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Determination of lattice-site distributions—the number 
of lattice atoms or ions as a function of distance from a specific 
location—is essential in the calculation of numerous solid-state 
properties. Well-known examples include the Madelung con-
stant, required for the determination of lattice energies (1) of 
ionic solids, or pair-distribution functions frequently encoun-
tered in statistical mechanics (2) and molecular dynamics (3) 
calculations. While the concept behind both parameters is 
relatively simple, most chemistry textbooks do not present the 
three-dimensional problem encountered in real systems. Those 
that do, especially in the calculation of lattice energies, truncate 
the series before the first mysterious “missing” lattice location 
is encountered and long before convergence (4) of the sum in 
the Madelung constant is achieved. Clearly, the actual deter-
mination of lattice-site distributions (5) is nontrivial even for 
practitioners. Attempting such a task within the constraints of 
undergraduate courses, where time is limited and where students 
often have little programming expertise, seems futile and as a 
result is infrequently undertaken.

A simple method to construct a spreadsheet program is 
presented that can be easily used in the calculation of lattice-
site distributions in physical chemistry laboratory or workshop 
sessions. The method used is based on the generation of ever-
increasing cubes and can be quickly set up by students with just 
an introductory knowledge of a spreadsheet program such as 
Excel. The method allows the prediction of accurate Madelung 
constants for cubic close-packed structures with the use of only 
a small (circa 10) number of cubes when the “zero-net-charge” 
condition is incorporated in the sum calculation. Algorithms (6, 
7) created specifically for the evaluation of the Madelung con-
stant unquestionably provide accuracy to many more decimal 
places, but the hands-on experience students gain in developing 
their own calculation more than compensates for this shortcom-

ing. Moreover, the task of constructing the program requires 
students to actively consider and engage with the key governing 
factors allowing them to achieve a deeper understanding of the 
underlying principles.

Physical inorganic chemistry textbooks (1) develop the 
concept of a lattice-energy calculation along the lines of Figure 1, 
in which the lattice ion distances in NaCl are described using 
multiples of the nearest-neighbor distance, r0. The energy, E, 
of the central sodium cation is then obtained by summing the 
terms whose denominators are the distances in Figure 1. This 
expression is frequently given for the potential energy of an 
ionic lattice
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in which Z+ and Z– are the ionic charges, e is the charge on 
the electron, 0 is the permittivity of a vacuum, and the term 
in parentheses is the Madelung constant. From eq 1 the lattice 
points are located on spheres with relative radii represented by 
the denominators in the summation. With alternating signs 
and the denominator terms increasing in magnitude, a plausible 
argument can be presented that the infinite sum of eq 1 is a con-
verging series. Several problems are inherent in this approach, 
however. The first is that after the second or third terms, students 
have no means of easily, but independently, establishing what 
the numerator values are, that is, the number of ions at specific 
multiples of the nearest-neighbor distance, r0. The second is that 
the sum given by eq 1 is not convergent even when thousands of 
lattice ions are considered—a result that will be demonstrated 
later. The third and most problematic is that without prior 
knowledge, the student would reasonably expect, on the basis 
of what is shown in Figure 1, that the next term in the series is 
( 7)r0. Actually, there is no ion in the NaCl structure at this 
distance! A major strength of the expanding-cube method for 
the determination of lattice-site distributions is the natural way 
in which the correct numbers of ions or atoms are present—or 
absent—at specific lattice distances.

Use of the spreadsheet program is illustrated in what may 
initially appear to be two unrelated systems. The first demon-
strates its use in calculating the Madelung constant of NaCl, 
while the second involves the prediction of the pair-distribution 
function for a neutral, van der Waals solid consisting of con-
densed krypton atoms. The pair-distribution function of the 
ionic solid will also be extracted revealing how this solid can 
be thought of as a pair of interlocking face-centered cubic cells. 
From an educational point of view, the method highlights con-
cepts of conditional convergence and truncation errors inher-
ent in numerical methods that must be considered by students 
when comparing their limited calculations with literature pair-
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Figure 1. The shortest lattice distances in the NaCl structure are 
indicated as multiples of the nearest-neighbor distance, r0. The values 
shown are easily determined by inspection using the Pythagorean 
theorem. The values presented in the diagram suggest the next 
distance term is (√7)r0, a value that does not exist. The diagram also 
gives no idea of the number of ions located at these distances.



