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Geographically weighted regression (GWR) is an important local technique for explor-
ing spatial heterogeneity in data relationships. In fitting with Tobler’s first law of
geography, each local regression of GWR is estimated with data whose influence
decays with distance, distances that are commonly defined as straight line or
Euclidean. However, the complexity of our real world ensures that the scope of
possible distance metrics is far larger than the traditional Euclidean choice. Thus in
this article, the GWR model is investigated by applying it with alternative, non-
Euclidean distance (non-ED) metrics. Here we use as a case study, a London house
price data set coupled with hedonic independent variables, where GWR models are
calibrated with Euclidean distance (ED), road network distance and travel time metrics.
The results indicate that GWR calibrated with a non-Euclidean metric can not only
improve model fit, but also provide additional and useful insights into the nature of
varying relationships within the house price data set.

Keywords: local regression; non-stationarity; road network distance; travel time; real
estate

1. Introduction

Waldo Tobler’s celebrated dictum, to which he referred as the first law of geography, has
been widely adopted as a basic principle in Geographic Information Science (Goodchild
1992). It is at the core of many spatial techniques, such as those found in spatial
interpolation and spatial interaction paradigms (Goodchild 2004, Miller 2004, Sui
2004). In most cases, Tobler’s first law (Tobler 1970, p. 236) relates to the data, but it
can similarly relate to a statistic or model. Here, local or non-stationary models are used in
the exploration of some form of spatial heterogeneity. For example, local indicators of
spatial association (Getis and Ord 1992, Anselin 1995) are used to investigate hetero-
geneity in spatial autocorrelation. For this study, our focus lies with the geographically
weighted regression (GWR) model – a technique that investigates heterogeneity in data
relationships across space (Brunsdon et al. 1996). In particular, we empirically assess the
value of applying a non-Euclidean distance (non-ED) metric to GWR, with respect to its
calibration and performance (in terms of model fit and the interpretation of its results).

For analysing or visualising geographical phenomena, non-ED metrics suit situations
when the spatial interaction or spatial behaviour of the process does not follow straight
lines or the standard properties of a metric space (Miller 2000). For instance, non-ED
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metrics have routinely been applied in (1) hydrology studies using kriging, where water
distances are used for spatial prediction along a stream or river network (e.g. Curriero
2006, Money et al. 2009); (2) landscape studies using kriging, where landscape-based
distance metrics are derived (e.g. Jensen et al. 2006, Lyon et al. 2010); and (3) socio-
economic studies, where Minkowski distances have been used (Kent et al. 2006, Shahid
et al. 2009). In general, empirical work indicates that there is no ‘one-fit-all’ distance
metric, and the scope of possible distance metrics in spatial analysis is far larger than a
single Euclidean choice. Non-ED metrics are also routinely integrated into Geographic
Information Systems. For example, ArcGIS 10 provides options for non-ED metrics in its
‘Geostatistical Analyst’ extension (ESRI 2011). This includes options for cost and net-
work distances (NDs). Smith et al. (2008) provide an R (http://www.r-project.org) pack-
age ramps to analyse spatial or spatio-temporal correlation structures, where great circle,
maximum and absolute distances are available.

Our article is constructed in the following four sections. We start by describing the
basics of the GWR technique. Second, the potential of using a non-ED metric in GWR is
reviewed. Third as a case study, we model a London house price data set using GWR
with, respectively, Euclidean distance (ED) and two non-ED metrics (i.e. ND and travel
time (TT)). Properties of our case study data are such that it is likely to benefit from the
use of a non-ED metric when modelling with GWR (and many other spatial models).
Finally, we summarise this research and suggest future directions. The modelling func-
tions used in this article are included in the GWmodel R package (Lu et al. 2013), which
is an integrated framework for handling spatially varying structures via a wide range of
geographically weighted (GW) models.

2. Geographically weighted regression

GWR is a non-stationary technique that models spatially varying relationships. Compared
with a basic (global) regression, the coefficients in GWR are functions of spatial location.
Fotheringham et al. (1998, 2002) give a general form of a basic GWR model as:

yi ¼ βi0 þ
Xm
k¼1

βikxik þ "i (1)

where yi is the dependent variable at location i; xik is the kth independent variable at
location i; m is the number of independent variables; βi0 is the intercept parameter at
location i; βik is the local regression coefficient for the kth independent variable at location
i; and εi is the random error at location i.

GWR allows coefficients to vary continuously over the study area, and a set of
coefficients can be estimated at any location – typically on a grid so that a coefficient
surface can be visualised and interrogated for relationship heterogeneity. GWR makes a
point-wise calibration concerning a ‘bump of influence’: around each regression point
where nearer observations have more influence in estimating the local set of coefficients
than observations farther away (Fotheringham et al. 1998). In essence, GWR measures the
inherent relationships around each regression point i, where each set of regression
coefficients is estimated by weighted least squares. The matrix expression for this
estimation is

β̂i ¼ XTWiX
� ��1

XTWiy (2)

2 B. Lu et al.
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where X is the matrix of the independent variables with a column of 1s for the intercept; y
is the dependent variable vector; β̂i ¼ βi0 ; . . . βim

� �T
is the vector of m + 1 local regression

coefficients; and Wi is the diagonal matrix denoting the geographical weighting of each
observed data for regression point i.

