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For many years researchers and decision makers (DMs) faced with multicriteria

shortest path problems (MSPPs) have resorted to reductions to the classical

shortest path problem (SPP) by means of weighted linear combinations of the

criteria. Algorithmic and approximation schemes are available to solve MSPPs

but these approaches often display complexities prohibitive to their implementa-

tion on real-world applications. This paper describes the development of an

Evolutionary Algorithm (EA) approach to MSPPs on networks with multiple

independent criteria. The EA approach is shown to sufficiently explore the

underlying network space, generate large candidate path sets, and evolve high

quality approximations to the optimal MSPP solution(s). Opportunities for early

termination of the EA in time-critical applications are also offered. Among the

issues for further work is the integration of the EA as a tool within a GIS for path

optimization.

1. Introduction

Real-world optimization problems can rarely be expressed with just one criteria and

real life ‘is rarely characterized by a position on the real number line’ (Corne et al.,

2003). Examples of these problems abound: car parking; choosing from a restaurant

menu; land-use suitability planning; and public transport journey planning (PTJP).

In PTJP one is usually seeking the optimal path of travel between two locations with

respect to some costs (criteria) and other addition constraints. Depending on the
problem environment the decision maker (DM) may consider many criteria. In

PTJP criteria include geographical distance, financial cost of a journey, number of

route changes, and overall journey time. Conflicts will occur between criteria: to

minimize route changes may require longer journey time but to minimize overall

journey time, several changes may be required. As additional criteria are considered,

in problems such as this, the decision process becomes much more difficult. For

large spatial analysis problems such as route planning and facility location GIS are

used given their powerful abilities in acquisition, management, visualization, and
analysis of spatial data. Delavar et al. (2004) and Chakhar and Martel (2003)

remark that typical GIS usually lack ‘more powerful analytical tools’ enabling DMs

to explore the solution spaces for multicriteria problems particularly.

In this paper we consider an extension to a fundamental problem in spatial data

handling. When the classical shortest path problem (SPP) is extended to incorporate

two or more independent criteria the SPP is transformed into the multicriteria
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shortest path problem (MSPP). For MSPPs involving multiple independent criteria

(where all criteria are considered equally important) a unique solution optimizing all

the criteria simultaneously will rarely, if ever, exist in reality (Zitzler et al., 2003).

Given this situation one must be content with solutions that are ‘something a little

less than optimal’, ‘compromise solutions’, ‘near optimal solutions’ or ‘solutions

displaying the best trade-offs amongst the criteria considered’. The MSPP is

classified as NP Hard (Gandibleux et al., 2004). Historically many MSPPs are

reduced to an SPP by using a weighted linear combination of all criteria as the cost

function. The MSPP does not respond satisfactorily to this reduction in reality. In

all but a handful of pathological cases this type of reduction is a radical simplication

of a complex problem (Corne et al., 2003). It may be very difficult to compute an

appropriate set of weightings for the criteria involved. Pereira (2004) states that in

most cases ‘weightings must be performed by expert analysts’. In the absence of such

experts a single criteria is chosen for optimization with the other criteria used as

additional constraints. The latter approach may lead to a situation where some

optimal solutions are overlooked or left undiscovered (Pereira, 2004). To compound

these issues many MSPP approximation schemes (described later in section 2)

become unworkable in practice and exhibit complexities prohibitive to their

implementation on large graphs or networks.

Recently EAs have been applied to a number of difficult multicriteria

optimization problems. Yet only sporadic work has appeared applying EAs to

directly to MSPPs. As will be discussed in section 2 there have been many

applications of EAs to various path planning type problems. Many involve the

linear combination of criteria while others are embedded in spatial coordinate

systems. The diversity of application in robot/automated vehicle navigation is

certainly a yardstick to the success of EAs as path optimizers. Our EA requirements

for MSPP are as follows. The EA will be developed without reduction to

optimization of a linear weighted cost function. The EA will be developed without

incorporation of SPP algorithms. SPP algorithms will not be integrated into the EA

as the EA is designed (using random walking) to generate the solutions to the SPP

for the D criteria in the MSPP. The EA should evolve high quality solution sets

approximating the global optimal set of paths (between a source s and destination

node t). Using an effective candidate path generator and genetic operators the

MSPP will be approximated without heuristic information. Before EAs for MSPP

can be applied to larger spatial network optimization problems (and integrated with

a GIS) the suitability of the EA must be quantified on network structures without

spatial attributes (also stated by Xiao et al. (2002)).

We organize the paper as follows. Section 2 provides an overview of other

approaches to MSPP-type problems. Section 3 outlines the formulation of MSPP,

the data structures implemented, and an overview of the Evolutionary Algorithm

and relevant notation. Details of the experimental analysis are provided in section 4

highlighting the key strengths of the EA approach to the MSPP. The paper closes in

section 5 where our conclusions are discussed and a brief discussion of further

research directions is provided.

2. Literature review

The application of EAs and GAs to routing problems is not new. The literature

review below is divided into two sections. The first section overviews the classical
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approaches to MSPP and some of the drawbacks of these classical methods. The

second section discusses the application of evolutionary computational methods to

various types of routing problems.

Skriver and Andersen (2000) employ a label correcting approach to a bicriterion

SPP. Their algorithm stores only label-sets and Pareto paths are recovered at the

termination of the algorithm but appears to be limited to relatively small networks.

