
S62 IEEE TRAYSACTIONS ON SOETWARE ENGINEERING, VOL XI. NO X. ALGLST 1994

Making Changes to Formal Specifications: -
Requirements and an Example

David W. Bustard and Adam C. Winstanley

Abstract-Formal methods have had little impact on software
engineering practice, despite the fact that most software engi-
neering practioners readily acknowledge the potential benefits to
be gained from the mathematical modeling involved. One reason
is that existing modeling techniques tend not to address basic
software engineering concerns. In particular, while considerable
attention has been paid to the construction of formal models,
less attractive maintenance issues have largely been ignored.
The purpose of this paper is to clarify those issues and ex-
amine the underlying requirements for change support. The
discussion is illustrated with a description of a change technique
and tool developed for the formal notation LOTOS. This work
was undertaken as part of the SCAFFOLD project, which was
concerned with providing broad support for the construction and
analysis of formal specifications of concurrent systems. Most of
the discussion is applicable to other process-oriented notations
such as CCS and CSP.

Index Terms- Change control, formal specification, process
algebra, and LOTOS.

I. INTRODUCTION

HERE are essentially two main ways to use formal mod- T els in software development, as summarized in Fig.1. In
a suhsidiar-J support role, a formal model (or models) helps to
clarify requirements that are specified informally and provides
a reference base for software design and implementation.
In a central construction role, a formal model is refined in
stages towards an implementation. Each refinement extends
the preceding model by dropping down to some lower-level,
less abstract description, which may bring in additional detail
from the informal specification.

These two roles for formal models are quite distinct but
the types of change involved in each case are similar. In both
cases, a model is built initially and adjusted until it matches
the corresponding informal description, which itself may be
changed in the process. Refinement changes are obviously an
important part of the central construction approach but similar
changes are also made when a formal model in a subsidiary
role is expanded to explore requirements in greater detail.
Where the two approaches differ significantly is in the way
that requirement changes are handled after models have been
completed. In the subsidiary support case, such changes are no

Manuscript received August, 1993; revised May. 1994. This work wa4

supported by SERC Grant GRiG 03700. Recommended for acceptance by
I . Sommerville.

D. W. Bustard is with the Department of Computing Science, University
of Ulster. Cromore Road, Coleraine, BT52 ISA, Northem Ireland: e-mail:
d u , ~ u e v a x . u l s t e r . a c . u k . A. C. Winstanley i s with the Department of Com-
puter Science, Queen’s University. Belfast, Northern Ireland. U.K., BT7 IQP:
e-mail: a .winstanley~qub.ac.uk.

IEEE Log Number 9403574.

Subsidiary Support Role Central Construction Role

I I I
Informal Formal

Spectication Model (s)

Design

mplementation /I

Informal Formal
Spectication Model

\
\ ...

I I I

Fig. I . Roles of formal models in system development.

different from those made during initial model construction.
However, in the central construction approach it is necessary
to ripple changes through the refinement sequence. Even here,
however, although the means of change may be different, the
changed models can be evaluated in much the same way.

Very little research has been done on supporting change to
formal system models. Some of the few examples of relevant
work in this area include those contained in [I] and [2]. Indeed,
it is often suggested [3] . [4] that the term ‘formal methods’
is misleading because, as yet, users have been offered little
more than formal notations. Clearly it is highly desirable to
also have guidance on how such notations can be applied
effectively in software production [5] and also to have tool
support for the process involved [6]. This paper considers
both issues with respect to making changes to formal models.
More specifically, the paper concentrates on the basic question
of how changes can be made to an individual formal model
and how such a procedure might be supported. It can be
assumed that change occurs under configuration management
control [7]. This means that each formal model is an explicit
configuration item, any changes made to it are agreed by a
change control board, and a full change history is maintained.
At this level, each change is made with respect to some
particular version of the model-the huseline. The change
is specified in advance and gives details of the requirement
change. It may also include a definition of some of the
necessary physical changes to the model, with remaining
details recorded when the modified model is placed back under
configuration control.