Here, the weighting scheme Wi is calculated with a kernel function based on the
proximities between regression point i and the N data points around it. A number of kernel
functions can be used for the weighting scheme, where for this study a Gaussian kernel is
specified, which in its usual continuous form can be defined as

Gaussian : wij ¼ exp � 1

2

dij
b

� �2
" #

(3)

where dij is the distance between observation point j and regression point i, for which the
ED is generally employed with planar coordinates, and b is the kernel bandwidth. The
bandwidth is the key controlling parameter and can be specified either by a fixed distance
(i.e. a fixed bandwidth) or by a fixed number of nearest neighbours (i.e. an adaptive
bandwidth). GWR defaults to the corresponding global regression if a very large band-
width is specified such that all geographical weights tend to unity.

An optimum bandwidth can be found by minimising some model goodness-of-fit
diagnostic (Loader 1999), such as the cross-validation (CV) score (Cleveland 1979,
Bowman 1984), which only accounts for model prediction accuracy, or the Akaike
Information Criterion (AIC) (Akaike 1973), which accounts for model parsimony (i.e. a
trade-off between prediction accuracy and complexity). In practice, a corrected version of
the AIC is used, which unlike basic AIC is a function of sample size (Hurvich et al.
1998). Thus for a GWR model with a bandwidth b, its AICc can be found from

AICc bð Þ ¼ 2n ln σ̂ð Þ þ n ln 2πð Þ þ n
n ¼ tr Sð Þ

n� 2� tr Sð Þ
� �

(4)

where n is the sample size; σ̂ is the estimated standard deviation of the error term; and tr
(S) denotes the trace of the hat matrix S. The hat matrix is the projection matrix from the
observed y to the fitted values ŷ (Hoaglin and Welsch 1978), where for GWR each row ri
of this hat matrix is

ri ¼ Xi X
TWiX

� ��1
XTWi (5)

where Xi is its ith row of the matrix of independent variables X. In this study, we calibrate
all GWR models using the AICc approach. Observe that (local) sample size will decrease
with bandwidth size (i.e. n becomes N), thus AICc increases the relative penalty for model
complexity with small bandwidth sizes. Furthermore, as we have specified a continuous
kernel, the value of N should be regarded as an effective N (i.e. the Gaussian kernel is only
asymptotic to its bandwidth).

3. Why use a non-ED metric in GWR?

GWR provides an intuitive and technically accessible tool to explore spatially varying
relationships (Páez and Wheeler 2009). With attention to improving its performance,
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numerous contributions have been made. For example, different kernel functions have
been suggested (e.g. Brunsdon et al. 1996, Fotheringham et al. 1998, Yrigoyen et al.
2007) and different rules to select an optimum bandwidth have also been proposed (e.g.
Fotheringham et al. 2002, Páez et al. 2002, Farber and Páez 2007). Methods to address
local collinearity issues that are inherent in local regression modelling have also been
developed (Wheeler 2007, 2009).

However, the choice of distance metric has been largely neglected,1 and in practice,
GWR uses ED to measure ‘spatial proximity’, although great circle measurements for
unprojected geographical coordinates are possible (Charlton et al. 2007). Of the few
attempts to use a non-ED metric in GWR, Lloyd and Shuttleworth (2005) modified a
ward-to-ward distance matrix by calculating ward-to-ward distance with straight-line
distances between ward centroids and within-ward distance as the mean distance between
enumeration district centroids; Huang et al. (2010) introduced a spatio-temporal distance
under an ellipsoidal coordinate system for their geographically and temporally weighted
regression model.

Our real world space is not only an absolute geometric container for human activities,
but is also a cognitive space which is mentally constructed by spatial relations or
phenomena (Kitchin 2009). A geographical space is usually too complicated to be
measured simply by ED metrics. In practice, a geographical space often refers to an
environmental space, which is characterised by the knowledge of the environment that
surrounds us (Montello 1992). This knowledge is often known as environmental, geo-
graphical or spatial context. Different spatial contexts may provide distinctive cognitions
of the surrounding space. Accordingly, distance metrics are perceived in a concrete spatial
context, even for the same person or application (Worboys 1996).

As addressed empirically by Longley et al. (2005), the distance metric in a distance-
decay scheme is potentially dependent on a number of factors, including: physical factors
(e.g. rivers, road infrastructure and associated conditions of accessibility), socio-economic
factors (e.g. preferences to hospitals, schools and stores) and administrative geographies.
In this sense, a number of distance metrics have been used for geographical space, such as
(1) Manhattan distance based on the taxicab geometry (Krause 1987); (2) chamfer
distance designed for a lattice or grid space (Leymarie and Levine 1992, De Smith
2004); (3) shortest path distance (Smith 1989); and (4) qualitative distance by translating
an absolute distance metric to linguistic terms (Gahegan 1995, Hernández et al. 1995,
Guesgen and Albrecht 2000, Yao and Thill 2005).