© Division of Chemical Education www.JCE.DivCHED.org Vol. 86 No. 12 December 200 Journal of Chemical Education 1451

Research: Science and Education

distribution functions. In addition, the two systems chosen to 
illustrate the use of the method highlight both similarities and 
differences between the structure of an ionic lattice and a van der 
Waals solid consisting of neutral atoms. NaCl and solid krypton 
provide an interesting comparison as both have unit cells with 
virtually identical lattice parameters.

Obtaining Lattice Distributions
The distribution of lattice points with respect to a specific 

location in a cubic close-packed solid, such as the face-centered 
cubic, fcc, solid rare gases or an ionic solid whose lattice param-
eter is a, can be generated in ever increasing cubes and obtained 
by letting

 x b1n y b2n z b3n  (2)

where b = a 2 and the variables n1, n2, and n3 = 0, ±1, ±2, 
±3, .... Figure 2 illustrates the relationship between the lattice 
parameter a, the edge length of the unit cell, and b, the distance 
term used in generating all the coordinates of the expanding 
cubes. For ionic solids, b is the nearest-neighbor distance (r0 = b) 
while for the solid rare gases r0 = ( 2)b . Another important 
difference between the two types of lattices is that the sum of 
the coordinate indices (n1,n2,n3) can be even or odd for ionic 
lattices with

 0  1,  2,  3, ,1n 2n 3n  (3)

while for the solid rare gases, the condition exists (5) that this 
sum can only be even,

 0  2,  4,  6, ,1n 2n 3n  (4)

The distance, r, from the origin is determined as

 r b2 2 2 2r b2
1n 2

2n 2
3n  (5)

where r' [= (n1
2 + n2

2 + n3
2)1/2 = r/r0] is a relative distance from 

the origin expressed as the multiple of the nearest-neighbor dis-
tance for an ionic solid. The ordinal number of each sphere of 
lattice points is (n1

2 + n2
2 + n3

2), that is, (r' )2 for an ionic solid. 

The number of atoms at a given value of r can be counted. This 
counting procedure can be conducted, with the assistance of Fig-
ure 3, for the first few surrounding spheres. Clearly all atoms in a 
given sphere are equidistant from the origin and it is the number 
of such atoms that determines the pair-distribution functions. 
In contrast, the first complete cube, consisting of three spheres, 
corresponds to the lattice unit cell.

As shown on the left in Figure 3 there are 6 Cl  anions, with 
coordinates (±1,0,0), (0,±1,0), and (0,0,±1), located at 1r0 from 
the Na+ ion at the origin. The next nearest-neighbor ions are 
sodium, which have the coordinates (±1,±1,0), (0,±1,±1), and 
(±1,0,±1), and are located at ( 2)r0 from the Na+ ion. It is much 
less obvious than in the first sphere, but Figure 3 reveals there are 
12 Na+ ions at ( 2)r0 from the central Na ion. Shown on the left 
in Figure 4 are the locations of the Cl  anions in sphere 3. As is 

Figure 3. Positions of the chlorine anions making up the first sphere 
surrounding the central sodium cation in the NaCl structure are shown 
(left). The 6 chlorine anions are located as pairs on the Cartesian x, y, 
and z axes. This corresponds to the centers of the 6 faces of the first 
surrounding cube. The structure at right is extended to include the 12 
sodium cations in the second sphere. These atoms are located on the 
12 edges of the first cube at (√2)r0 from the central sodium cation.

Figure 4. Positions of all ions in the first cube surrounding the central 
sodium cation in the NaCl structure are shown (left). The cube is 
completed with the addition of the Cl– anions located on the 8 corners 
of the first cube. Numbers of the ions present are 6, 12, and 8 at 
relative distances of √1, √2, and √3 from the central sodium cation 
at the origin. The corresponding fcc structure for a Kr lattice is shown  
(right) containing a neutral guest sodium atom at a substitutional site 
in this van der Waals solid for illustrative purposes. The structure is 
generated in the same way as the NaCl lattice but with the condition 
that sum of the indices can only be even—thus |n1| + |n2| + |n3| = 
0, 2, 4, 6, …. Comparing the two structures it becomes clear that 
the Kr atoms occupy only the second sphere positions of the NaCl 
structure, leaving vacancies at the Cl positions. In solid rare gases 
these vacancies are termed octahedral interstitial sites. Accordingly, 
only 12 nearest-neighbor atoms are contained within the first cube of 
the Kr lattice. The name given to the structure of the NaKr12 species is 
a cubo-octahedron.