As a new model is developed it will go through a succession
of intermediate, transient changes that are neither planned
nor recorded. For all changes, however, the underlying steps
involved are the same, namely: understand the need for
change, implement i t and evaluate the results. However, the
precise means of change will vary considerably with the style

009X-SSX9/Y4$04.00 0 1994 IEEE

of formal model used. The variety of styles [4] includes model-
oriented specifications, algebraic specifications, modal logics
and process algebras. This paper considers just this last group
which are typically used to specify concurrent systems. The
particular language used is LOTOS [8], [9], [lo], but much
of what is said is also applicable to CCS [111 and CSP [121,
the notations on which the behavioral component of LOTOS
is based.

The next section gives a brief overview of LOTOS and
illustrates its form and use with a simple example. This is then
followed by a section that identifies how changes might be
made to such models and a section that describes tool support
that has been developed in the SCAFFOLD project [131.

11. LOTOS SPECIFICATIONS

LOTOS (Language of Temporal Specification) is used to de-
fine the behavior of concurrent systems. Behavior is described
in terms of the significant events (or actions) in a system
and the constraints on their order of occurrence. A LOTOS
specification is structured as a hierarchy of communicating
processes and the overall specification itself is also a process.
As an example, consider the specification of a very simple
automated bank teller (adapted from [141). The teller accepts
a cash card and PIN (Personal Identification Number) typed on
a keypad and, if valid, retums E30; otherwise the transaction
is rejected. In both cases the cash card is returned as the final
action. For simplicity, it is assumed that there is sufficient
money available in the account identified and in the teller
machine itself.

From this description, the following events, representing
communication between the teller and its user, can be iden-
tified: Acceptcard, Returncard, RequestPIN, AcceptPIN, Sup-
plyMoney and DisplayRejection. In addition, there are intemal
teller events associated with the examination of the card and
the PIN, and the subsequent actions taken: IdentifyValidcard,
IdentifyInvalidCard, Identify ValidPIN, IdentifyInvalidPIN. The
behavior of the teller can be described by the set of event
sequences that can occur, namely:

1) a card is rejected because it cannot be read:
Acceptcard; IdentifyInvalidCard; DisplayRejection; Re-
turncard.

Acceptcard; IdentifyValidcard; RequestPIN; Accept-
PIN; Identi’IniialidPIN; DisplayRejection; Returncard.

Acceptcard; IdentifyValidcard; RequestPIN; Accept-
PIN; Identi’ValidPIN; SupplyMoney; Returncard.

As these sequences have common components, it is more
informative to combine them. Fig. 2, for example, shows the
permitted sequences in the form of an action tree [9]. The
nodes in the tree represent unnamed system states and the arcs
represent events. Each event is a transition from one system
state to another. Branches indicate where there is a choice of
event. Note that the repeated transaction behavior has been
suppressed. This is essential in cases where repetition occurs
an unspecified number of times. A square leaf node, in general,

2) a transaction is rejected because the PIN is faulty:

3) a transaction is completed successfully:

563 BUSTARD AhD WINSTANLEY MAKING CH4NGES TO FORMAL SFEClFlCATlONS REQUIREMENTS AND AN EXAMPLE

represents a suppressed component. The elaboration of such

transaction T acceptcard
identify invalidcard

identiljrvalidcard

returncard requestPIN

transaction I acceptpm

supplymoney

transaction

identifyinvalidPIN

displayrejection

retumcard
transaction

Fig. 2. Action tree for teller machine

a component is determined by rocating an identically named
node within the tree.