Considering the many complex and diverse situations that GWR can be applied to, it
is reasonable that the option of specifying a non-ED metric, in addition to the Euclidean
one, is available. Subject areas that GWR has been applied to include (1) housing market
modelling (e.g. Bitter et al. 2007, Páez et al. 2008); (2) regional economics (e.g. Yu 2006,
Öcal and Yildirim 2010); (3) urban and regional analysis (e.g. Ali et al. 2007, Noresah
and Ruslan 2009); (4) sociology (e.g. Jordan 2006, Cho and Gimpel 2009, Lee et al.
2009); and (5) ecology and environmental science (e.g. Svenning et al. 2009, Windle
2010). However, for GWR studies involving transportation, river/stream networks or
some complex terrain conditions, ED metrics may fail to reflect true spatial proximity,
and instead, non-ED metrics should be considered, such as road ND, TT, water distance or
landscape distance. In these situations, the ED metric may lead to inaccurate coefficient
estimates, and in turn, a spatial pattern in estimates that is wrongly interpreted because of
artefacts from the straight-line measure between the local regression calibration points and
the data points. Intuitively, the more appropriate the distance metric is, the better GWR
should perform.

4 B. Lu et al.
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Observe that the distance metric is an essential but separate component of the GWR
technique. There is no special statement that the distance metric dij has to be Euclidean.
Thus, the ED metric can be directly replaced by an appropriate non-ED measure in the
basic GWR model. Furthermore as the weights matrix Wi is diagonal, there is no need to
check for positive definiteness, as with a (full) covariance matrix needed in kriging
(Diamond and Armstrong 1984). Thus, the theoretical framework of GWR and any
related GW model (e.g. GW principal components analysis (Harris et al. 2011a)) can
still be followed with a generalised distance metric (Euclidean or non-Euclidean).

4. Case study: GWR using a non-ED metric

4.1. Case study data

4.1.1. London house price and hedonic data

As a case study, a house price data set for London, UK, is used to assess and compare
GWR models with different distance metrics. This data set is sampled from a house price
data set provided by the Nationwide Building Society of the United Kingdom and was
combined with various hedonic independent variables (Fotheringham et al. 2002). The
data consists of 2108 properties sold during the 2001 calendar year, which are geo-coded
using the postcode of each property. The locations of these properties are visualised in
Figure 1. We choose to model house price data from 2001, as it matches available road
network data and also coincides with a UK census that provides some of the hedonic
variables.

Thus, the regression for this study is a hedonic house price model (Goodman
1978), a model that has been widely applied in exploring a housing market, where
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Figure 1. Locations of sampled properties in the London area.
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hedonic characteristics are typically divided into locational attributes, structural attri-
butes, neighbourhood attributes and other features (Goodman 1989, Chin and
Chau 2003). Accordingly for our study, the sale price, PURCHASE, the dependent
variable, is related to the following 15 independent variables that reflect structural
characteristics, construction time, property type and local household income
conditions:

● FLOORSZ is the floor size of the property in square metres;
● BATH2 is 1 if the property has 2 or more bathrooms, 0 otherwise;
● BEDS2 is 1 if the property has 2 or more bedrooms, 0 otherwise;
● CENTHEAT is 1 if the property has central heating, 0 otherwise;
● GARAGE1 is 1 if the property has one or more garages, 0 otherwise;
● BLDPWW1 is 1 if the property was built prior to 1914, 0 otherwise;
● BLDINTW is 1 if the property was built between 1914 and 1939, 0 otherwise;
● BLD60S is 1 if the property was built between 1960 and 1969, 0 otherwise;
● BLD70S is 1 if the property was built between 1970 and 1979, 0 otherwise;
● BLD80S is 1 if the property was built between 1980 and 1989, 0 otherwise;
● BLD90S is 1 if the property was built between 1990 and 2000, 0 otherwise;
● TYPEDETCH is 1 if the property is detached (i.e. it is stand-alone), 0 otherwise;
● TYPETRRD is 1 if the property is in a terrace of similar houses, 0 otherwise;
● TYPEFLAT is 1 if the property is a flat or apartment, 0 otherwise;
● PROF is the percentage of the workforce in professional or managerial occupations

in the census enumeration district in which the house is located.

In many housing market studies, spatial dependence in house price and spatial hetero-
geneity in its relationships to hedonic independent variables have been explored. For the
latter, GWR has been extensively applied to identify spatially varying influences on
house price. Here GWR has often improved the goodness-of-fit diagnostics in compar-
ison with (1) the global regression (e.g. Gao and Asami 2005, Yu 2007, Cho et al. 2009,
Díaz-Garayúa 2009, Vichiensan and Miyamoto 2010), (2) the expansion method
(Kestens et al. 2006, Bitter et al. 2007), (3) multivariate moving window kriging
(Páez et al. 2008) and (4) spatial simultaneous autoregressive regression (Löchl and
Axhausen 2010), where models (2) and (3) can similarly account for non-stationary
relationships. Non-stationary models, related to GWR, have also been used in this
context, such as the area-to-point local kriging with external drift model presented in
Yoo and Kyriakidis (2009).

