
Electrochimica Acta  59 (2012) 290– 295

Contents lists available at SciVerse ScienceDirect

Electrochimica  Acta

j  ourna l  ho me  pag e: www.elsev ier .com/ locate /e lec tac ta

An  electrochemical  study  in  aqueous  solutions  on  the  binding  of  dopamine  to  a

sulfonated  cyclodextrin  host

Gillian  M.  Hendy ∗,1,2, Carmel  B.  Breslin1

Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

a  r  t  i  c  l  e  i  n f o

Article history:
Received 5 July 2011

Received in revised form 20 October 2011

Accepted 22 October 2011

Available online 28 October 2011

Keywords:
Inclusion complex

�-Cyclodextrin

Dopamine

Association constant

a  b  s t  r a  c t

Clear  evidence for  the  formation  of a  weak inclusion  complex between  dopamine  (DA)  and a  sulfonated

�-CD  host in aqueous solution  was obtained  using a  combination of electrochemical  approaches.  Using

cyclic voltammetry, a distinct increase  in  the  oxidation  potential  of DA  and  a  reduction  in the  peak  oxida-

tion  current  were observed  on  adding  an  excess  concentration  of the  sulfonated  �-CD to the  electrolyte

solution. Equally,  a clear increase  in the  half-wave oxidation  potential of DA  was observed  in the  presence

of the  sulfonated  �-CD using  rotating  disc  voltammetry.  The association  constant,  K,  was computed  as

331.3 ± 5.8,  indicating  the  formation of a  weak  inclusion  complex,  while a 1:1  stoichiometry  for  the  inclu-

sion complex  was  deduced from  a Job’s  plot  analysis. The rate  constant for  the  oxidation  of DA  was found

to decrease  on formation  of the  inclusion  complex.  This  was attributed  to higher reorganization  energy  for

the oxidation  of the  included  DA. These changes in the  electrochemistry  of DA  were  not  observed  when

an  excess of the  smaller  sulfonated  �-CD was added  to the  electrolyte,  indicating  that  these  variations

are not  connected  with  simple  electrostatic  interactions  between  the  protonated DA and  the  anionic  sul-

fonated groups.  It  is  proposed  that  the  aromatic  ring  of  the  DA  molecule  includes  within  the  cyclodextrin

cavity, while the  protonated amine  group remains  outside  the  cavity,  bound  electrostatically  with the

anionic sulfonated  groups.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cyclodextrins (CD) are macrocyclic oligosaccharides composed

of �-d-glucopyranoside units linked by �-(1,4) bonds. They are  gen-

erally made up of glucopyranoside units of 4C1 chair conformation.

The three common members are �-, �- and �-CD, which have 6,

7 and 8 repeating glucopyranoside units, respectively. These units

are orientated in a cyclic manner giving the typical conical or trun-

cated cone structure with a  relatively hydrophobic interior and

hydrophilic exterior [1].  This structural property gives cyclodex-

trins the ability to include appropriately sized guests, through

non-covalent interactions, such as hydrogen bonding, hydrophobic

interactions and electrostatic interactions [2–7].

Cyclodextrins can also be chemically modified to replace the

hydroxyl groups on both the primary and secondary rims of the

CDs, with a variety of appropriate alkyl or sulfate groups [8].  In
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particular, negatively charged cyclodextrins can be obtained by

substitution of either the primary or secondary hydroxyl group

of �-CD with a  sulfonate group [9].  On the primary rim there are

seven potential substitution sites corresponding to the C-6 posi-

tions, while, on the secondary rim there are 14, represented by the

C-2 and C-3 positions, as shown in  Fig. 1.  Amini et al. [10] reported

that substitution of these CDs is  predominantly at the C-2 and

C-6 positions, while, Chen et al. [11] confirmed nearly complete

sulfation at the C-6 position of the primary hydroxyl groups and

partial sulfation at the C-2 secondary hydroxyl groups. They also

reported no substitution at the C-3 positions. From these reports it

can be concluded that almost the entire primary rim and some of

the secondary rim is sulfonated and negatively charged. Sulfonated

�-CDs are  used in chromatography and especially in  capillary elec-

trophoresis for the enantiomeric separation of compounds [12].