Figure 2. Space-filling models of the solid rare gases (left) and NaCl 
(right) lattices showing one face of the unit cells. As shown in the 
diagram, b = a/2 in both cases where a is the lattice parameter, the 
length of the edge of the unit cell. In contrast, the values of the nearest-
neighbor (r0) distances differ with r0 = b for the NaCl lattice while 
for the solid rare gas lattice, r0 = (√2)b. The dotted circle shown on 
the right depicts the position of the Na+ ion at the center of the NaCl 
unit cell. This ion is located one layer behind the face shown, at a 
distance b = a/2. By coincidence, the lattice parameter of solid Kr 
(a = 5.64 Å) is the same as that of NaCl, so the site size comparison 
made above is realistic.
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evident in the diagram, the atoms in sphere 3 are located on the 
corners of the first complete cube, with coordinates (±1,±1,±1). 
Being on the corners of a cube, they must be 8 in number. This 
counting method is convenient for only the ions in three spheres 
contained within the first cube, generated from the (n1,n2,n3) 
index values (1,0,0), (1,1,0), and (1,1,1). Extending this count-
ing procedure beyond the first cube is a tedious activity and a 
procedure that is extremely error prone. Consequently, an alter-
native approach must be employed to allow students to conduct 
reliable calculations with ease for expanded cubes.

Fortuitously the pair-distribution function depends only 
on the numbers of atoms or ions at specific distances and has 
no dependence on their position (above below, left right, 
etc.) with respect to the central point. As a result, extended 
calculations of lattice-site distributions introduce the idea of 
multiplicity for all the (n1,n2,n3) index values encountered in 
the cubes generated. Usage of the multiplicity term, multip, 
given by the formula

 multip
diff

n

N
N3

4
2

!
!

oonzero  (6)

greatly facilitates the calculation of expanded cubes. It has 
already been utilized in a recent article (8) in this Journal, so 
only the identification of its two component terms will be given 
here. Briefly, Ndiff is the number of different absolute values 
in a selected (n1,n2,n3) index. In the first combination (1,0,0) 
for instance, this term will be 2, because there are two differ-
ent absolute values of n1, n2, n3, namely, 1 and 0. As indicated 
in Appendix A (see the online material), this mathematical 
condition can easily be programmed in Excel with the logical 
IF statement IF(AND(A3=B3,B3=C3),1,IF(OR(A3=B3,B3
=C3),2,3)) when the three absolute values of n1, n2, and n3 are 
entered in the cells A3, B3, and C3. Nnonzero is simply the number 
of nonzero values in a given index. For instance, the index (1,0,0) 
has a value of 1 for Nnonzero. This condition is programmed as  
IF(AND(B3=0,C3=0),1,IF(AND(B3>0,C3=0),2,3)). Using 
the results returned for Ndiff and Nnonzero in cells G3 and H3, 
respectively, the multip term is evaluated according to eq 6 with  
(FACT(3)*2^H3)/FACT(4-G3)). Calculation shows that for 
a numbering system having three indices, multip can only have 
five possible values, namely 6, 12, 8, 24, and 48.

With these programming statements in place the proce-
dure of developing calculations for expanded cubes can begin. 
Appendix A provides a complete listing of the programming 
statements even though students can come up with their own 
expressions. The three possible indices encountered in generat-
ing the first cube have already been given: (1,0,0), (1,1,0), and 
(1,1,1). Based on this pattern the students can generate the 
second cube indices as (2,0,0), (2,1,0), (2,1,1), (2,2,0), (2,2,1), 
and (2,2,2). An indication of how the spreadsheet may appear 
when this has been done is given in Table 1. When all the indices 
of the second cube have been correctly entered, students can 
then embark upon independently entering all the combinations 
of n1, n2, and n3 up to a value of 10. Experience shows this can 
be achieved in the first quarter of a typical two-hour computer 
laboratory or workshop session.