In all such studies, the spatial models were calibrated using an ED metric. However,
a house is a place for people to live or work from, which constitutes a main space for
their activities. Clusters of houses connected by roads or paths form an organism.
Thereby, it is reasonable to consider connected relationships underlying a housing
market. As such, we investigate the use of ND and TT metrics with GWR and compare
their respective performances with basic GWR in exploring the London house price
data. Further work could investigate the use of non-EDs for all of the listed spatial
models, not just GWR. Observe that preliminary work on GWR with a ND metric (only)
can be found in Lu et al. (2011), using a small subset of the London house price data of
this study. Here, the resultant goodness-of-fit statistics indicated an initial promise in the
ND model, which leads us to this study’s considerably extended and more insightful
presentation.

6 B. Lu et al.
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4.1.2. London road network data

Road network data produced by the UK Ordnance Survey (OS) in 2001 is used to
calculate the ND and TT metrics for our GWR models. To get a relatively accurate TT,
the road speed limits are used as the average speeds for each road link. The locations of
the speed limits are provided by Transport for London and are used for intelligent speed
adaptation technology (Transport for London 2011). Based on these locations, a map of
speed limits for the road links over London is produced in Figure 2. Notably, the locations
of our house data are not on the road network. As such, we established a topological
relationship between the house points and the road network, by allowing each house point
to correspond with its nearest point on the network. Observe that this operation, together
with the errors attached to geo-coding properties at the post-code level, and known quality
issues with the road network data itself will introduce a degree of bias in the ND and TT
distances dij used in all GWR models.2 The resultant ND and TT matrices for our study
data are calculated using the R packages, shp2graph (Lu and Charlton 2011) and igraph
(Csardi and Nepusz 2006).

4.2. Hedonic variable selection

4.2.1. Global regressions

As with any GWR study, it is important to estimate the parameters of the global
regression, so that this benchmark model can be compared to its GWR counterpart. As
there is no single agreed functional form in hedonic price modelling (Halvorsen and
Pollakowski 1981, Fotheringham et al. 2002), we use a pseudo stepwise procedure for
exploring our data with a limited number of ordinary least squares (OLS) regression
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Figure 2. London road network and speed limits of road links.
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models with respect to hedonic variable selection. The procedure is described in the
following four steps:

Step 1. Start by fitting all possible bivariate OLS regressions by sequentially regres-
sing a single hedonic variable against the PURCHASE variable.

Step 2. Find the best performing model which produces the minimum AICc value and
permanently include the corresponding hedonic variable in subsequent models.

Step 3. Sequentially introduce a variable from the remaining group of hedonic
variables to construct new models with the permanently included hedonic variables
and determine the next permanently included variable from the best fitting model
that has the minimum AICc value.

Step 4. Repeat step 3 until all the hedonic variables are permanently included in the
model.

Observe that although we use this pseudo stepwise procedure for hedonic variable
selection with the OLS regression, the procedure was actually developed for use with
GWR. Here GWR models can be compared using different (1) distance metrics, (2) kernel
specifications and (3) hedonic variable subsets. This complexity in model choice for
GWR soon becomes unmanageable with a standard stepwise procedure, and our pseudo
stepwise procedure tries to address this problem. That said, the GWR model selection
process can still be somewhat tedious, even with this simplified procedure. We choose to
use the pseudo stepwise procedure for the OLS regression, instead of a standard procedure
(which for the OLS model is entirely viable), as it provides a means to compare a range of
ordered OLS regression fits (by variable subset) with their corresponding GWR fits with
different distance metrics and different kernel specifications.

In our model selection procedure, the hedonic variables are iteratively included into
the OLS model in a ‘forward’ direction. The procedure results in 120 OLS regression fits,
which is a small subset of the total number of models that are possible (thus, there is no
guarantee that most parsimonious OLS regression fit is actually found).The results of this
procedure are shown in Figure 3a and b. Figure 3a presents a circle view of the 120 OLS
regression fits, where the dependent variable PURCHASE is located in the centre of the
chart and the independent hedonic variables are represented as nodes differentiated by
shapes and colours; Figure 3b presents the corresponding AICc values from the same 120
OLS regressions.

For clarity on Figure 3a, a model with FLOORSZ as the hedonic variable produces the
lowest AICc for the first round of bivariate regressions. This variable is thus retained,
giving the inner most (partial) circle as a series of red stars, the symbol associated with
FLOORSZ. Next, for the regressions with two hedonic variables, a model with FLOORSZ
and PROF produces the lowest AICc. Thus, PROF is the next variable retained, giving the
next (partial) circle as a series of orange diamonds, the symbol associated with PROF.
This pattern continues until model no. 120, which includes all 15 variables. Thus, this
chart need only be viewed in context of which variable is retained at each of the 15 key
stages (i.e. first FLOORSZ, then PROF, then BATH2, etc., which is the order given in the
legend). Tentatively, we can assume this order reflects the relative importance of each
hedonic variable in explaining house price. Observe that at each of the 15 stages, the
regressions are ordered by their AICc, with the regression with the highest AICc first. This
is clearer in Figure 3b.To assist in the reading of this chart, grey lines are used to separate
groups of models with a different number of hedonic variables (intercept not counted);

8 B. Lu et al.

D
ow

nl
oa

de
d 

by
 [

B
in

bi
n 

L
u]

 a
t 1

9:
24

 1
5 

Ja
nu

ar
y 

20
14

 



that is starting at 15 models each with one variable, then reducing to one model with all
15 variables.