However, there have been very few studies carried out on the inclu-

sion of guest molecules within the cavity of the sulfonated �-CDs.

In this paper we report on the formation of an  inclusion com-

plex between sulfonated �-CD and dopamine (DA). DA was  chosen

as it represents a  large family of amine-based drugs. DA is  an

interesting guest as it is protonated at near-netural pH, provid-

ing a  positively charged guest molecule. In addition, dopamine is

electroactive, being readily oxidized into the o-dopaminoquinone

[13].  This means that the formation of the inclusion complex can

0013-4686/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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Fig. 1. Chemical Structure of �-CD, with the C atoms numbered from 1  to  6.

be studied using electrochemical techniques. This electrochemical

approach is used frequently to  study the formation of an inclusion

complex [14–18]. For example, Strelets et al. [19] have studied the

formation of an inclusion complex between ferrocene and �-CD

using cyclic voltammetry by  monitoring the oxidation of ferrocene

in the absence and presence of the neutral �-CD. They explained

the positive shift in the oxidation potential and the reduction in

the peak oxidation current for ferrocene, which was  observed in

the presence of the �-CD, to the formation of an inclusion complex.

Also, Coutouli-Argyropoulou et al. [20] reported on the electro-

chemical properties of derivatives of  ferrocencein the presence of

�-CD. Again, similar shifts in  the peak potential for the oxidation of

ferrocene derivatives was  observed, indicating the formation of the

inclusion complex, while Yanez et al. [21] obtained similar current

and potential data for nifedipine (NF) and nicardipine (NC) in  the

presence of neutral �-CD.

2. Experimental

2.1. Chemicals

Dopamine, DA, sulfonated �-cyclodextrin sodium salt and

sulfonated �-cyclodextrin sodium salt were purchased from

Sigma-Aldrich. The degree of sulfation of  the randomly substituted

�-cyclodextrin was reported as 7–11 mol  of sulfonated groups per

mol  of �-cyclodextrin (�-CD). It should be noted that the exact

molar mass of the sulfonated CD is unknown and in  cases where

the concentration was required, e.g.,  in relation to  the Job’s plots,

the molecular mass was computed using an average value of 9 mol

of sulfonate per mol  of �-CD. All other reagents were of analyti-

cal grade, obtained from either Sigma-Aldrich or Riedel de-Haen

and were used as received. A citrate–phosphate buffer, with a  pH

of 6.0 (formed by mixing 0.2  mol  dm−3 Na2HPO4 and 0.1 mol  dm−3

C6H8O7), was used as the supporting electrolyte. All solutions were

prepared in deionised water. All DA-containing solutions were

prepared immediately before use and were de-oxygenated with

nitrogen to avoid the oxidation of DA.

2.2. Instrumentation

Cyclic voltammetry and rotating disc voltammetry were carried

out using a Solartron Model SI 1285 potentiostat. All measurements

were performed at room temperature (24 ± 2 ◦C) in a standard

three-electrode cell with a glassy carbon (GC) electrode as the

working electrode, SCE as the reference electrode and a  high

surface area platinum wire as the counter electrode. The GC elec-

trodes (4 mm in diameter) were encased into a  larger insulating

Teflon sheath and set in place using a non-conducting epoxy resin.

Electrical contact was  achieved using a  copper wire. The elec-

trodes were polished to  a  smooth surface finish using diamond

pastes (Buehler MetaDiMonocrystalline Diamond suspension) on

Fig. 2. Cyclic voltammograms recorded at  a  GC electrode at 50 mV  s−1 in

5.0 ×  10−4 mol dm−3 DA in a citrate–phosphate buffer, pH 6.0, in the  absence and

presence of increasing concentrations of  sulfonated �-CD. Inset the plot of Ip vs. v1/2

on  GC disc electrode in citrate–phosphate buffer, pH  6.0, for 5.0  ×  10−4 mol dm−3 DA

in the absence �  and presence of 2.0 × 10−2 mol  dm−3 S�-CD.

a  Buehler micro-cloth, rinsed with water, sonicated to remove any

polishing residues, rinsed again in  water and finally dried.