Predicting Madelung Constants
The importance of the Madelung constant has been high-

lighted in several articles (9, 10) in this Journal with the most 
recent discussion that presented by Vining and co-workers (8). 
These authors have also presented a program (11), available 
through JCE Software, for the calculation of lattice energetics. 
Description and discussion of the importance of conditional 
convergence in calculating the Madelung constant is given 
in Vining’s recent JCE article (8), Winn’s Physical Chemistry 
textbook (12), or Solid State Physics by Kittel (13). For space 
reasons, only the details of the spreadsheet calculations will be 
presented here. The method ultimately implemented in the pres-
ent calculation is based on the zero-net-charge (or neutrality1) 
condition for expanding cubes (14).

Before implementing the zero-net-charge condition it is, 
however, instructive to attempt a “crude” sum of the Madelung 
constant according to eq 1. This is done by simply adding the 
terms in the rightmost column of Table 1 and multiplying by –1 
(see Appendix A in the online material). The constants evaluated 
by performing this sum are represented in Figure 5 as squares 
connected by a dashed line. It is evident in Figure 5 that conver-
gence is not occurring up to the 10th cube, even though a total 
of 4630 atoms have already been considered at this stage. This 
is the method represented by eq 1 and an approach that clearly 
is not providing the expected convergence.

Table 1. An Excel Spreadsheet Workpage Used To Evaluate the Distances  
and the Numbers of the Ions (Multip) Contained within the First 2 Cubes of the NaCl Lattice 

|n1|
a |n2| |n3| ni (r')2 b Sign c Ndiff Nnonzero Multip Sign × Multip/r' d

1 0 0 1 1 –1 2 1 6 –6
1 1 0 2 2 1 2 2 12 8.485281

1 1 1 3 3 –1 1 3 8 –4.6188

2 0 0 2 4 1 2 1 6 3

2 1 0 3 5 –1 3 2 24 –10.7331

2 1 1 4 6 1 2 3 24 9.797959

2 2 0 4 8 1 2 2 12 4.242641

2 2 1 5 9 –1 2 3 24 –8
2 2 2 6 12 1 1 3 8 2.309401

a|n1| ≥ |n2| ≥ |n3|.  bThe fifth column correctly reveals the absence of an ion r' = √7. The absences at r' = √10 and √11 are 
artifacts arising from a calculation limited to the second cube. This error is corrected when the calculation is expanded to include 
the third cube.  cSign is given by (−1)(|n1|+|n2|+|n3|); for NaCl it represents the charge of ions in a given sphere. dTo obtain positive 
Madelung values, all the multip/r' terms should be multiplied by –1 as indicated in Appendix A (see the online material). 
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This lack of convergence behavior is well known and can 
be corrected by summing the interactions for cubes with zero 
net charge. This condition is achieved by allowing the ions at 
the corner, edge, and face positions of the cubes to contribute 
fractional charges of 1 8, 1 4, and 1 2, respectively. These specific 
values can be programmed in Excel with the logical “IF” state-
ment as follows: IF(AND(A3=B3,B3=C3),0.125,IF(AND 
(A3=B3,B3>C3),0.25,0.5)). As before the absolute values of 
the three index values n1, n2, and n3 are contained in cells A3, 
B3, and C3. When the value returned by the above condition 
(although not shown in Table 1 for space reasons) is multiplied 
by the sign × multip r' term and then summed, the result of the 
zero-net-charge condition is available. Figure 5 provides com-
parison of this result, shown by the diamonds, with the crude 
sum, shown by the squares. The vast improvement obtained in 
the convergence behavior when the zero-net-charge condition 
is imposed is immediately evident.

Figure 6 provides a zoomed-in view of the conditionally 
converged series in which it emerges that after the 5th cube, the 
Madelung value oscillates in the small range between 1.7475 
and 1.7476. At the 10th cube, the Madelung value is evaluated 
as 1.747568 while the generally accepted value is 1.74756 (15). 
A more exact value of 1.747564594 has recently been provided 
(6, 16). During a workshop or laboratory session, little improve-
ment of the Madelung constant will be gained by students 
spending additional time to extend their spreadsheet calculation 
beyond the 10th cube.