The corresponding LOTOS description might take the fol-
lowing form (the numbers have been added to aid the expla-
nation given subsequently):

1) specification teller [Acceptcard, RetumCard,
RequestPIN, AcceptPIN, SupplyMoney,
DisplayRejection]: noexit

behavior
transaction [Acceptcard, RetumCard, RequestPIN,

where
AcceptPIN, SupplyMoney, DisplayRejection]

2) process transaction [Acceptcard, RetumCard,
RequestPIN, AcceptPIN, SupplyMoney,
DisplayRejection]: noexit :=

IdentifyInvalidPIN, IdentifyValidPIN in
3) hide IdentifyInvalidCard, IdentifyValidcard,

4) (Acceptcard;
(IdentifyInvalidCard; DisplayRejection;

RetumCard; exit
5) [I

IdentifyValidcard; RequestPIN; AcceptPIN;
(IdentifyInvalidPIN; DisplayRejection;

RetumCard; exit

IdentifyValidPIN; SupplyMoney;
6) [I

RetumCard; exit)))
7) >> transaction [Acceptcard, RetumCard, RequestPIN,

AcceptPIN, SupplyMoney, DisplayRejection]
endproc

endspec

The events that represent communication between the teller
and the user are listed as specification parameters 1). The
behavior of the teller is described by a single process trans-
action 2) which takes all of the external events as parameters.
Intemal events are ‘hidden’ within the transaction process 3).
The behavior specified for transaction 4) follows the shape of
the action tree in Fig. 2 . A choice expression defines a branch
in the tree. from which one of several behaviors may follow

564 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8. AUGUST 1994

5), 6). Once a particular sequence has been completed the
transaction process is reinstantiated recursively 7) to indicate
a retum to the original teller state.

For larger specifications, and when refining a specification
towards an implementation, it is usually desirable to structure
a specification as a collection of interacting processes. For
example, a LOTOS description of a card reader process
might take the following form, indicating that the card reader
repeatedly accepts and retums cards, distinguishing between
cards that are valid and those that are not.

process cardreader [Acceptcard, RetumCard,
IdentifyValidcard, IdentifyInvalidCard]: noexit:=
Acceptcard;
(IdentifyValidcard; RetumCard;

cardreader [Acceptcard, RetumCard, IdentifyValidcard,
Identify InvalidCard])

[I
(IdentifyInvalidCard; RetumCard;
cardreader [Acceptcard, RetumCard, IdentifyValidcard,

Identify InvalidCard])
endproc

The behavior expression for the teller specification then
becomes:

behavior
hide Identify Validcard, IdentifyInvalidCard in
(transaction [Acceptcard, RetumCard, RequestPIN,
AcceptPIN, SupplyMoney,DisplayRejection,
IdentifyValidcard, IdentifyInvalidCard
I [Acceptcard, RetumCard,
IdentifyValidCard,ldentifyInvalidCard] I
cardreader [Acceptcard, RetumCard, IdentifyValidcard,

Identify InvalidCard])

This indicates that the transaction and cardreader processes
run in parallel and synchronise on the Acceptcard, Return-
Card, IdentibValidCard and IdentibInvalidCard events. Note
that the declaration of the IdentibValidCard and IdentibIn-
validcard events has been brought outside the transaction
process.

This discussion presented so far has illustrated the form of
a LOTOS specification and two altemative ways of describing
the information it contains: 1) as a set of event sequences;
and 2) as an action tree. The order in which these represen-
tations have been presented also suggests a plausible means
of using them in combination to help develop the LOTOS
description, namely: define possible sequences, combine them
in tree form and then build the LOTOS model to describe the
resulting behavior. Even if designers prefer to build LOTOS
descriptions directly, the other representations are still of
benefit in evaluating the LOTOS model produced. That is,
they can be used as specifications of the model and verified
automatically against the model. The same approach can be
used when modifying a LOTOS specification. Details of how
this approach has been implemented in practice are given in

a later section. Before that, however, the next section takes a
more detailed view of the general requirements for supporting
change to formal models and the particular support needcd for
event-based models.

111. CHANGE REQUIREMENTS

The introduction described the basic process of model
change in terms of three stages of activity: understanding the
need for change, implementing the change and evaluating the
change. This section considers the needs of each of these
activities in turn and briefly identifies some of the existing
tool support for LOTOS in this area.

A . Understanding the Need for Change

Understanding the need for change involves, in general,
an investigation of the requirements for the system being
modelled and an investigation of the existing model. To fix
ideas, assume that in the case of the teller model it has been
discovered that users are tending to pick up their money and
leave without taking their card. It has therefore been decided
that a card should be retumed before the money is dispensed.
This is the change requirement expressed informally. To pro-
duce a precise specification of the change it is then necessary
to understand the model and describe the change in terms of
modifications to the event sequences permitted.

