � B��A � B�1/ 2
�1


 �A � B�1/ 2b���� (B8)

in the electric case and

��â���� � 2a�†�A � B�1/ 2


 	�21 � �A � B�1/ 2�A � B��A � B�1/ 2
�1


 �A � B�1/ 2b����. (B9)

in the magnetic case. Note that b̂*(�) is the Fourier
transform of b̂*(t), so that b̂*(�) � [b̂(��)]*.

We first perform a unitary transformation

� 1


2 � 1 1
�1 1������1 0

0 1� � �A B
B A��� 1


2 �1 �1
1 1 ��


 � 1


2 � 1 1
�1 1��� �P� ���

�P�*���� � � 1


2 � 1 1
�1 1��� b����

b�*����
(B10)

to obtain

���0 1
1 0� � �A � B 0

0 A � B�� 1


2
� 2Re�P� ���
�2iIm�P�*����

�
1


2
� 2Reb����
�2iImb�*����. (B11)

In the electric case, Reb�(�) � b�(�) and Imb�(�) � 0.
Hence,

���A � B� �1
�1 ��A � B��� Re�P� ���

�iIm�P�*���� � �b����
0� �
(B12)

so

��A � B�Re�P� ��� � i�Im�P� ��� � b���� (B13)

and

�Re�P� ��� � i�A � B�Im�P� ��� � 0�. (B14)

Equations (B13) and (B14) are easily solved to elim-
inate iIm�P� (�), yielding

	�2�A � B��1 � �A � B�
Re�P� ��� � b����, (B15)

which can be solved to give

Re�P� ��� � �A � B��1/ 2	�21 � �A � B��1/ 2�A � B�


 �A � B��1/ 2
�1 
 �A � B��1/ 2b����.(B16)

Inserting into Eq. (B5) proves Eq. (B8).
In the magnetic case, Reb�(�) � 0� and iImb�(�) �

b�(�). Hence,
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���A � B� �1
�1 ��A � B��� Re�P� ���

�iIm�P�*���� � � 0�
�b�����

(B17)

so

��A � B�Re�P� ��� � i�Im�P� ��� � 0� (B18)

and

� Re �P� ��� � i�A � B�Im�P� ��� � �b����. (B19)

Equations (B18) and (B19) are easily solved to elim-
inate Re�P� (�), yielding

	�2�A � B��1 � �A � B�
iIm�P� ��� � b����, (B20)

which can be solved to give

iIm�P� ��� � �A � B��1/ 2	�21 � �A � B��1/ 2�A � B�


 �A � B��1/ 2
�1 
 �A � B��1/ 2b����.(B21)

Inserting into Eq. (B6) proves Eq. (B9).

LOC.3 APPROXIMATION
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