In Martins et al. (1999) a tree-based algorithm for ranking optimal paths in MSPP is

outlined for combinations of two criteria. In Martins and dos Santos (1999) a

labelling algorithm for MSPP is outlined. This labelling search tree approach

outlined works well in theory but in practice the memory costs of this approach are

prohibitive to its implementation. Hallam et al. (2001) outline an approximation

algorithm for MSPP supplying heuristic information (like that for A*) to the

algorithm. Pareto paths are selected on the basis of their selection-function value

which contains heuristic and constraint information. Nepal and Park (2003)

combine heuristic labelling and exhaustive search algorithms but again their

approach is limited to small network specifications.

A GA for the vehicle dispatching routing problem is developed in Baker and

Ayechew (2003). The problem is a single criteria problem under a one source to

many destinations specification. The initial population is generated using randomly

generated path candidates. The authors argue that this randomly generated

population (over a more structured approach) ‘provides a more diverse population

that converges to a near optimal solution quickly.’ The problem of path

optimization when network information is changing over time is addresed in

Davies and Lingras (2003). A GA is used to find the shortest path and alternative

backup paths. Roulette wheel selection for crossover with an elitist strategy is

employed. A novel form of mutation is used where two points are chosen in the

path whereupon a random path is inserted into this subpath. Random walks are used

to find some alternative paths. In Shad et al. (2003) three shortest path algorithms

and a genetic algorithm are analysed on Iranian road networks to assess the

suitability of particular algorithms to path finding on different sized networks. The

GA is found to perform best on small networks (less than 1000 nodes)

but performing poorly on larger sized networks. The fitness function employed

is a linear combination of the sum of products of route lengths and associated

costs.

The shortest path routing problem for the transportation of hazardous materials

is approached using a GA in Huang et al. (2004). The GA is used not in the

determination of the routes but in the determination of the weights of the factors

involved in route choice. A generalized route cost function is used in fitness

evaluation with elitism set at a value of 10—allowing only the 10 best solutions from

each generation to proceed to the next generation. A GA developed for the adaptive

navigation of a robot-like simulation vehicle is considered by Nearchou (1999). The

search space is a two-dimensional gridded space. The fitness function is a linear

combination of the positional error of the path, the length of the path, the cost of

the path, and the possible collisions on the path. Binary tournament selection with

elitism is used. Ahn and Ramakrishna (2002) develop a GA for shortest path routing

with a single criteria. The authors choose to allow looped paths to enter the

population. They estimate that the fitness function (comprised of a linear

combination of route characteristics) will ‘weed out these bad candidates later in

the generational process’. The population is initialized randomly without the use of
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any classical algorithms. Mutation is the standard gene flip mutation. Crossover is

the conventional one-point crossover and candidates for crossover are chosen

from pairwise tournament selection without replacement. Quality of the solutions

generated by the GA is assessed by analysing how many times the GA generates

the Dijsktra path. In the work of Delavar et al. (2004) a Pareto-based approach is

considered on Iranian road networks. Three criteria are considered—length of

route, time to drive the route, and the ease of driving the route. Population

initialization for the GA is constrained within a rectangular area on the road

network map. The GA does not use any mutation operator. The crossover

operator uses a roulette wheel selection incorporating the best individuals and

random ones. The authors conclude that routing problems dictate a one-point

crossover.

In the work presented by Roy et al. (2002) the authors provide a clear and very

useful application of EAs to a problem that is multicriteria by its definition. The

primary goal of Quality of Service (QoS) routing is to efficiently allocate wireless

resources to satisfy these QoS requirements. Conflicts between these individual QoS

parameters makes ‘the QoS challenge even more difficult’. The authors comment

that ‘more recently research work in determining QoS multicast routes clearly

demonstrate the power of GAs in finding near optimal solutions satisfying the QoS

requirements in computationally feasible time’.

Many examples appear in the literature on application of evolutionary

computation (EC) approaches to problems in GIS. We do not explicitly consider

the advantages and disadvantages of any particular approach but discuss these

applications as a strong indication of the suitability of EC to multicriteria problems

in GIS. The work of Bennett et al. (2003) uses an evolutionary approach to help

cartographers create optimal shapes for the geographical and statistical character-

istics of choropleth maps. For resolution of conflicts between the location of objects

resulting from scale reduction on maps Wilson et al. (2003) use GA to search

for optimal generalization. GAs are also used by Chemin et al. (2004) to estimate

pixel-based water/plan parameters in the study of crop productivity indicators

from remote sensing data. The P-Median problem in Correa et al. (2000) is also

studied using several different types of GAs. The multicriteria nature of

environmental land-use planning requires the generation of many alternative

candidate solutions that optimize criteria such as spatial allocation, operations costs

and environmental impacts. Several approaches combining evolutionary computa-

tion approaches and a GIS have been documented recently with Bennett et al.

(2004), Matthews et al. (2000) and Bjornsson and Strange (2000) prominent

amongst these.

3. Prelimenaries and implementations

Suppose a network G 5 (V, E) is defined such that V e [ E : e?Q c1, c2, . . . , cD
� �

is

a vector of edge costs or criteria of size D. The path description vector (pdv) for any

path Ps, t is calculated by adding the values of each vector q on each edge egPs, t. So

for path Ps, t the path description vector pdv(Ps, t)5(q1, q2, …, qD) is calculated using

equation (4). Then qi is calculated by adding the values of ci for every edge in the

path Ps, t. If required a vector of costs can also be associated with each vgV which is

included in the calculation of the pdv for Ps, t. MSPP requires one to ‘find a simple

path Ps, t between two fixed nodes s,tgV such that pdv(Ps, t) is minimized over all
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valid paths Ss, t’. A simple path is a path between s and t that does not contain any

loops or repeated edges.