At present, the most common way of examining a LOTOS
model is through the use of a simulator, which effectively
translates the model into an action tree and allows it to be
explored. Typically, however, the tree is not presented in its
entirety but is explored one event at a time. For each state
in the tree the set of possible next events is computed, from
which an observer then makes a selection. This allows the
simulator to derive the next state. In this way, a trace of events
representing one path down the action tree is built up step-by-
step. A simulator only constructs those parts of the tree that are
needed for this path. Examples of simulators include HIPPO,
developed as part of the Esprit SEDOS (Software Environment
for the Design of Open Distributed Systems) project [lo];
SMILE, a development from HIPPO by the Esprit Lotosphere
project [151 which is incorporated into LITE (Lotosphere
Integrated Tool Environment) [161; EXPOSE [171; and the
University of Ottowa LOTOS Toolset [181. These simulators
include various features to reduce the tedium of single step
examination of the tree, such as an ability to use predefined
sequences or to recognise when equivalent states have been
encountered [151.

Examination of the teller specification indicates that the
SupplyMoney and Returncard events need to be reversed,
implying that the money is supplied only when the card
has been retrieved. There are no existing tools that allow
such a change to be specified any more formally than this,
except perhaps in terms of the new event sequence that
a revised model should permit. Of course, a satisfactory
specification should also indicate that the old sequence is
no longer acceptable, that all other sequences should remain
unchanged and that no new sequences should be introduced.
This is the same as defining the new tree.

BUSTARD AND WINSTANLEY. MAKING CHANGES TO FORMAL SPECIFICATIONS: REQUIREMENTS AND AN EXAMPLE 565

B . implementing the Change

Implementing change generally means editing the model.
However, refinement, through the use of correctness preserv-
ing transformations, is possible for some types of change. This
is the most difficult and least investigated aspect of LOTOS
support. In fact, much work in his area has primarily been
directed at transforming specifications into forms suitable for
use in other tools (for example, verification tools that only
act on subsets of LOTOS syntax) rather than for system
development per se. ASDE (Advanced System Design Envi-
ronment) [191 provides an interactive environment for defining
transformations in a suitably extended version of LOTOS
and for applying them to parts of LOTOS specifications.
Application of a rule is performed by selecting its template
and the behavior expression (or part of one) to which it is to be
applied. The system checks that the template contained in the
rule matches the selected expression and that any conditions
that are applicable are met. It then produces a new version of
the specification as output.

The Lotosphere tool-set LITE [161 supports transforma-
tional refinement in three main ways:

1) the facilities provided by a structure editor allow the
interactive transformation of parts of a specification
using the analysis tools to ensure correctness;

2) the bipartition offiinctionality divides a process into two
communicating sub-processes; and

3) re-grouping of parallel processes re-arranges the topol-
ogy of processes-for example to allow for the separa-
tion of implementation concerns.

In general, however, most changes will require direct ad-
justment of the model.

C. Evaluating the Change

Evaluating a change means 1) verifying that the change
has been implemented as intended; and 2) validating that the
requirement for change was appropriate, by comparing the
new model with the real world. Verification will involve the
comparison of the new model with either the existing model
or a specification of the required behavior of the new model.

Overall, there are four main reasons for changing a model:
a corrective change: to repair a mismatch between a
model and the system it represents;
an adaptive change: to mirror actual changes to a system
that have occurred or to define proposed changes;
a refinement change: to extend a model with lower level
detail; and
a presentation change: to modify the appearance of a
model; presentation changes typically include adjusting
the layout of the model, rearranging the presentation
order of components and adding comments.

The semantics of the model are changed in the first three
cases but not the fourth. For example, the restructuring of
the LOTOS teller model to include a cardreader process, as
described earlier, is a presentation change and should not effect
the behavior of the model. This can be confirmed by exhaustive
comparison of the action trees for the two specifications

concerned. More precisely, this means proving that the new
form is strongly equivalent [20] to the original, i.e., that the
two specifications produce the same set of event traces and,
in each state, offer the same events.