Predicting Pair-Distribution Functions

Ionic Lattice
The calculations undertaken in determining the Madelung 

constant have already utilized the lattice-site distributions of the 
ions, but because only the sum of the terms is involved, the pair-
distributions function, n(r)—the numbers of ions at specific 
lattice distances—is not immediately at hand. To obtain n(r), 
the distances obtained for all the indices considered up to the ith 
cube must be sorted in order of increasing r and the multiplici-
ties of any identical r values summed. For example, the lattice 
indices (3,2,2) and (4,1,0) both give rise to a distance of ( 17) r0, 
so their multiplicities (both equal to 24) must be summed to 

obtain the correct contribution to radial distribution at this 
distance. Rather than do this check manually, a few lines of com-
puter code can be written to check for equal adjacent values in 
the presorted array of r,multip. When a pair is found, the two y 
values are summed and one of the r’s is discarded. This summing 
procedure must be done three times to remove all the repeat r’s 
that occur up to the 10th cube. The code required to do this is 
given in Appendix B in the Genplot (17) programming language 
(see the online material). All subsequent data plots were gener-
ated with this plotting and data analysis software.

The result of such a pair-distributions calculation is shown 
in panel A of Figure 7 in terms of the number of ions in the 
first 8 spheres surrounding the central ion. The numbers of ions 
involved are 6, 12, 8, 6, 24, 24, 0, and 12. As shown in Table 1, 
the expanding-cube method correctly identifies the absence of 
an ion at ( 7)r0. The results shown there would also suggest the 
absence of ions at ( 10)r0 and ( 11)r0. However, when the cal-
culation is extended into the third cube it immediately becomes 
evident that the latter absences arise from the limited number of 
sites considered in the first two cubes. This observation provides 
an important reminder that the pair-distribution function is a 
radial function. It can be considered as an early warning that 
serious truncation errors will occur without due consideration 
of the cube number under calculation. As shown in panel B of 
Figure 7, the next true absence occurs at 3.873, ( 15)r0, when 
the calculation is extended into subsequent cubes. The more 
extended calculation presented in panel B is shown as a function 
of relative radial distance, r' , rather than the sphere number used 
in panel A. For the fcc lattice of NaCl r0 is, as shown in Figure 
2, half the lattice parameter, a, (r0 = a 2).

To generate meaningful pair-distributions functions, n(r' ), 
from the spreadsheet calculation done up to and including 
the 10th cube of the NaCl lattice, the following consideration 
must be included. Even though the calculation extends to the 8 
corners of this cube—with coordinates (10,10,10) and thereby 
corresponds to a maximum distance of 17.32, ( 300)r0, the n(r' ) 
values obtained are only reliable out to the center of the face of 
the 10th cube (10,0,0). The 6 atoms in this complete sphere are 
located at a distance of ( 100)r0 from the origin. Because of the 
truncation errors that arise beyond this distance, the plot shown 
in panel B is limited to a distance of 10 nearest neighbors from 
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Figure 5. A comparison of the Madelung constants evaluated by 
two methods within the first 10 cubes surrounding the central sodium 
cation in the NaCl structure. The results of a crude sum of the terms 
in the last column of Table 1 are shown by the squares, while those 
obtained as a sum of cubes complying with zero-net-charge condition 
are shown by the diamonds. The comparison reveals the requirement 
of the zero-net-charge (charge neutrality) condition in obtaining a 
converged value of the Madelung constant. 
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Figure 6. The Madelung constants evaluated in the spreadsheet 
calculation by imposing the zero-net-charge (or charge neutrality) 
condition. It is evident from the plot that the results obtained after 
the 5th cube have converged to 4 decimal places. The Madelung 
constant of NaCl, exact to six decimal places, 1.747564, is shown 
by the solid line revealing the high level of convergence that exists 
after the 7th cube. In the present expanding-cube method, the 
Madelung constant is evaluated as 1.747568 at the 10th cube with 
the zero-net-charge condition.
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the origin. As expected, n(r' ) increases as the distance between 
the origin and the surrounding spheres becomes larger. It ac-
tually increases more rapidly than it may appear in the figure 
because of the distances between adjacent spheres becoming 
smaller and smaller. The more usual way (2) of presenting the 
pair-distribution function is to divide the n(r' ) values by the 
volume element 4 (r' )2dr' . Such a plot is shown in panel C of 
Figure 7 for the same distance range depicted in panel B. This 
treatment has the effect of emphasizing the importance of the 
atoms and ions in the nearest surrounding spheres. In panel D 
the first 16 surrounding spheres of the NaCl lattice are depicted 
as “stick spectra” and the pair distribution is shown as a func-
tion of the actual distance in a range up to 12 Å from the Na+ 
ion at the origin. Superimposed on this is the pair-distribution 
function that will exist in reality where small variations exist in 
the lattice positions owing to thermal motion of the ions. This 
thermal broadening will be present in a molecular dynamics 
(MD) calculation of the solid lattice (18). A positional varia-
tion of 1% of the lattice parameter is shown, corresponding to a 
temperature of approximately 1000 K. In MD calculations the 
pair distribution is calculated numerically in a selected radial 
distance range, r. The result G(r) is presented in a manner 
similar to that described above.