Ps, t~argmin pdv Ps, tð ÞVPs, t [ Ss, t, ð1Þ
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MSPP specifies that no path Ps, t will contain loops and each path considered

must have the same source s and destination t. Each incoming edge of a vertex which

is on a path P must be matched by an outgoing edge on that path except for vertices

s and t (as in equation (2)). All valid paths Ps, t have the form Ps, t5{p05s, p1, …,

pk215t} where k>3 is the number of nodes in the path Ps, t. As the globally optimal

solution to a MSPP (in equation (1)) rarely, if ever, exists, an alternative notion of

optimality is required. If criteria are incomparable then a pareto optimal

formulation of the problem is required. Given k criteria (minimization), two

solutions have been computed to a multicriteria problem: X5{x0, …, xk21} and

Y5{y0, …, yk21} (which are both called decision vectors). Then X dominates Y iff

Vi : ?xiƒyi and Vj : xjvyj. For example, suppose we have generated 3 solutions to

a D52 MSPP: S15{38, 56}, S25{50, 60} and S35{44, 46}. The solutions S1 and S3

are non-dominated or pareto-optimal. This binary relationship partially orders the

space of alternative solutions. For each MSPP we must assume a globally optimal

set of path solutions (possibly singleton) exists. We denote this as PGLOBAL. The EA

must evolve as close an approximation as possible to PGLOBAL. After each

generation g the EA outputs Pg
approx, the current approximation. The final output of

the EA, whether after early termination or after its final generation, is denoted as

Papprox.

3.1 Evolutionary algorithm

The EA (in figure 1) operates as follows. The chromosomes in this study are

represented as paths between s and t. Each chromosome is defined as an ordered list

of path nodes. Each edge in the path (that is a gene in the chromosome) is

represented by an edge object containing the start and end nodes of the edge and

the vector of costs defined on the edge. An initial population Xi50 of size |N| is

generated using random walking (described later in section 4.3). The number of

generations G is set as are the application rates of the genetic operators crossover C

and mutation M.
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The population Xi is operated on in two ways to determine the fittest solutions.

1. Using a pareto-elitist approach the set of fittest solutions X PO
i (possibly

singleton) in Xi is determined using pareto domination.

2. The original set Xi is copied to X
gen
i and the genetic operators are applied to

this copy. Crossover (see section 3.3) and mutation (see section 3.2) are applied

to X
gen
i as determined by the application rates C and M. When genetic

modification is complete the pareto optimal set (denoted as X OS
i of X

gen
i ) is

computed.

The genetic operators access a copy of Xi which ensures that good solutions are

not destroyed by genetic modification. This copy approach is a form of elitism and

can be seen in evolutionary approaches such as Huang et al. (2004) and Knowles

and Corne (2000). However, our EA stores the fittest candidates while allowing a

copy of them to possibly undergo genetic alterations. This assists good solutions to

survive longer in the evolutionary process until better or fitter solutions are

discovered or evolved (from genetic modification of an existing solution). Finally for

generation i, the pareto optimal set X F
i of the set intersection of X OS

i and X PO
i is

computed. This removes any duplication of candidates caused by our elitist

approach. This set intersection is denoted as Pi
approx. The set X F

i proceeds to the next

generation (i + 1) and forms the basis of the initial population of the next generation

(i + 1), where ( Nj j{ X F
i

�� ��) candidate paths solutions are generated. The EA iterates

or evolves in this fashion until the final generation G or until some termination

condition(s) (see section 4.4) is satisfied.

Figure 1. Our EA for MSPPs.
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3.2 The path mutation operator

A valid path Ps, t is computed between s and t and pdv(Ps, t) is also calculated. For

notation sake Ps, t has the form Ps, t5{p05s, p1, …, pk215t}, where k is the number

of nodes in the path Ps, t. To perform a single node mutation of this path, a node R

is chosen at random from the nodes in the path, i.e. Rg{Nodes(Ps, t)2{p0, pk21}}.

The index of R is derived from the node indices of the path Ps, t and is bounded by

r5[1, (k22)]. This node R is mutated from this path. This involves the removal of R

from this path and the insertion of a new auxiliary node R* to replace R. This

auxiliary node is chosen such that the path Ps, t is mutated to a new valid path

P�s, t{ Rf g. To find the node R* the set intersection is computed between the node

leaving pr21, denoted by FS[pr21], and the node on edges incident on pr + 1 denoted

by BS[pr + 1]. The auxiliary node is extracted from the set {FS[pr21]>BS[pr + 1]}. The

default case occurs when the cardinality of FS[pr21]>BS[pr + 1] is 1. This means that

there is no auxiliary node to replace R in the original path Ps, t as the intersection is

itself the node R. In this case the path Ps, t cannot be mutated on this particular

node. Mutation has the effect of increasing or decreasing the additive costs of the

individual elements in pdv(Ps, t) if the mutation operator was successful. The

example in figure 2 illustrates this idea with an example of mutation on a path within

a component of a larger graph. The mutation operator is concerned with path

connectivity relations on the mutation candidate path. It is length preserving on the

candidate path Ps, t but may have the effect of mutating a good or bad parent path

into a better or worse offspring path. For path optimization problems based in robot

configuration space (gridded cells), evolutionary approaches, such as Xiao et al.