The cyclic voltammetry experiments were recorded at

50 mV  s−1 in the potential interval of −250 to  800 mV vs. SCE.

The DA concentration was  maintained fixed at 5.0 ×  10−4 mol  dm−3

in  the supporting electrolyte, while the concentration of  the sul-

fonated �-CD host was  varied to give solutions with an excess of the

sulfonated �-CD. The steady-state rotating disc voltammograms

were recorded in  a  similar electrochemical window with rotation

speeds from 200 to 2000 rpm.
1H-NMR experiments were performed on a Bruker 300 MHz

NMR spectrometer at 293 K in  D20 (>99.92% isotopic purity and

purchased from Apollo Scientific). 1H NMR  peak protons were

reported in ppm relative to the internal reference, tetramethylsi-

lane (ı =  0.0  ppm). A 0.1 mol  dm−3 KCl was  used to  buffer the ionic

strength, as the sulfonated �-CD is  highly charged and ionised.

Varying amounts of sulfonated �-CD dissolved in 0.1 mol  dm−3

KCl/D2O  were added to  0.5  mL  volumes of a  5.0 ×  10−4 mol  dm−3

DA stock solution made up in  0.1 mol  dm−3 KCl/D2O, to generate

final sulfonated �-CD concentrations that were in excess. The sam-

ples were allowed to equilibrate for 60 min  before acquiring the 1H

NMR  spectra. The aromatic region of the DAguest molecule was

monitored to follow the formation of the inclusion complex, as

the randomly substituted sulfonated �-CD had a complex 1H  NMR

spectrum, making it too difficult to follow the resonance shifts of

the protons from the sulfonated �-CD.

3. Results and discussion

3.1. Evidence for the formation of an inclusion complex

The influence of  the sulfonated �-CD on the cyclic voltam-

mograms of DA can be seen in  Fig. 2. Here, voltammograms

are presented for increasing concentrations of sulfonated �-CD,

but with a  fixed 5.0 ×  10−4 mol  dm−3 concentration of DA. In the

absence of the sulfonated �-CD, oxidation of DA is  observed with a

peak potential, Ep
A,  at 300 mV  vs. SCE, which corresponds to  the oxi-

dation of the DA to the o-dopamine-quinone. Upon reversal of  the

potential, a cathodic peak, Ep
C, at 120 mV  vs. SCE is observed, corre-

sponding to  the reduction of o-dopamine-quinone back to  DA. This

is consistent with the well-known quasi-reversible electrochem-

istry of DA [13].
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Fig. 3. The anodic (�) EP
A, and cathodic (�),  EP

C, peak potentials recorded in a

5.0 × 10−4 mol  dm−3 DA solution in a  pH 6.0 citrate–phosphate buffer plotted as

a  function of the concentration of  the sulfonated �-CD in solution.

Although the voltammograms recorded in the presence of the

sulfonated �-CD have similar characteristics to that recorded in

a pure DA solution, there are two significant differences. Firstly,

there is a considerable decrease in  the peak oxidation current,

with increasing concentrations of sulfonated �-CD, which can be

attributed to a decrease in the diffusion coefficient of DA.  As shown

in the inset in Fig. 2, there is  a  linear relationship between the

peak current for the oxidation of DA and the square root of the

scan rate, indicating that the reaction is under diffusion control, in

agreement with the Randles-Sevcik equation. However, there is  a

significant difference in the slopes of the linear plots indicating a

lower diffusion coefficient for the DA when in the presence of a large

excess of the sulfonated �-CD. Secondly, there is a  gradual increase

in the peak oxidation potential with increasing concentrations of

sulfonated �-CD. This indicates that it  becomes more difficult to

oxidize the DA molecule in the presence of the sulfonated �-CD.