From Figure 3b, where the same 120 regressions are plotted in the same order as
Figure 3a, we can observe that (a) AICc reduces as more variables are included; (b) this
reduction is relatively small once more than three hedonic variables are included. Observe
that for a model to be considered a more parsimonious and improved fit over an
alternative, all that is required is a difference in AICc (or AIC) of 3 or more units
(Burnham and Anderson 2002).The size and sign of the AICc values are irrelevant, in
this respect. Thus, a reduction in AICc from some benchmark model can be used as a key
model fit diagnostic.

4.2.2. GWR calibrations with ED, ND and TT metrics

We now calibrate the corresponding GWR models to the same 120 OLS regressions,
above. Here we apply GWR using ED (the basic fit), ND and TT metrics, using both fixed
and adaptive kernel bandwidths, with each bandwidth found optimally via the minimised
AICc approach. Thus, 120 × 6 = 720 GWR models are assessed in total, and for a given
model number (1–120), the hedonic variables will remain the same, whilst the optimal
bandwidth and distance metric of the six GWR models will vary.

Observe that as different distance metrics are used, it is not appropriate to compare the
three adaptive or the three fixed bandwidth GWR models (for a given model number)
using the same bandwidth size, as inevitably this would favour one model over the other

Circle view of tested regression models using OLS

AICC values of tested regression models using OLS
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Figure 3. Results of the OLS regression stepwise procedure (120 models in total).
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two. For example, if this bandwidth was chosen as that found optimally for the basic
GWR fit, then this particular GWR model would have an unfair advantage. Conversely,
comparing our GWR models with the three different optimised bandwidths would appear
to make model comparisons difficult, as we cannot isolate the effects of a particular
distance metric. However, as discussed in Section 2, AICc implicitly accounts for band-
width size, as GWR models with small bandwidths are considered more complex (i.e.
small local sample size and less degrees of freedom) than corresponding GWR models
with large bandwidths (i.e. large local sample size and more degrees of freedom) (see
Fotheringham et al. (2002)).

Thus, we argue that provided the ED, ND and TT, metric GWR calibrations are based
on an AICc approach (or a similar model parsimony statistic) for their optimised band-
widths, then problems of a subjective comparison associated with using different band-
widths should be alleviated. Conversely, if our GWR models were based on a CV
approach (or a similar prediction accuracy statistic) for their optimised bandwidths, then
it is felt that the differences in bandwidth (and in particular, differences in local sample
size) do matter, as they are not accounted for in the minimised statistic. That is, in the
latter case, it is not possible to determine whether an improvement in model fit is a
consequence of the distance metric used or a consequence of using more or less data in the
local calibration.

Figure 4 plots the AICc values from all 720 GWR calibrations. From this plot, the
following points are observed with respect to goodness-of-fit: (1) GWR models using
fixed bandwidths consistently outperform those using adaptive ones; (2) for fixed band-
widths, GWR models using the TT metric consistently perform the best; (3) for fixed
bandwidths, GWR models using the ND metric usually outperform basic GWR, except
for models with 10–12 hedonic variables when they perform equally or 12–15 hedonic
variables when basic GWR performs better; (4) for adaptive bandwidths, GWR models
using non-ED metrics usually outperform basic GWR, except for models with one to two
hedonic variables; (5) for adaptive bandwidths, GWR models using ND metrics consis-
tently perform better than those using TT metrics; (6) differences between GWR calibra-
tions with respect to the choice of distance metric are greater using fixed bandwidths than
adaptive ones; and (7) overall, GWR models using non-ED metrics tend to perform better
than basic GWR models.

Observe that similar to the 120 OLS regressions, there is no guarantee that the most
parsimonious GWR models are included in our 720 calibrations with respect to hedonic
variable selection. Furthermore, the model rankings found for the OLS regressions are not
the same as that found for the GWR fits (compare Figure 3b with Figure 4) and there is no
reason why they should be. Here the largest reductions in AICc for the OLS regressions
only occur when the number of hedonic variables is increased, while this is also true for
GWR, significant reductions in AICc can also occur when a particular hedonic variable is
included. For example, significant reductions occur at model nos. 31, 47, 59, 72, 79, 88,
96, 103 and 110 where in all cases, the TYPEFLAT variable is introduced (see also Figure
3a).Thus, this particular hedonic variable is clearly more important in a GWR calibration
than the OLS regression calibration (and in turn, suggests a noteworthy non-stationary
relationship in this respect). Observe, however (and noting points (3) and (4) above), that
no particular hedonic variable clearly (or significantly) stands out in response to a change
of metric in the GWR fit. If this were the case, then Figure 4 would have lines that on
occasion strongly diverged from each other, when this particular variable was introduced.