(1997) and Correa et al. (2000), use models such as Gaussian mutation to select a

neighbouring cell as an auxiliary node.

3.3 Path crossover operator

‘Almost every crossover operator chooses two solutions at random and some

portions of the solutions are exchanged between the solutions to create a new

solution’ (Deb, 2001, p. 89). The chance of creating better solutions is ‘far better

than random’. In this model two valid distinct paths Ps, t and Qs, t must be available

as the parent paths for crossover. Suppose that Ps, t is defined as Ps, t5{p05s, p1, …,

pk215t} with k nodes and Qs, t is defined as Qs, t5{q05s, q1, …, qj215t} with j

nodes. pdv(Ps, t) and pdv(Qs, t) are also computed. The crossover operator takes two

valid paths and splits them at two randomly chosen points. Recombination takes

place to concatenate the two split subpaths. The index x of the split point in Ps, t is in

Figure 2. An example of single-point mutation on a path.
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the range [1, …, (k22)]. The index y of the split point in Qs, t is in the range [1, …,

(j22)]. Both x and y are chosen randomly within this range. The nodes s and t

cannot be chosen in either path as the (origin, destination) characteristic of the path

may be destroyed by the crossover operator and hence introduce instability and

illegal paths (on the (s, t) pair requirement) into the evolutionary process. The

subpaths Ps, x and Qy, t are extracted and are recombined. The child offspring path

Ps, xzQy, t~PQ�s, t is created where + is the concatenation of the two paths

provided (x, y)gE. We assume that nodes are indexed in each path from 0, …,

(a21) where a is the total number of nodes in a path (including origin and

destination nodes). An example of single-point crossover is shown in Figure 3.

Should (x, y)?E then this particular crossover is not performed and a new crossover

is attempted. Crossover randomly chooses its split points in the parent paths. It may

therefore evolve better or worse candidates from a given pair of parents. There are

many ways to implement crossover within an EA or Genetic Algorithm (GA). Our

approach is a widely used approach called pairwise tournament selection without

replacement. This means that two candidate solutions are chosen at random. The

fitter of the pair is chosen to be one of the parents. The same candidate solution

should not be chosen twice as a parent and therefore crossover candidates are not re-

introduced into the population. This approach has been successfully implemented in

several closely related works including Ahn and Ramakrishna (2002), Huang et al.

(2004) and Dozier et al. (1998).

4. Experimental analysis

As stated above the following experimental analysis is required before EAs can be

applied to spatial networks as it is important from a graph theoretic viewpoint to

Figure 3. An example of single-point crossover.
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quantify the performance and suitability of EAs for MSPP on non-spatial network

models. The objectives of the experiments are as follows: (1) to measure the ability

of the EA to cover the network search space in MSPP; (2) to assess the effectiveness

of early termination of the EA; (3) to assess the quality of the optimal path

approximations provided by the EA and (4) to compare the EA against Dijkstra’s

algorithm on several real world road networks.

4.1 Experimental setup

The EA is implemented in the Java programming language. A Pentium 4 with

2.26 GHz processor and 256 Mb of RAM running SUSE Linux 8.1 was used for all

experimentation. Without loss of generality in all experiments all D criteria

expressed in the vector of costs (or criteria) on edges in the networks are equally

important. This assumption is derived from Zitzler et al. (2003) where all D criteria

are simultaneously optimized when no additional knowledge is available about the

problem. Every EA is allowed to run to completion of its designated number of

generations. Where applicable the EA highlights the times during evolution where

early termination conditions are satisfied. The fitness of path Ps, t is calculated by

testing the pareto optimality of pdv(Ps, t) against the current fittest individuals. The

EA does not directly deal with invalid paths. Components controlling random walk

generation, crossover and mutation deal with invalid paths. Invalid paths are not

permitted to enter candidate sets in the EA. The only mechanisms available for the

generation of candidate paths for the EA are random walks combined with

mutation and crossover operators. No classical shortest path algorithms are used to

generate members of candidate sets. SP and SFN are generated for experimentation

with arc-node characteristics of real world networks having arc-node ratios in the

range 2.66…3.28 as outlined in Zhan (1998). For all experimentation outlined below

this arc-node ratio range is used. Table 1 illustrates the arcnode characteristics of

several real world networks.

A significant problem in designing an EA (or GA) is the determination of the

correct values for the control parameters (generations, number of candidates,

crossover, mutation, termination conditions, etc.). There is no formal theoretical

methodology for this problem since different combinations lead to different

characteristic behaviour of the EA. Traditionally, parameter determination is

achieved through exhaustive experimental work (Eiben et al., 1999). The final

settings used were: number of generations 100; candidates per generation 40–80;

crossover 0.6; and mutation of 0.25. The experiments detailed in section 4.3 involve

testing the random walk component of the EA on SPRAND and SFN. Section 4.4

looks at the feasability of early termination of the EA. The quality of solutions

evolved by the EA is addressed in experiments in section 4.5. The EA is applied to a

number of real world road networks for the experimentation in section 4.6.

Table 1. Arc-node ratios of selected Real World Networks.