An example of a refinement change would be the intro-
duction of further internal events such as one to represent a
database enquiry to determine if a PIN number was registered.
This change produces a description that is observationally or
weakly equivalent to the original [20]. Again the correctness
of the change involved can be verified automatically although
this would not guarantee the preservation of the original order
of internal events. Thus, the designer might also need to see
how the new tree differs from the old to ensure that the
new event has been located correctly. This might be achieved
by displaying the trees and highlighting their differences.
Such an approach would be the main technique when dealing
with corrective and adaptive changes that modify the external
behavior of the model.

As mentioned earlier, another approach would be to specify
a change fully in advance and then compare the new and
specified models for strong equivalence. Again, however, a
mechanism would be needed for reporting differences to help
locate faults when a model has been modified incorrectly.

Two specifications can be compared for strong, weak and
other equivalences using algorithms such as those presented
in [21] and [22]. A substantial amount of memory is needed
to hold an action tree for most practical specifications and this
tends to limit the size of specification that can be handled. Such
state limitations can be alleviated to some extent, however,
by performing an equivalence comparison “on the fly” as
the action tree is being constructed [23]. AldCbaran [24]
verifies specifications with respect to several equivalences
(strong, observational, and safety) using the Paige and Tarjan
algorithm. It has also been used to prototype the “on the fly”
algorithm [23]. Other verification tools include Squiggles [25],
part of the SEDOS tool-set, and AUTO [26], which is now
integrated as part of the LITE tool-set [16].

In summary, to facilitate change to formal models, in
general, there appears to be a need to provide support for:

1) the specification of a model prior to its construction
2) the analysis of an existing model prior to its modification
3) the specification of a model change
4) the transformation of a model, preserving its semantics
5) the verification that a new model meets its specification

or is equivalent, in some defined sense, to the model
from which it has been derived

6) the investigation of unexpected differences between
models, because of a faulty change or faulty require-
ment.

The next section describes an approach to providing such
support.

Iv. AN APPROACH TO SUPPORTING
CHANGE FOR LOTOS MODELS

Tool design and development for LOTOS was undertaken as
part of the SCAFFOLD project (Support for the Construction
and Animation of Formal Language Descriptions) [131. Its

Sh6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 8, AUGUST 1994

broad concem was to investigate ways of making formal
descriptions more accessible and thereby encourage the wider
use of formal modeling as a standard software development
technique. It used LOTOS as a specific example notation. This
section outlines some of the facilities that have been developed
to support change to such models.

SCAFFOLD allows event-based descriptions of behavior
to be expressed in the three equivalent forms discussed in
earlier sections: 1) a set of event sequences; 2) an action tree;
3) a LOTOS specification. The action tree is the common
conceptual representation of these descriptions but from a
development point of view the event sequences and action tree
are there in support of LOTOS specification construction and
modification. A tool has been developed that will input pairs of
descriptions in any of these forms, compare them with respect
to strong or weak equivalence and report any differences that
are found. For convenience in this experimental work, trees are
currently represented textually. For example, the tree for the
teller specification, shown in Fig. 2, would have the following
form:

0 Acceptcard
1 +i:IdentifyInvalidCard
2 Display Rejection
3 RetumCard
4 %:exit -+ 0
5 +i:IdentifyValidCard
6 RequestPIN
7 AcceptPIN
8 +i:IdentifyInvalidPIN
9 Display Rejection
10 RetumCard
1 1 i:exit ---$ 0
12 +%:IdentifyValidPIN
13 Supply Money
14 RetumCard
15 %:exit -+ 0

The numbers down the left hand side identify the nodes in
the tree. Sequences of events are indented successively to the
right. Internal events have an ‘‘2:” prefix. A “+” before an
event indicates that it is at a fork in the tree. Other branches
from the same fork can be determined by looking down the

same column. Any subsequent indentation to the left indicates
the end of a branch. Looping behavior is marked by an arrow
followed by the number of the node at the beginning of the