The shifts in the oxidation peak potentials are clearly evident in

Fig. 3, where the peak potentials for the oxidation of  DA, Ep
A,  are

shown as a function of the concentration of the sulfonated �-CD. A

clear increase in Ep
A is observed, varying from 300 mV  vs.  SCE in  the

absence of the sulfonated �-CD to 410 mV  vs.  SCE in  the presence

of an excess of the sulfonated �-CD. However, there are  no  changes

in the peak reduction potentials, Ep
C; the Ep

C remains essentially

constant at 120 mV  vs.  SCE regardless of the concentration of the

sulfonated �-CD.

There are two possible explanations that could account for these

observations. Firstly, these data are consistent with the formation

of an inclusion complex between the DA and the sulfonated �-

CD. Similar changes in  the peak currents and potentials have been

reported previously with other host-guest systems [22,23]. In  par-

ticular, Dang et al. [22] reported similar results for the complexation

of benzoquinone and anthraquinone with neutral �-CD. A similar

trend was observed by Gao et al. [23] in studying the complexation

of basic brown G with �-CD. However, the near  constant reduc-

tion potentials, EP
C,  Fig. 3, indicate that the o-dopamine-quinone

is expelled from the cavity, or that the binding constant for the

o-dopamine-quinone-sulfonated �-CD inclusion complex is much

lower than the inclusion complex formed with DA as the guest.

Secondly, electrostatic interactions between the ionized sulfonated

groups and the protonated DA molecule are possible and if these are

sufficiently strong, a similar reduction in the diffusion coefficient

of DA may  be observed together with shifts in  the peak potentials.

However, the lack of any significant influence of the sulfonated

Fig. 4.  Illustration of the DA molecule, its orientation and intermolecular distances

from the furthest points.

�-CD on the reduction of the protonated o-dopamine-quinone to

DA suggests that a  simple electrostatic interaction between the pro-

tonated amine group and the anionic sulfonated groups is  not the

dominant interaction.

To gain insight into the extent of these electrostatic interactions,

similar experiments were carried out with the sulfonated �-CD and

the neutral �-CD. The diameter of the �-CD is  smaller (4.9 Å) than

the �-CD cavity (6.2 Å), as it only contains 6 glucose rings, but it

has a similar degree of  sulfation as the sulfonated �-CD, while the

neutral �-CD provides the larger sized cavity free from any anionic

charge. The dimensions of the DA molecule are highlighted in Fig. 4.

These data were obtained using a  density functional theory (DFT)

calculation. Illustrations of both the face and side geometry of  the

DA molecule are shown. The total diameter is  taken from the O–H

group on the aromatic ring to the hydrogen on the nitrogen atom

to give a total diameter of  8.95 Å, while the width of the aromatic

ring, with the hydroxyl groups included, is  6.05 Å. The bulk of  the

molecule is planar. It is  very  clear based on these dimensions that

DA cannot form an inclusion complex or  fit within the cavity of the

smaller sulfonated �-CD.

The cyclic voltammograms recorded in  a solution of

5.00 × 10−4 mol  dm−3 DA were identical to  those recorded

with an excess of the sulfonated �-CD, or an excess of the neutral

�-CD. The anodic peak potentials and peak currents of DA in  the

absence and presence of a  large excess of the CDs  were identical.

These results are very different to  those presented in Fig. 2,  and

they provide clear evidence that the changes in  the oxidation of

DA in the presence of the sulfonated �-CD are not simply due to

electrostatic interactions between the protonated DA molecule

and the anionic sulfonated groups on the �-CD. However, given

the data recorded with the neutral �-CD, it is clear that the anionic

rim of the cyclodextrin facilitates the formation of an  inclusion

complex with the protonated DA molecule.