Source Network type Ratio

Magoni and Pansiot (2001) The Internet 2.6
Case (2001) Electicity Power Grid 2.67
Zhan (1998) Road Networks in USA 2.66…3.28
Jacob et al.(1998) Texas Road Network 2.86
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4.2 Types of experimental data

Three network types are used in experimentation—two artificial networks and one

set of real world networks. The artificial networks contain scale free networks (SFN)

and the Shortest Path Library (SPLIB) of Cherkassky et al. (1996). Recent studies,

such as Kim et al. (2002), on SFN reveal that a ‘small world phenomena’ exists

revealing that two distinct vertices are usually connected by a remarkably small

number of edges with the structure of the WWW conforming to that of SFNs. In

SPLIB the SPRAND networks are strongly connected random networks. For

experimentation we can generate SFN and SPLIB given a specified number of nodes

and edges or number of nodes and network density. The vector of costs on each edge

in the network is generated randomly. The third type of network we consider is a set

of real-world networks. A reliable and convenient source of such data (available to

public users) was obtained from the online data centre for the National Highway

Planning Network (NHPN, 2003) of the United States of America. NHPN is a

1:100 000 scale network database containing line features representing current and

planned highways in the USA. Some authors, Noon and Zhan (1996) for example,

have used the NHPN as a source of real world networks for testing purposes. The

TIGER online data centre (US Census Bureau, 2003) provides TIGER/Line files

from a digital database of geographic features, such as roads, railroads, rivers, lakes,

legal boundaries, census statistical boundaries, etc. that cover the entire United

States. For the purposes of this work we downloaded the transportation networks

for Florida, Louisiana, Utah and Texas.

All networks are stored in the forward and backward-star data structures (see

Ahuja et al. (1993)). All genetic operators and components of the EA have access to

these data structures. We do not consider any spatial embeddings of the real world

networks: that is the spatial information or spatial coordinates associated with

nodes and edges in G5(V, E) is ignored. Length and geographic distance

information between nodes is retained. The SPRAND and SFN are generated with

densities resembling those of real-world networks in table 1. To provide adequate

testing of the EA we require the origin destination pairs (s, t) be far apart in the

network. Finding nodes far-apart in a geographical network is relatively

straightforward. However the Euclidean or Manhattan metrics that could be used

in geographical networks of NHPN cannot be applied to SPRANDs or SFNs.

These networks are not embedded in any spatial co-ordinate system. To counteract

this we use the concept of geodesics to compute a set of nodes at maximal edge

distance from the source. This is implemented as a pre-processing step in

experimentation below. Geodesic distances indicate the distances between nodes

in an edge sense.

4.3 Random walking and the EA

All EAs require a diverse set of candidate solutions in order for the evolutionary

process to be effective (Zitzler et al., 1999). Our EA (described above in section 3.1)

requires a diverse set of candidate paths for (s, t). The EA will require approximately

G*N (N paths for each generation igG). Further valid candidate paths are

generated by the crossover and mutation operators. For typical values of G550 and

N5100 the EA must employ a dedicated candidate path generation component.

Costelloe et al. (2001a) suggest using random walks as an effective and robust means

of generating large quantities of candidate paths for EAs. We have chosen random

410 P. Mooney and A. Winstanley



walking (RW) for the EA as it allows the EA to explore the graph space in a manner

not available to algorithmic approaches to MSPP. RW will generate a more diverse

set of paths than classical approaches (such as Breath-First-Search, A*, etc). These

approaches are limited in the number of unique paths Ps, tgSs, t that they can

generate as their tendency is to enumerate only paths extracted from the spanning

tree rooted at the source node s. Given the candidate path requirements of the EA

the RW component enumerates large quantities of paths Ps, tgSs, t but does not

attempt to generate all paths Ss, t. Generating all paths Ss, t is computationally

unrealistic and would reduce the EA to brute-force enumeration. A path repair

function is built into the RW component to ensure illegal paths (those with loops)

are not entered into the EA. The use of the repair function does not require the EA

to enforce penalties on the fitness of illegal paths.

This experiment quantifies the effectiveness of RW by measuring ‘coverage’—the

total number of unique edges and nodes that are members of any valid simple path

used by the EA. In these experiments the coverage was measured using

parameterizations of the EA ultimately yielding approximately 2000 and 3000

candidate paths. Both SP and SFN networks are generated with between 500 and

25 000 nodes. As before the EA evolves Papprox for D53 MSPP between geodesic

nodes. Figure 4 illustrates the percentage of nodes in a given network that are visited

(or covered) by the EA under the parameterizations above. In both cases for

networks containing up to 5000 nodes coverage rates over 95% are achieved. For

very large networks node coverage rate is above 50%. Similarly figure 5 illustrates

Figure 4. Node coverage by the EA using random walks on SP networks.
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the percentage of edges in the same networks covered by the EA. For networks with

up to 3000 nodes over 90% of edges are visited. Edge coverage rates of over 20% for

very large networks are also achieved. These coverage rates are very satisfactory,

particularly for large instances of MSPP. As outlined in Xiao et al. (1997) ‘it is

unlikely that all optimal paths would require a large number of nodes. Even in quite

complex environments an optimal path might be quite simple’. Given that the

networks are not spatially embedded there is no way the EA can be constrained to

search in specific neighbourhoods or components of the network. Consequently in

spatially embedded networks it may not be necessary to achieve very high coverage

rates.