Such trees can be constructed or modified directly using a
text editor and can also be generated from a LOTOS model.
The LOTOS analyser recognises simple tail recursion but
other more complex forms of looping have to be identified
and reported by the user. This is achieved interactively by
generating the tree to some specified branch limit and then
inviting the user to name any pairs of nodes between which
loop connections should be made. Even with such adjustments,
however, trees may be very large and so the option has been
provided to prune them if necessary by indicating that further
events exist along a branch but should be ignored. Where this
is done the preceding event is followed by the marker “>>>”.
Such partial trees can then only be used as a test of a LOTOS
specification rather than a full verification.

When two equivalent representations are compared the
analysis will simply confirm this equivalence. If they differ,
two trees are generated to explain the difference. For example,
in the case of the teller machine where the SupplyMonpy and
Retur-nCard events were reversed, the following two trees
would be produced on comparing the models found at the
bottom of the page.

An asterisk in one tree indicates where it differs from the
other tree. This has occurred at node 13 in both cases. The
following ‘>>>’ symbol shows that there are subsequent
events on each branch that have been ignored. In general,
there may be several such branches identified in this way.

The basic recursive algorithm for comparing two action
trees TI and T2 for strong equivalence is as follows:
function Equivalent action trees (TI, T2: action tree):

Determine sets of first level events(initials), I1 and 12,

{ Each event has a: name (name);

loop.

Boolean;

for action trees TI and T2

current equivalence status (matched) - set initially

reference to the subtree (if any) following that
to false;

event (subtree) }

Original Specification
0 Acceptcard
1 +i:IdentifyInvalidCard
2 Display Rejection
3 RetumCard
4 %:exit - 0
5 +i:IdentifyValidCard
6 RequestPIN
7 AcceptPIN
8 +i:IdentifyInvalidPIN
9 Display Rejection
10 Re tumCard
1 1 2:exit ---$ 0
12 +i:IdentifyValidPIN
13 SupplyMoney * > > >

Modified Specification ~

0 Acceptcard
1 +i: IdentifyInvalidCard
2 Display Rejection
3 RetumCard
4 2:exit + 0
5 +i:IdentifyValidCard
6 RequestPIN
7 AcceptPIN
8 +i: IdentifyInvalidPIN
9 Display Rejection
10 RetumCard
11 i:exit ---$ 0
12 +i:IdentifyValidPIN
13 RetumCard * >>>

BUSTARD AND WINSTANLEY: MAKING CHANGES TO FORMAL SPECIFICATIONS: REQUIREMENTS AND AN EXAMPLE 567

for each event El in I 1 do
for each event E2 in I2 do

if El.name = E2.name then (* event names match *)
if Equivalent action trees
(E 1 .subtree, E2.subtree) then

begin El .matched := true;
E2.matched := true; end;

Compress (E I .subtree); Compress (E2.subtree);
Equivalent action trees := matched true for every event
in I1 and I2
This algorithm is a modified version of the “on the fly”

algorithm described by Femandez and Mounier [23]. Versions
to compare specifications for strong, safety and observational
equivalence have been developed but only that for strong
equivalence is described here. Whereas, in the interests of
efficient use of memory, the original “on the fly” algorithm
explicitly uses stacks, the SCAFFOLD comparison tool uses
the calling mechanism of the recursive procedure to store the
equivalence results for successor states during a depth-first ex-
ploration of the two action trees. Testing for strong equivalence
between two specifications consists of comparing each event
sequence and the choices offered by one specification with
those of the other. At the end of the analysis, skeleton trees for
each specification will have been constructed, subject to any
truncation imposed. To save memory space, state information
at each node is discarded as each node is checked. Equivalent
states in the two trees are marked during the analysis and
so any difference can be determined by performing a further
traversal of the trees, examining each state in tum.