 G r
n r

r r4 2
 (7)

The additional parameter, , is a symmetry factor that has a 
value of 2 for calculations of identical species, for example, the 

Na+ Na+ pairs (or in a homogeneous lattice) and a value of 1 
for distinct pairs, for example, Na+ Cl  (or a guest atom in a 
host lattice). The gray curve in panel D shows the lattice-site 
distributions for the Na+−Cl  pairs while the black curve depicts 
the Na+−Na+ pairs.

Neutral (van der Waals) Lattice
Determining the lattice-site distribution of a van der Waals 

solid is conducted with the same expanding-cube method as 
that outlined for the ionic lattice, with the one important dif-
ference, which is that sum of the indices can now only be even 
(5). This arises from the condition, mentioned earlier, that for 
the fcc lattice of a solid consisting of neutral species, the index 
sum |n1| + |n2| + |n3| = 0, 2, 4, 6, …, which has the effect that 
the odd terms present in the NaCl lattice are now absent. In the 
spreadsheet calculation the odd or even characters can be identi-
fied most conveniently with the sign of the term ( 1) (|n1| + |n2| + |n3|) 
used in the Madelung constant calculation. Equation 7 is 
incorporated in the spreadsheet program with the following 
modification IF(F3=1,(FACT(3)*2^H3)/FACT(4-G3),0), 
which utilizes the sign of the term in the cell F3. As indicated in 
Appendix C ( see the online material), this logical IF statement 
returns a multip value of 0 for all terms except even ones. Equa-
tion 6 is used to evaluate the multiplicities of the even terms in 
the usual way. The worksheet resulting for the first two cubes is 
presented in Table 2.

As is evident in the table, roughly every other one of the 
spheres present in the ionic lattice is absent in the neutral lattice. 
Connected with this site absence, for the neutral solid r0 = a 2 

Figure 7. The lattice-site distribution 
for NaCl calculated by the expanding-
cube method. In panel A the number of 
ions in the first 8 surrounding spheres 
are shown, revealing the absence of a 
7th sphere. The relative distance r' is 
shown in panel B. This panel shows the 
distribution n as a function of r'. Panel 
C shows the n(r' ) function divided by 
the volume element 4π(r' )2dr', which 
emphasizes the importance of the 
spheres closest to the central ion. The 
stick spectrum in panel D shows the same 
distribution function but now in terms of 
actual distance from the central sodium 
cation. This is obtained by multiplying r' 
(shown in panel C) by the value of the 
distance between nearest neighbors b 
(= a/2). The curves in panel D shows 
the pair-distribution function convoluted 
by a Gaussian function to simulate the 
positional variation of the lattice sites 
caused by thermal motion. This is how 
the results of a molecular dynamics 
evaluation of pair-distributions are 
presented. For the purpose of illustration 
the positions of the Na+—Cl− pairs are 
shown by the gray curves while the 
Na+—Na+ pairs are shown in black.
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Figure 8. Calculation of the pair-
distribution function of a van der Waals 
solid as determined by the expanding-
cube method. The treatment is the 
same as for NaCl but because of the 
imposition of the index sum as even, 
only the terms satisfying the condition 
(|n1| + |n2| + |n3| = 0, 2, 4, ...) 
exist.

and not a 2 as in the ionic lattice. Equation 5 then becomes 

 
2
0r 2

2r b2 2rr 2  (8)

and the relative distance is 

 
r
0r 2

r
 (9)