4.4 Early termination of the EA

Terminating conditions can incorporate elaborate decision making surrounding the

termination of the EA. On the other hand many simple terminating conditions are

available offering several options to DMs. Terminating conditions may involve but

are not limited to characteristics such as:

1. the total CPU time passed since the beginning of the EA;

2. the EA has executed a predefined number of generations;

3. path constraints, extracted from path characteristics, have been satisfied or

violated;

4. a predefined number of pareto optimal solutions have been computed;

5. quality measurements of the current Papprox have satisfied the DM;

Figure 5. Edge coverage by the EA using random walks on SP networks.
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6. Papprox has remained unchanged over a consecutive generations.

The first four terminating conditions are easily integrated into the EA. We now

investigate the generational change parameter a as a strong stopping condition. The

idea of this parameter is to terminate the EA early if the solutions in Papprox have

remained unchanged after approximately a6G. This terminating condition assumes

that if Papprox is not changing and has remained stable for a6G generations then the

EA can be terminated early. This is based on the assumption that no new pareto

optimal solutions will be found which will change Papprox. If there are new solutions

found there will only be a very small number of new solutions. The key characteristic

of this metric is the number of solutions lost by the EA as a consequence of

terminating early based on a. A more detailed discussion of quality is provided in

the next section.

To quantify the effectiveness of parameterizing the EA to terminate early based

on this terminating condition we used various a parameters. Large values of a (those

over 50% of G) proved wasteful in terms of overall computation time. Small values

(those less than 20% of G) often terminated too soon and lost a large number of

potential solutions that were undiscovered at the cut-off generation. Figure 6 shows

the results of 1600 runs of the EA on geodesic D53 MSPP on both sparse and dense

SFN and SPRAND respectively with between 500 and 10 000 nodes. The y axis in

both figures denotes the number of solutions lost by terminating early. This was

achieved by comparing Pcut{off
approx and PG

approx where cut-off,G. In the case of sparse

networks (figure 6) over 75% of early terminations after a generations resulted in

Figure 6. Changes in cardinality for sparse and dense networks.
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Pcut{off
approx ~PG

approx or Pcut{off
approx discovering all but one solution in Papprox. For dense

networks losing 1 solution is the most frequent result of this type of early

termination. However the results are still very positive. For dense networks 60% of

early terminations at a resulted in Pcut{off
approx ~PG

approx or Pcut{off
approx omitting 1 solution.

We believe the frequency of times Pcut{off
approx lost 2 solutions correlates with the density

of the networks.

4.5 Assessing the quality of the EA approach

Despite the very encouraging results in the previous section, generational change

stopping conditions display a major drawback in some instances. While the EA has

settled on a Papprox there is no quantitative measurement of quality. In any GIS

problem a rational DM will require some measure of solution goodness. The notion

of performance and quality of the EA approach to MSPP includes characteristics of

the evolved path solutions in Papprox as well as the computational resources needed

to generate these solutions. With the latter many of the problems are common in

both single and multicriteria optimization—correct selection of data structures,

fitness evaluations and disk operations. In SPP quality is defined by means of an

objective function. Clearly paths are ranked by this function and the path(s) with

the lowest value of this function represent the best solution(s) or the highest quality

solution(s). Zitzler et al. (2003) state that ‘it is not clear what quality means in

the presence of several optimization criteria’. In the case of this work on MSPP

several specific aspects of the evolved solutions could be considered as measures

of quality. These include the cardinality of the final Papprox, the closeness of Papprox

to PGLOBAL, or the search space coverage of the solutions. Ideally some easily

communicated quantitative measurement of quality is desired for most DMs. There

are several types of quality metrics to assess multicriteria solutions. Many quality

indicators or metrics require knowledge of PGLOBAL for the problem in hand

in order to measure how close the current approximation is to the globally

optimal solution(s). As it is infeasible to generate PGLOBAL for MSPP we seek the

best approximation possible as a respresentation of PGLOBAL which we denote as

Ptrue.

To generate Ptrue we implemented an ad hoc approach involving several different

approaches. A geodesic pair of nodes (s, t) is chosen. Then a combination of

Dijkstra’s algorithm (optimizing separately on each of the D criteria), the k-shortest

path algorithm, and the EA (executed several times) are implemented to solve MSPP

between these nodes. After all algorithms had terminated the unique paths from all

runs of the EA and the classical approaches are combined as Ptrue. This ensures that

Ptrue contains all of the D paths computed by Dijstra’s algorithm on each of the D

criteria and other pareto optimal solutions generated by the EA and the k-shortest

path algorithm. The approach we use to generating Ptrue is similar to that used in

Okabe et al. (2003) and Baran et al. (2001) For a more indepth coverage of quality

metrics for multicriteria optimization the work by Van Veldhuizen and Lamont

(2000) provides examples of a wide range of metrics.

Our quality experimentation is divided into two distinct experiments. Generating

PGLOBAL is NP-Hard (Gandibleux et al., 2004) and generating PGLOBAL is

exponential in the worst-case (Skriver and Andersen, 2000). Given these

discouraging aspects of the problem we decided that an interesting measure of

quality would be to analyse the frequency which the EA evolved Papprox5Ptrue. Our

second set of experimentation is motivated by the lack of support for MSPP type
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problems in current GIS (as mentioned also by Chakhar and Martel (2003) and

Delavar et al. (2004)). Current users of most GIS software have a network

optimization extension available. These extensions allow users to retrieve (at most)

D pareto solutions for a MSPP in a GIS by running the Dijstra algorithm

component separately for each criteria D. This will retrieve the pareto solutions at

the extrema of the pareto frontier for the given MSPP. To motivate the use of the

EA over this approach we analyse how the EA performs in comparison to the

combination of multiple runs of the Dijkstra algorithm on the real world networks

mentioned in section 4.2.