These issues are not considered an oversight or problem, as our study’s prime
objective is a comparison of GWR models with different distance metrics, where this
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study’s 120 OLS regressions and 720 GWR fits should be sufficient for this purpose.
Variable selection in GWR is a topic in its own right, which requires its own presentation.
Our investigation does provide some insight into this issue when distance metrics are
allowed to vary. However, for this particular data set, variable choice appears to only
marginally mitigate against a poorly chosen distance metric (i.e. points (3) and (4) above),
where basic GWR sometimes performs slightly better than a non-ED metric counterpart.
An exploratory analysis was conducted in this respect, using the pseudo stepwise proce-
dure for the six different GWR models, where, for a given number of hedonic variables, a
slightly different set of hedonic variables can sometimes result for each GWR model form.
We do not present these results as (1) a different set of hedonic variables may result from
only a small reduction in AICc and (2), comparing GWR models with different hedonic
variables, in addition to different distance metrics, would again entail that the effects of a
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Figure 4. AICc values from 720 GWR models where ED, ND and TT metrics are applied for both
fixed and adaptive bandwidths. Abbreviations: (1) EDF, ED with a fixed bandwidth; (2) NDF, ND
with a fixed bandwidth; (3) TTF, TT with a fixed bandwidth; (4) EDA, ED with an adaptive
bandwidth; (5) NDA, ND with an adaptive bandwidth; (6) TTA, TT with an adaptive bandwidth.
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particular distance metric are not isolated (which is our study’s focus). For other studies,
however, the choice of independent variables in the GWR model may more strongly
depend on the chosen distance metric. As variable choice can similarly depend on the
bandwidth, then variable selection in this richer class of GWR models is clearly a
challenging topic.

4.3. Investigation of a single model specification

It is unrealistic to delve deeper into all 720 GWR models, one by one. Thus, we choose a
representative model to illustrate more specific differences in the GWR fits using ED, ND
and TT metrics. As shown in Figure 3, there is relatively little reduction in AICc for the
OLS regressions when more than three hedonic variables are included. Similarly from
Figure 4, there is relatively little reduction in AICc for the GWR models when more than
two hedonic variables are included. Thus, a GWR model with two or three hedonic
variables seems an appropriate choice. Further, this model should be specified with a fixed
bandwidth, as AICc values are consistently lower than that found using an adaptive
bandwidth (Figure 4). From a range of possible candidates (models no. 16 to no. 42),
we choose model no. 42. This model has the largest reduction in AICc for the basic GWR
fit over a non-ED GWR fit using a fixed bandwidth (in this case, using the TT metric).
This model also provides the best performing OLS regression with three or less than three
hedonic variables. Model no. 42 has the following form:

PURCHASEi ¼ β0i þ β1iFLOORSZi þ β2iPROFi þ β3iBATH2i (6)

4.3.1. Summary of the OLS regression and GWR models

Bandwidth, R-squared and AICc results for model no. 42, using OLS regression and GWR
are given in Table 1. Observe that the bandwidths for the GWR models using ND and TT
metrics are actually relatively similar to each other. Here we need to look again at Figure
2, where the average speed is 30 miles/hour in the local areas. From this, a distance
bandwidth for the TT GWR model can be approximately found using the following
expression: 30 × 0.44704 × 174.95 = 2346.29 m (which is not too dissimilar from the
bandwidth of the ND GWR model of 2375.78 m). For the bandwidth of the basic GWR
model, it is hard to clarify the relationship of this bandwidth with the other two. However,
we can say that this bandwidth is not too dissimilar from the other two, as the measure of
ND is always larger than or at least equal to the measure of ED, for the same pair of

Table 1. Calibrations and outputs for the model no. 42 via an OLS regression and via GWR using
ED, ND and TT metrics with fixed bandwidths.

OLS
regression GWR (EDF) GWR (NDF) GWR (TTF)

Bandwidth – 1914.50 (m) 2375.78 (m) 174.95 (s)
R-squared 0.708 0.864 0.875 0.885
AICc 38205.29 37382.97 37337.39 37293.96
AICc reduction (from OLS
regression fit)

0 822.32 867.90 911.33
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locations. The three bandwidth functions (not shown) for the GWR models (i.e. AICc vs.
bandwidth size) were all well-behaved, where in each case, a clear minimum AICc was
reached at the optimal bandwidth.

As expected, all three GWR models provide better model fit diagnostics than the OLS
regression does, where (i) the R-squared values have been increased by around 16% and
(ii) the AICc values have been reduced by at least 822.32. For the GWR models, the two
fits using a non-ED metric provide a significant reduction in AICc compared to the ED fit,
with the fit using the TT metric (significantly) performing the best. Following the
discussion given in Section 4.2.2, it is not considered wise to compare the R-squared
values for the three GWR models, since R-squared values only reflect prediction accuracy
and different bandwidths have been specified. Also higher R-squared values are likely if
bandwidths had been optimised via a CV approach.

4.3.2. Spatial analysis of the GWR residuals

Figure 5a–c depicts discrepancy maps for the absolute residuals (i.e. the absolute value of
the actual PURCHASE price minus the GWR predicted PURCHASE price) from the three
GWR models using ED, ND and TT metrics. Here, Figure 5a subtracts the absolute
residuals of the ED GWR model from the absolute residuals of the ND GWR model and
Figure 5b and c follow accordingly. Thus, our discrepancy maps are only concerned with
comparing the magnitude of the residuals from two different GWR models and not the
direction of the residuals (i.e. they do not convey instances of over- or under-prediction).
For example, for Figure 5a, positive values indicates where ND GWR predicts better,
while negative values indicates where ED GWR predicts better. For context and to aid
interpretation, Figure 6 provides a map of the London boroughs.