Panel A of Figure 8 presents the first eight nearest-neighbor sur-
rounding spheres of a van der Waals lattice revealing the presence 
of 12, 6, 24, 12, 24, 8, 48, and 6 atoms in spheres 1 through 8. 
Consistent with the findings of previous investigations (5), the 
expanding-cube method locates the first absence in the van der 
Waals lattice at sphere number 14; the next one occurs at sphere 
number 30. When the pair-distribution function is plotted 
against relative distance (= r'/ 2) as shown in panel B, these 
absences are located at 3.74 and 5.477, respectively, with the 
next absence evident at 6.78 [(r ' )2 2 = 46].

At this point a note of caution is necessary because with 
the increased nearest-neighbor distance in the van der Waals 
lattice, truncation errors arise earlier in this system than the limit 
of 10 identified in the ionic lattice. The “cut-off ” radius is now 
identified as a relative distance of 7.07, [= ( 100/2)]. Because 
of this, the pair-distribution results obtained from evaluating 10 
cubes are limited to the relative distance of 7 shown in panels B 
and C of Figure 8. The smooth black curve shown in panel D of 
Figure 8 presents the pair-distribution function convoluted by 
a Gaussian function to simulate the positional variation of the 

lattice sites caused by thermal motion. The abscissa used in this 
plot is actual distance of the Kr lattice in Ångstrom units. Us-
ing the lattice parameter of solid Kr as 5.64 Å, panel D presents 
how the results of a molecular dynamics evaluation of Kr Kr 
pair distributions will appear. For the purpose of illustration, a 
2% positional variation of the lattice parameter is shown, cor-
responding to a temperature of approximately 10 K.

Table 2. An Excel Spreadsheet Workpage Used To Evaluate  
the Distances and the Numbers (Multip)  

of the Neutral Atoms Contained within the First 2 Cubes  
of a van der Waals Lattice Such as the Solid Rare Gases 

|n1| |n2| |n3| |ni| (r')2 Sign Ndiff Nnonzero Multip

1 0 0 1 1 –1 2 1 0
1 1 0 2 2 1 2 2 12

1 1 1 3 3 –1 1 3 0

2 0 0 2 4 1 2 1 6

2 1 0 3 5 –1 3 2 0

2 1 1 4 6 1 2 3 24

2 2 0 4 8 1 2 2 12

2 2 1 5 9 –1 2 3 0
2 2 2 6 12 1 1 3 8
NOTE: The large number of lattice absences, indicated by multip = 0, 

arise from the even-only condition that exists for the index sum 
(|n1| + |n2| + |n3| = 0, 2, 4, ...) of the fcc lattices formed by van der 
Waals solids.
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The fcc solids formed by NaCl and solid krypton both have 
the same lattice parameters a = 5.64 Å. Panels D in Figures 7 and 
8 present the results of the present pair-distribution calculations 
for NaCl and solid Kr, respectively, in the same distance range of 
2–12 Å. Comparing these two panels reveals how different the 
two lattices are. In Figure 8 it is clear just how much more open 
the Kr lattice is compared with that shown in Figures 7 for the 
NaCl lattice. The key difference between the two lattices is that 
the sites occupied by the smaller Na cations in the NaCl lattice 
are vacant in the Kr lattice. These intrinsic vacancies are referred 
to as octahedral interstitial (IOh) sites and in the solid rare gases 
are usually too small to accommodate guest atomic species in 
their ground states. However, calculations (19) show that the 
excited electronic states of guest metal atoms transiently migrate 
in these IOh sites prior to photon emission.

An alternative description of the packing in the NaCl 
lattice becomes evident in panel D of Figure 7 in which the 
structure can be viewed as a pair of interwoven fcc lattices. The 
compact nature of this lattice and the strong electrostatic bond-
ing between the ion pairs ensures that elevated temperatures 
(>1000 K) must be reached before appreciable deviation will 
occur from the lattice-site distributions (18). In contrast, MD 
calculations (20) find that large deviations already exist in the 
solid Kr lattice at even 10 K.