4.5.1 Evolving Papprox5Ptrue. Experimentation was carried out on the following

types of networks. SFN and SPRAND with D53 and D54 criteria were used. Each

network had density parameter 2.66…3.28 (as in table 1). Networks ranged from

100 nodes to 3500 nodes. 50 distinct pairs of geodesic (s, t) nodes were computed

for each network. The EA then evolved approximations to MSPP for each geodesic

pair. The variable cd(Papp, Ptrue) indicates the difference in path solutions between

Papprox and Ptrue. A value of D(Pap, Ptrue)50 indicates that the EA evolved

Papprox5Ptrue for this MSPP. If cd(Pap, Ptrue)5n with n>1 then Papprox did not

contain n of the path solutions contained in Ptrue. The results are very impressive.

For all networks the EA evolves Papprox5Ptrue in over 80% of the experiments.

Figures 7 and 8 detail a summary of all of these experiments. The x axis shows

the number of nodes in the networks while the y axis shows the number of

Figure 7. Quality test results from the EA on 3D networks.
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experiments for which the three different classifications of cd(Papp, Ptrue) occurred.

We believe that results with cd(Pap, Ptrue)51 are also very valuable as in the case of

large Ptrue this is a significant result. If the EA evolves cd(Pap, Ptrue)51 for large

Ptrue then this is considered a very good approximation to the Ptrue of the MSPP

in hand, due to the presence of almost all the solutions from Ptrue. Establishing

the correct number of solutions (in Papprox) to present to any DM is a topic of

debate in the area of multicriteria optimization. In fact it may not be necessary to

always generate every solution in Ptrue nor to display all Ptrue to a DM. Messac

and Mattson (2002) state that ‘requiring a DM to manually compare more than

ten solutions is never desirable’. In other cases, Skriver and Andersen (2000)

remark, the DM might be satisfied with only the set of extreme efficient paths (D

paths for any D>2). The experimentation does not look at very large networks

because our approach to generation of consistent Ptrue becomes burdensome and

time-consuming. Consequently we feel that as the networks get very large, this

approach may make it difficult to rely on Ptrue as an accurate approximation to

PGLOBAL.

4.6 Real-world road networks

To place the runtime performance of the EA into context for GIS users the EA was

compared against Dijkstra’s algorithm on real-world road networks. To accurately

compare the two approaches Dijkstra’s algorithm was configured to terminate upon

finding the shortest path from s to t while optimizing on criteria igD while the EA

Figure 8. Quality test results from the EA on 4D networks.
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terminates upon finding the Dijkstra solutions. Dijkstra’s algorithm also used the

same data structures for storage and manipulation of the network data structure as

the EA. The road network specifications are outlined in table 2. Figure 9 shows

boxplot results of the EA running on real-world road networks.

Each box represents the run-times of 100 separate runs of the EA onVfour

networks where the EA terminated when all D Dijkstra solution paths were

generated. This analysis was carried out on road networks from the states of Texas,

Louisiana, Utah and Florida. The runtimes for the EA and Dijkstra’s algorithm

exclude the time both approaches require to load the input network. The mean

cumulative runtimes for Dijkstra’s algorithm are also tabulated in table 2. Using this

information the performance of the EA against Dijkstra’s algorithm on these

networks is very encouraging with the mean runtimes almost the same as the

Dijkstra combination. The outliers and elongated shape of the box plots can be

attributed to the RW mechanism. Without any spatial guidance (and without using

Dijkstra’s algorithm’s greedy approach) the runtime is wholly dependent upon the

Table 2. Real-world network datasets used in experimentation.

Dataset Nodes Edges Dijkstra time (s)

Utah 1124 3623 4.03
Florida 2155 6370 6.74
Louisianna 2437 6876 6.87
Texas 2103 6027 6.67

Figure 9. EA running times on real-world road networks.
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random nature of the evolutionary search. It is also very encouraging that the

overall spread of runtimes of the EA are constrained within an acceptable timespan.

Figure 10 shows the mean running times (in CPU seconds) of Dijkstra’s algorithm

and the EA on SPRAND and SFN of 100 to 10 000 nodes (with densities as

described in table 1). The same terminating condition was used as before with the

EA terminating when all of the D Dijkstra paths were generated. The results are

impressive and highlight the ability of the EA approach to compete with Dijkstra’s

algorithm on the same MSPP. For networks without up to 1500 nodes there is little

to choose between the two approaches. The performance of the EA becomes more

pronounced as the networks get larger.

5. Conclusions and future work

Researchers and practitioners acknowledge the importance of MSPP on network

spaces yet network-based MSPP have received only sporadic and isolated attention

from researchers over the years. The reality remains that a truly multicriteria

approach to MSPP is often abandoned in favour of a simpler single criteria

approach under pressures of time and management (Zeleny, 1982). Given these real-

world pressures an ad hoc development of an EA (given their recent popularity for

multicriteria problems (Goldberg, 1999)) for a given MSPP may not be an

immediately profitable approach. The MSPP must be completely transformed to the

EA domain. The transformed MSPP must allow the generation of successive

Figure 10. Running times of Dijkstra’s algorithm and EA on SPRAND and SFN.
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generations of candidate solution populations, genetic operators, and the use of

evolutionary stopping conditions.