3.2. Stoichiometry and structure of the inclusion complex

The cyclic voltammetry data provide evidence that an inclusion

complex is formed between the DA molecule and the sulfonated �-

CD in  solution. In order to obtain information on the stoichiometry

of the inclusion complex, a Job’s plot was  generated. In this case,

cyclic voltammograms were recorded in different DA-sulfonated

�-CD solutions, where the mole fraction of DA was varied from

0.0 to 1.0, in  increments of 0.1. The Job’s plot was  generated by

following the changes in  the peak oxidation current of DA using

the relationship given in Eq. (1),

�ip =  ipo − ipx (1)
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Fig. 5. Job’s plot showing the difference in the peak oxidation current of DA, �ip, as

a function of the mole fraction of DA in a  buffered sulfonated �-CD solution.

where, ipo and ipx are  the peak currents of DA in the absence and

presence of the sulfonated �-CD, respectively. These �ip values

were then multiplied by  the corresponding mole fraction and the

product was  plotted as  a  function of  the mole fraction. A  typical

plot is presented in  Fig. 5.  A  clear maximum value is seen at a  mole

fraction of 0.5, which confirms that the DA and sulfonated �-CD

bind and form an inclusion complex in  a  1:1 stoichiometric ratio,

i.e., one DA molecule is included in  a  single sulfonated �-CD cavity.

Further information on the nature of the inclusion complex

was obtained using NMR  spectroscopy. The chemical structure of

DA, with the hydrogen atoms labeled as, a-H, b-H, c-H, d-H and

e-H, is shown in  Fig. 6(a). The protons designated as a-H, b-H

and c-H correspond to  the aromatic protons while the protons,

d-H and e-H, correspond to the methylene (–CH2–) group pro-

tons. Fig. 6(b) shows the aromatic region of the 1H  NMR  spectra

of 0.02 mol  dm−3 sulfonated �-CD, 5.0  × 10−3 mol  dm−3 DA and a

mixture of DA and the sulfonated �-CD. The letters shown on the

plot represent the aromatic protons depicted in Fig. 6(a), and serve

to illustrate the chemical shift of the individual protons in  the

presence of the sulfonated �-CD. On comparing the 1H  NMR  spec-

trum of DA in the absence and presence of the sulfonated �-CD,

the protons involved in  the inclusion process can be identified. It

is evident from Fig. 6(b) that the chemical shift of the a-H pro-

ton in DA is significant, with �ı  at 0.106 ppm, while the chemical

shift of the c-H is  negligible, with �ı  at 0.002 ppm, indicating that

it remains outside the CD cavity. This upfield, or  low frequency

shift, of the aromatic a-H protons on the DA molecule indicates

a shielding effect, which is  probably due to the increase in  the

electron density inside the cavity from the non-bonding electron

pairs of the glycosidic oxygen bridges [24]. This is  clear evidence

that the aromatic ring of the DA molecule penetrates the cavity

of the sulfonated �-CD. A schematic of the inclusion complex is

presented in Fig. 6(c), which shows the c-H proton and the pro-

tonated amine group outside the cavity and the a-H  proton deep

within the cavity. It is  highly probable that the protonated amine

group is bound electrostatically by  the anionic sulfonated groups

on the rim of the cavity. Indeed, Bratu et al. [25] observed that

the methylene groups of fenbufen remained outside the cavity of

neutral �-CD and the fenbufen molecule entered from the larger

side or the secondary opening of the �-CD ring. Similarly, Chao

et al. [26] showed using NMR  measurements that the aromatic ring

of caffeic acid, a  molecule with similarities to  DA,  lay inside the

�-CD cavity, while the more polar groups remained outside the

cavity.

Fig. 6.  (a) Labeled DA molecule, (b) 1H NMR  spectra recorded in D2O and

0.1  mol  dm−3 KCl for (i) sulfonated �-CD, (ii)  5 × 10−4 mol  dm−3 DA, (iii)

5 ×  10−4 mol  dm−3 DA with an excess of the sulfonated �-CD. The corresponding

protons are  those designated in (a), (c) a  schematic representation of the inclu-

sion complex. Rotating-disc voltammograms of  5.0 × 10−4 mol  dm−3 DA  recorded at

5 mV  s−1 and 500  rpm in a  citrate–phosphate buffer in the (1) absence and presence

of (2) 0.005 mol dm−3 (3) 0.010 mol  dm−3 and (4) 0.020 mol  dm−3 sulfonated �-CD.

The inset shows a plot of  E1/2 vs. the concentration of the sulfonated �-CD.