Conclusions

The expanding-cube method allows for straightforward 
programming in a spreadsheet that can be developed indepen-
dently by students to calculate accurate Madelung constants and 
predict the pair-distribution functions of ionic or van der Waals 
solids. During the course of this work students are exposed 
to ideas such as the requirement of zero net charge to obtain 
rapid convergence of the sum done in the determination of the 
Madelung constant. In the evaluation of pair-distribution func-
tions, issues arise concerning the identification of reliable cut-off 
radii to avoid truncation errors. Solid Kr and the NaCl lattice 
provide an instructive selection to use the pair-distribution func-
tions to compare and contrast two solids with the same lattice 
parameters. The pair-distribution functions provide a graphic 
illustration of how much more open the neutral Kr lattice is 
compared with the ionic lattice of NaCl.

Note

 1. The expression “zero-net-charge” (21) is used rather than 
“charge neutral” to avoid confusion that may arise when the pair-
distribution functions of the van der Waals solids, composed of neutral 
atoms (such as the rare gases) or neutral molecules, are considered.

Literature Cited

 1. Douglas, B.; McDaniel, D. H.; Alexander, J. J. Concepts and Models 
of Inorganic Chemistry, 3rd ed.; Wiley: New York, 1994; p 224.

 2. McQuarrie, D. A. Statistical Mechanics, 1st ed., Harper and Row: 
New York, 1976; p 258.

 3. Verlet, L. Phys. Rev. 1968, 165, 201–214.
 4. Borwein, D.; Borwein, J. M.; Taylor, K. F. J. Math. Phys. 1985, 26, 

2999–3009.
 5. Kihara, T.; Koba, S. J. Phys. Soc. Japan 1952, 7, 348–354.
 6. Buhler, J.; Wagon, S. Math. Educ. Res.1996, 5, 49–55.
 7. Crandall, R. E. Exp. Math. 1999, 8, 367–379.
 8. Grosso, R. P., Jr.; Fermann, J. T.; Vining, W. J. J. Chem. Educ. 

2001, 78, 1198–1202.
 9. Burrows, E. L.; Kettle, S. F. A. J. Chem. Educ. 1975, 52, 58–59.
 10. Quane, E. L. J. Chem. Educ. 1970, 47, 396–398.
 11. Vining, W. J.; Grosso, R. P., Jr.; Fermann, J. T. J. Chem. Educ. 

2003, 80, 108.
 12. Winn, J. S. Physical Chemistry, 1st ed.; Harper-Collins: New York, 

1995; p 604.
 13. Kittel, C. Introduction to Solid State Physics, 5th ed.; Wiley: New 

York, 1976; p 90.
 14. Evjen, H. M. Phys. Rev. 1932, 39, 675–687.
 15. Handbook of Chemistry and Physics, 73rd ed., Lide, D. R., Ed.; 

CRC: Boca Raton, FL, 1995; Section 12–31.
 16. Woan, G. The Cambridge Handbook of Physics Formulas; Cam-

bridge University Press: Cambridge, 2002; p 9.
 17. “Genplot—A Data Analysis/Graphics Program for Scien-

tists and Engineers” from Computer Graphics Solutions.  
http://www.genplot.com/download.htm (accessed Oct 2009).

 18. Shuo, Z.; Nanxian, C. Phys. Rev. B 2002, 66, 064106-1– 
064106-10.

 19. Kerins, P. N.; McCaffrey, J. G. J. Chem. Phys. 1998, 109, 
3131–3136.

 20. Ryan, M. Matrix-Isolation of Atomic Sodium in Rare Gas 
Solids—A Combined Luminescence Spectroscopy and Molecular 
Dynamics Study. Ph.D. Thesis; National University of Ireland–
Maynooth, Ireland, 2007. Ryan, M.; Collier, M.; de Pujo, P.; 
Crepin, C.; McCaffrey, J. G. J. Phys. Chem A 2009, DOI 10.1021/
jp905596a.

 21. Slater, J. C. Insulators Semiconductors and Metals Statistical Me-
chanics: Quantum Theory of Molecules and Solids; McGraw Hill: 
New York, 1967; Vol. 3, pp 215–220.

Supporting JCE Online Material
http://www.jce.divched.org/Journal/Issues/2009/Dec/abs1450.html
Abstract and keywords

Full text (PDF) with links to cited URL and JCE articles

Supplement: Appendices A–C