This paper has described an EA for MSPPs and operates on a classical graph

model of the network in the given MSPP. Spatial information can be used for the

vector of criteria on edges and nodes in the network. However the EA does not use

the spatial coordinates of nodes and edges to guide the evolutionary search. This EA

was tested on a suite of artificially generated networks and several real-world road

networks. The artificially generated networks allowed the EA to be examined on

very large network structures while real-world networks were used to examine the

behaviour of EA on networks exhibiting real-world connectivity. Geodesics are used

to choose experimental source and destination node pairs. Random walking is

shown to be an effective approach in generating a diverse set of candidate path

solutions for the EA. The EA uses these candidates for initialization of the

population and addition to the population throughout the generational process. For

large networks random walking is shown to visit 50% of nodes and over 30% of

edges. The networks considered in section 3, both artificial and real-world networks,

retained real world characteristics (in terms of connectivity and density). The EA

was shown to process networks of up to 20 000 nodes effectively in acceptable run-

times. Other approaches, such as Delavar et al. (2004) and Shad et al. (2003),

perform poorly as the sizes of underlying networks grow. All of the D criteria are

explicitly considered as independent rather than using a fitness function comprised

of linear combinations of the path characteristics. This is an advantage over

approaches such as Ahn and Ramakrishna (2002).

Early termination of the EA is possible under a number of suitable termination

conditions. Early termination of the EA based on a generational-change parameter

(no change in Papprox over a6G generations) is shown to produce useful results.

This simplistic approach of generational change is acceptable once users are content

with the possibility that by saving overall CPU time they may lose out on potentially

better solutions that the EA has yet to evolve. However, generational change allows

no quantification of the quality of the evolved Papprox. To deal with this situation

experimental analysis is provided regarding the generation of a good approximation

to PGLOBAL for various MSPPs and then analysing the Papprox evolved by the EA.

An ad hoc approach using a combination of the EA, k-shortest paths algorithm, and

Dijkstra’s algorithm was used to generate Ptrue (an approximation to PGLOBAL). The

measure of quality extracted from this experimentation was the number of solutions

in the Papprox also included in PGLOBAL.

To evaluate the effectiveness of the EA in a GIS the EA was tested on a set of

networks with which many GIS users are familiar. Several real world networks were

chosen for this experimentation. The run-time (in CPU seconds) required by the EA

to evolve all D Dijkstra solutions to a D-criteria MSPP on these real-world networks

was compared to that of combining the D individual runs of Dijkstra’s algorithm on

the same network sharing the same data structures. The results clearly demonstrate

the EA competing very well with the combined Dijkstra approach. The clear

advantage held by the EA in this situation is that in many cases the EA evolves .D

solutions—that is solutions inside the hypervolume created by the Dijkstra solutions

at the extreme points of the pareto frontier. This is clearly a significant advantage of

this EA approach in situations where alternative backup paths are required in

addition to the Dijkstra solutions (Gandibleux et al., 2004). This also explains the

spread of the boxplots in figure 9 where extra CPU time is spent evolving both the
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Dijkstra solutions and other pareto optimal solutions. The performance of the EA
on the real-world networks is particularly important as it competes with Dijkstra’s

algorithm but without incorporating any spatial attributes of the networks. This is a

good indication that research on EAs incorporating this spatial information will be

beneficial. This graph theoretic approach to applying an EA to a MSPP is essential

to future developments in this area. Several studies (such as Delavar et al. (2004) and

Costelloe et al. (2001b)) have looked at EAs on real-world road networks but the

more fundamental study (as provided by this paper) was missing from the literature.

Based upon our observations from the experimentation, the behaviour of the EA

is summarized into three distinct categories.

N Type 1: The EA almost immediately computes a high quality (measured by

some predefined set of quality metrics) approximation Papprox to Ptrue. After

the first few generations, few if any changes are observed.

N Type 2: The EA quickly settles on Papprox. Several generations pass without any

changes. Another burst of evolutionary activity occurs where new solutions are
generated and enter Papprox or old solutions are dominated by new solutions

and are deleted from Papprox.

N Type 3: The EA never settles on a particular Papprox. In this case the

evolutionary search steadily finds new improvements to Papprox. In this case

Papprox receives additions and removals until a few generations before the

termination of the EA.

The results (particularly in section 4.4) indicate that the behaviour of the EA when

approximating the optimal solution to a geodesic MSPP is classified as Type 1 or

Type 2 in most instances. Type 3 behaviour does not occur frequently and our

experimentation reveals that this behaviour only occurs about 5% of the time. The

Type 3 behaviour of the EA is unpredictable and cannot be forecast a priori thus
effectively evading most terminating conditions. Work is underway to investigate

factors influencing the behaviour type classification of the EA a priori for certain

MSPPs.

From a practical viewpoint the integration of the EA into a GIS for emergency

response routing could be explored. The EA operates on the current real-time

network configuration with travel time, traffic density, etc. used as conflicting

criteria. In our case the EA could be employed in the GIS as a specialist spatial

analysis tool to generate approximations to spatial MSPPs. The GIS would provide

the spatial network data, user interface (for journey/route selection), and
visualization of routing alternatives from Papprox. Large quantities of attribute data

could be handled by the GIS. Integration with a GIS will require the exploration of

ways to allow users to set parameters (such as crossover and mutation) without

needing a deep understanding of Evolutionary Computation. Instead the EA would

be used extension-plugin type fashion.
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