3.3. Determination of K  and kDA in the presence of the sulfonated
ˇ-CD

In order to calculate the association constant, K,  a  series of

rotating disc voltammetry experiments was carried out. In Fig. 7

rotating disc voltammograms recorded at 500 rpm are  shown for

the oxidation of DA in the absence and presence of increasing con-

centrations of sulfonated �-CD. There is a  clear increase in  the

half-wave potentials, E1/2,  which is shown more clearly in the inset

and a  considerable reduction in  the limiting current, iL, as the con-

centration of the sulfonated �-CD is  increased. Similar results were

obtained at other rotation speeds, ranging from 200 to 2000 rpm.

These data are in  good agreement with the cyclic voltammograms

presented in Fig. 2,  and are consistent, again, with the formation

of an inclusion complex. The diffusion coefficients of DA in the

absence, Df,  and in the presence of an excess of  the sulfonated �-CD,

Dc,  were obtained using Levich plots. A  representative Levich plot

is  depicted in  Fig. 8,  while the variations in  the diffusion coefficient
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Fig. 7. Plot of iL as a function of ω1/2 obtained from rotating-disc voltammograms

recorded in 5.0 × 10−4mol  dm−3 DA in a  citrate–phosphate buffer in the (1) absence

and presence of (2) 1.25 × 10−3 (3) 2.50 ×  10−3 (4) 5.00 × 10−3 (5) 1.00 ×  10−2 and

(6) 2.00 × 10−2 mol  dm−3 sulfonated �-CD. Inset shows the diffusion coefficients of

DA plotted as a function of concentration of sulfonated �-CD.

of DA in the presence of increasing concentrations of sulfonated �-

CD are shown in the inset in  the figure. These diffusion coefficients

were obtained using the Levich relationship, Eq.  (2),  where iL is the

limiting current density, n is  the number of electrons transferred,

F is Faraday’s constant, D is the diffusion coefficient, cm2 s −1,  � is

the kinematic viscosity (a value of 0.92 × 10−6 m2 s−1 was  used for

the system), c is the concentration and ω is the rotational speed in

rad s−1.

iL = 0.621nFD2/3v−1/6cω1/2 (2)

A clear decrease in the diffusion coefficient was found with

increasing concentration of  sulfonated �-CD. For example, a  Df

value of 5.11 × 10−6 cm2 s−1 was found for free DA,  while the dif-

fusion coefficient of the complexed species, Dc,  was  evaluated

as 2.44 × 10−6 cm2 s−1.  This latter value was computed with a

large excess of the cyclodextrin, i.e., approximately 0.2 mol  dm−3

sulfonated �-CD with 1.0  × 10−4 mol  dm−3 DA, to  drive the equi-

librium to favour the complexed DA species. These diffusion

coefficients for DA are in close agreement with values reported

in the literature [27,28],  which vary between 1.9 × 10−6 and

6.3 × 10−6 cm2 s−1.  Again, the decrease in the diffusion coefficient

of DA can be attributed to the formation of a DA-sulfonated �-CD

inclusion complex, which has a  slower diffusion coefficient due

to  the large size of the cyclodextrin. This gives a  Dc/Df ratio of

0.47,which is  in  very good agreement with ratios found in  the liter-

ature for the complexation of ferrocenes with �-CDs [20,29].  Radi

and Eissa [5] also observed a  change in  the diffusion coeffiecent of

Indapamide in the presence and absence of �-CD similar to what is

shown here.

Using Eq.  (3), the association constant, K,  was computed as

331.28 ± 5.85. In this analysis, T is the thermodynamic temperature,

(E1/2)app and (E1/2)f are the half-wave potentials of the electroac-

tive guest obtained in  the presence and absence of the sulfonated

�-CD, respectively.

(
F

RT

)  {
(E1/2)

app
− (E1/2)

f

}
=  ln(1 + K[S  ̌ − CD]) + ln

(
Dc

Df

)1/2

(3)

Additionally, the Koutecky–Levich equation, Eq. (4),  was used

to calculate the heterogeneous charge transfer rate constant, kDA,

for DA in the absence and presence of the sulfonated �-CD. In this

analysis, iL represents the measured limiting current, iK is  the cur-

rent of the electron transfer between the DA and the electrode, ilev

is  the Levich current, which corresponds to  the mass transfer of DA

in the solution, kDA is the reaction rate constant and is the surface

coverage.