From these maps, it appears that the TT GWR model tends to perform both the best
and worst locally, while both non-ED GWR models tend to outperform the basic GWR
model in this local assessment of model fit accuracy. From Figure 5a and b, the non-ED
GWR models can significantly reduce residual size with respect to the basic GWR model
along the River Thames, which runs centrally through London (shown by numerous large
positive difference classes, coloured red). This effect is particularly strong in the West
London boroughs of Richmond upon Thames, Hammersmith & Fulham and Wandsworth.
Such reductions in the residuals are entirely expected, where differences between the
distance metrics are likely to be at their highest, such as points neighbouring some barrier,
which in this instance is the River Thames. Here the ND and TT metrics would strongly
depend on the number of bridges or tunnels (i.e. crossing points).

Furthermore, we calculate the Moran’s I-statistic (Moran 1948) to measure the (global)
spatial autocorrelation for each set of GWR residuals. Small values of Moran’s I indicate a
weak autocorrelation structure in the residuals, which in turn suggests a good GWR fit.
For each of the three residual data sets, we calculate the Moran’s I values using the same
three weighting matrices as in the GWR calibrations (i.e. W_ED, W_ND and W_TT as
labelled in Figure 5d). Thus, nine Moran’s I values are found in total, as plotted in Figure
5d. Here the Moran’s I values from the TT GWR model are relatively always the smallest,
suggesting the weakest autocorrelation structures in this model’s residual data.
Conversely, the Moran’s I values from the ED GWR model are relatively always the
largest, indicating the strongest autocorrelation structures in this model’s residual data.
Thus, the choice of distance metric for calculating the Moran’s I value itself effects the
results in a relative fashion, where the weakest and strongest autocorrelation structures
relate to using the TT and ED metrics, respectively.
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Observe, however, that if we visualise an extra three point curve, where the GWR
calibration and the Moran’s I value use the same distance metric (i.e. a plot from left to
right that joins the lowest blue diamond to the middle red square to the highest green
triangle), the curve is fairly flat, indicating little difference in the autocorrelation status of
each residual data set (and conversely, the weakest and strongest autocorrelation structures
now relate to using the ED and TT metrics, respectively). Thus, the interpretation of this
residual autocorrelation analysis clearly depends on one’s viewpoint on which distance
metric to use for the Moran’s I calculations.

4.3.3. Spatial analysis of the GWR coefficients

GWR is most commonly used in an exploratory fashion, where the local coefficient
estimates are mapped to investigate for any change in data relationships across space.
As such, it is important to investigate for relative changes amongst the coefficient
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Figure 5. Residual data comparisons for the ED, ND and TT GWR fits for model no. 42. The
legend title ‘Abs_Res (EDF-NDF)’ in (a) means the absolute residuals from the ED GWR model
subtracted from the corresponding absolute residuals from the ND GWR model; legend titles in (b)
and (c) should be interpreted in the same way. All GWR models are specified with fixed
bandwidths.
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estimates of our GWR models. Here, discrepancy maps can again be produced by
subtracting the coefficient estimates for each hedonic variable (and the estimates for the
intercept) between each pair of our three GWR models (producing 12 maps in total). For
brevity, we only present the three discrepancy maps for the coefficients of FLOORSZ
(Figure 7a–c). These coefficients reflect the relationship between house price and the size
of the property. For context, Table 2 presents the five number summaries for the
coefficient estimates of FLOORSZ from the three GWR models. Here the (spatial)
variation in this coefficient is larger with the two non-ED GWR models than that found
with the basic GWR model, tentatively suggesting stronger evidence for relationship
heterogeneity.

From the presented coefficient discrepancy maps, it appears that ‘significant’ differ-
ences between the basic and the two non-ED GWR models are more widespread when
using the TT metric than when using the ND metric (say, differences above 50 or below –
50 are considered ‘significant’, i.e. difference classes not coloured yellow in Figure 7a
and b). This observation can be attributed to the great diversity in the road network speeds
used to calculate the TT metric. For example, speed variations lead to relatively large
differences between the ND and TT GWR models, within the boroughs of Waltham
Forest, Southwark and Hounslow.

Again the strongest differences can be observed between the basic and either of the
two non-ED GWR models along the River Thames, particularly in the West London
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boroughs. For example in Richmond upon Thames, there is a cluster of large negative
differences (classes coloured dark green) in both maps (Figure 7a and b). Thus, the
relationship between house price and the size of the property in this area is much stronger
using GWR with a non-ED metric than that found using basic GWR (i.e. for non-ED
GWR, the results suggest that larger houses are more valuable than that indicated for basic
GWR). This may be a consequence of houses north (or west) of the river being more
valuable than houses south (or east) of the river. Conversely, weaker relationships can be
observed when using GWR with a non-ED metric, such as a few clusters of large positive
differences (classes coloured red) down river in the borough of Kensington and Chelsea,
where a property’s location can be more important than its size when determining its
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Figure 7. Comparisons of coefficient estimates for FLOORSZ from the ED, ND and TT GWR fits
for model no. 42.

Table 2. Five number summaries for the coefficient estimates for FLOORSZ for model no. 42 via
GWR using ED, ND and TT metrics with fixed bandwidth. The OLS regression gave a stationary
coefficient estimate of 1412.9.

Metric Minimum 1st Quintile Median 3rd Quintile Maximum

ED 476.8 1168.0 1348.0 1553.0 3150
ND 503.9 1158.0 1343.0 1552.0 3717
TT 395.6 1133.0 1320.0 1552.0 3668
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value. Of course for many areas, this particular data relationship is relatively unaffected by
distance metric choice, such as the outer London boroughs of Havering or Sutton
(boroughs where difference classes are primarily coloured yellow, in all three maps).

4.3.4. Further observations

Although each GWR model is specified with a different AICc defined optimal bandwidth,
it is argued that the observed differences in goodness-of-fit and the estimated coefficients
(at least for FLOORSZ) are fundamentally caused by the distinctive measurements of the
ED, ND and TT metrics. Differences in model calibrations and outputs are interrelated
where major roles are played by the sample point (housing) density, road density,
complexity of road shapes, road speed and the topological relationship between sample
points and the road network. A sparse local network with complicated road shapes will
lead to heightened differences between ED and ND (or TT) metrics. Examples of such
effects can be found in the outer London boroughs of Hillingdon and Bromley (observe
difference classes coloured dark green, in Figure 7a and b). Natural and man-made
barriers like rivers, hills, canals or railways also give rise to major differences between
the metrics (and in turn, model outputs). Here, the River Thames plays a dominant role in
the calibration and interpretation of our GWR models. In contrast, model outputs tend to
be similar where both sample points and road densities are dense and uniformly distrib-
uted (and in doing so, provides uniform road speeds for TT measurements). GWR outputs
are similar in such instances, as more weight (or importance) is attached to the nearest
observations, where the choice of distance metric measuring this ‘nearness’ has little
influence. We call this phenomenon a ‘local ED effect’.

5. Summary and discussion

In summary, a GWR model using a TT metric appears most suited to our London house
price data set, followed closely by a GWR model using a ND metric. A basic GWR model
using an ED metric appears least suited to this data, while all GWR models should use a
fixed bandwidth approach in preference to an adaptive one. Thus, for this particular data
set, the use of a non-ED metric with GWR has clear merit. In particular, such a model has
shown promise in terms of (1) the lowest AICc model fit diagnostics; (2) reduced spatial
autocorrelation in its residuals; and (3) improved interpretation of relationship heteroge-
neity via the spatial distribution of its estimated coefficients. Given such model improve-
ments are often small or subtle, the extra effort involved in modelling with the non-ED
metrics is still considered worthwhile, since it adds to our understanding of the house
price study.

Of course, it is not easy to generalise these results and further empirical work would
be useful, possibly combined with Monte Carlo sampling for added clarity. A more
objective model assessment is possible within a simulation experiment, where data
properties can be controlled. Initial work on this subject is currently underway, where
the simulation of local coefficient surfaces that are suited to evaluating GWR models with
different distance metrics is proving a challenge. Within a simulation experiment, ques-
tions such as (1) which metric provides the most accurate fit and (2) which metric
provides the most accurate assessment of relationship heterogeneity can be objectively
answered. The simulation experiment needs to be realistic enough to guide distance metric
decisions in real case studies.
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Future investigations could also experiment with the use of different weighting
functions to the Gaussian kernels specified in this study (e.g. bi-square, box-car, etc.).
However, it is expected that the overall picture is likely to remain the same, as that found
here. Future work could also investigate the use of non-ED metrics, when GWR is used as
a spatial predictor. This study’s residual analysis suggests that GWR with a non-ED metric
may perform well in this respect. However, the use of different optimised bandwidths for
GWR with different distance metrics requires close attention, especially if a bandwidth is
found via CV. It can be difficult to isolate the specific effects of a non-ED GWR
calibration because of the complexity of the non-ED metric calculations. This predictive
work could extend that conducted by Harris et al. (2010, 2011b).

Finally, it is possible to take an alternative approach to our study problem by first
transforming the coordinate system and then applying the basic (ED) model in this
transformed space. The coordinate transform is such that it accounts for the need to use
a non-ED metric. Results are then back-transformed to the original coordinates for display
and interpretation. Examples for spatial prediction along a river network can be found in
Legleiter and Kyriakidis (2006, 2008), and an example for house price prediction can be
found in Brunsdon (2013). These alternatives were beyond the scope of our study, as the
transformations can be quite involved.3 Future work, however, could compare the
approach of Brunsdon (2013), but now, in a GWR context, to those proposed here.
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Notes
1. This may be due to a certain ignorance of its importance or more likely due to a lack of suitable

software. In the latter case, this is somewhat addressed with the GWmodel R package.
2. Future research could investigate this source of uncertainty more closely, together with its

impact on model outputs. Simulation studies may help in this respect.
3. The idea of transforming the coordinate system can also be found in the context of non-

stationary spatial covariance estimation. For example, see the coastal water distance study of
Løland and Høst (2003) where non-ED metrics are required and the related deformation
methods of Sampson and Guttorp (1992).
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