1

iL
= 1

iK
+ 1

ilev
= 1

nFA�k
DAC

+ 1.61

nFAv−1/6D2/3ω1/2c
(4)

Fig. 9 shows the Koutecky–Levich plots for DA alone and in  the

presence of varying concentrations of  sulfonated �-CD. For each

sulfonated �-CD concentration, a  linear Koutecky–Levich relation-

ship was  observed and from the y-intercept of each plot the k  values

were obtained. These are shown as a  function of the concentra-

tion of the sulfonated �-CD in the inset in the figure. The k value

was  computed as 1.26 × 10−2 cm s−1 for DA in the absence of the

Fig. 8. Plot of iL versus ω1/2 at  rotating-disc voltammograms of DA (5.0 ×  10−4 mol  dm−3)  on a GC  disc electrode in citrate-phosphate buffer, (pH =  6), in the presence of

varying amounts of [S�-CD] /  mol  dm−3.  (1) 0.00 (2) 1.25 ×  10−3 (3)  2.50 ×  10−3 (4) 5.00 × 10−3 (5) 1.00 ×  10−2 and (6) 2.00 ×  10−2.  The inset shows a  plot of the diffusion

coefficients as a function of increasing S�-CD concentrations.
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Fig. 9. Koutecky–Levich plots for DA in the absence and presence of varying con-

centrations of [S�-CD] / mol  dm−3.  (1) 2.00 × 10−2 (2) 1.00 × 10−2 (3)  5.00 ×  10−3 (4)

2.50 × 10−3 (5) 1.25 ×  10−3 and (6) 0.00. Experiments were carried out  in a  citrate-

phosphate buffer (pH =  6.0).  Current was  read at  +0.700 V. The inset shows the rate

constant as a function of increasing S�-CD concentrations.

sulfonated �-CD and 5.37 × 10−3 cm s−1 in  the presence of a large

excess of the sulfonated �-CD. Typical rate constants for the oxi-

dation of DA in the literature are in  the range of 1.3 × 10−2 cm s−1

to 3.88 × 10−3 cm s−1 on different materials and the higher values

are in good agreement with the values obtained here [30,31].  It

is clearly evident that the rate constant for the oxidation of DA

decreases as the concentration of the sulfonated �-CD is  increased.

This decrease in the rate constant is consistent with the formation

of an inclusion complex. It is  reasonable to expect that the rate of

the electron-transfer reaction will be higher when the DA is  free in

solution, compared to when it is complexed with in the cavity of

the sulfonated �-CD. Using Marcus theory this can be explained in

terms of the reorganization energy. The re-organization energy is

likely to be higher when the DA is confined within the cavity of the

sulfonated �-CD, especially if the ortho-quinone is expelled from

the cavity once it is formed, as indicated in  Fig. 3.  These events will

contribute to a higher reorganization energy leading to a  lower rate

of reaction.

4. Conclusions

DA forms a weak inclusion complex with sulfonated �-CD in

aqueous solution. Clear evidence for the formation of the inclu-

sion complex was obtained from cyclic voltammetry, rotating disc

voltammetry and NMR spectroscopy measurements. The inclusion

complex was formed as a  1:1 stoichiometry of DA to  the sulfonated

�-CD, while NMR  analyses showed that the aromatic ring of the DA

molecule resides within the cyclodextrin cavity. The protonated

amine group remains outside the cavity, bound electrostatically

with the anionic sulfonated groups. The size of  the cavity plays an

important role, as no inclusion complex was formed between DA

and the sulfonated �-CD. The association constant, Kf, was com-

puted as 331.3 ±  5.8 using rotating disc voltammetry, indicating a

weak inclusion complex. The rate constant for the oxidation of  DA

was found to decrease on formation of the inclusion complex. This

was attributed to larger reorganization energy for the oxidation of

the included DA.
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