There are several ways in which the facilities provided
might be used. It is possible, for example, to work mainly with
the LOTOS descriptions and use the tree representations as an
evaluation or debugging aid to help understand differences
between two models. Alternatively, models might be built and
modified by trying to define the desired event sequences, then
define a matching action tree and finally build or modify a
LOTOS description. These are two extreme approaches and
there are many possibilities in between. The choice may
well depend on the nature of the system described. If the
tree is complex, for example, then it would be preferable to
first build the LOTOS model and then examine the tree it
produces (It may be useful to at least prepare a few expected
event sequences as tests of the developed model). Thereafter,
however, i t is beneficial to save the tree, after dealing with
looping behavior, and have it available for editing when
future modifications are required. This then would be a full
specification of an intended change and make verification
straightforward.

V. CONCLUSION

This paper has discussed the general issue of providing
support for change to formal models. Requirements for such
support were identified and an example of how that support
might be realized discussed for the particular case of models
expressed in LOTOS. Details of specific facilities developed
within the SCAFFOLD project were also presented. This is
a research area that has been given little attention generally

and yet it is a fundamental concem for those who wish to
see formal methods become an integral part of an acceptable
software engineering process.

The ideas presented here will undoubtedly be refined as
further experience is gained with the approach advocated. In
addition, there are other aspects of the research and tool de-
velopment work that need further investigation. In particular,
it would be desirable to:

provide hypertext links between the various representa-
tions to show how they interconnect; this is a particular
difficulty because of the basic mismatch between the
process-based structure of a LOTOS description and the
flat behavior tree;
provide a graphical representation for an action tree;
examine the approach with respect to other types of
formal specification; of immediate concern is the incor-
poration of the data type component of LOTOS although
the state explosion problems here are considerable; and
examine how support might be provided for changes
rippling through a refinement sequence.

This last issue is a particularly difficult problem. The
strategy suggested would result in the need to manage evolving
versions of a specification, each made up of a refinement
sequence. Changes may be started at different points in each
sequence depending on the level of concem so the result-
ing version network is relatively complex. Fortunately. such
relationships can be handled with existing configuration man-
agement techniques and research in this area into merging
versions of program modules may be adaptable for use with
LOTOS descriptions and action trees. A more fundamental
problem, however, is identifying user needs for refinement,
since currently there are no well established refinement pro-
cedures for LOTOS.

In conclusion, the facilities developed so far through SCAF-
FOLD, and described in this paper, seem useful and the
approach advocated promises to be a significant aid to improv-
ing the efficiency and effectiveness of formal process-based
modeling.

ACKNOWLEDGMENT

Both authors have benefited from discussions with col-
leagues on the SCAFFOLD project at York University and
British Aerospace, namely M. Harrison, R. Took, D. Nuttall,
and J. Song. Thanks are also extended to M. Norris and R. Orr
at British Telecom who were involved with the initial research

led to the SCAFFOLD project.

REFERENCES

D. R. Kuhn, “A technique for analyzing the effects of changes in formal
specifications,” 7% Conipur. J . vol. 35. pp. 57&S78, Dec. 1992.
A. M. L. de Vasconcelos and J . A. McDermid, “Incremental processing
of Z specifications,’’ in Formu/ Drsc.ription Tec l ~ r ~ i y u e s V. M. Diaz and
R. Groz. Eds. Amsterdam, The Netherlands: North-Holland, 1993. pp.
65-80,
E. Brinksma. “What is the method in formal methods,” in Forniul
Desc~ripriofi Tc.c.liriiqurs IV. K. Parker and G. Rose Eds. Amsterdam,
The Netherlandu: North-Holland, I 992. pp. 33-50,
J . Woodcock and M. Loomes. ScfrMwr E/igi/irrriti,y Matheniultrc~.
New York: Pitman, 1088.

568 IEEE TRAhSACTIONS Oh SOFTWARE ENGINEERING, VOL 20. NO. X. ALICUST 1991

[SI D. W. Bustard, M. T. Norris, R A . Orr, and A.C. Winstanley, “An
exercise in formalising the description of a concurrent sy\tem,” Sofi~,ur-c,
Practice & Erperience. vol. 22, pp. 1069-1098. Dec. 1992.

formal methods,” in Proc.. I l t h / f i t . Cor$.‘%,f”urv Eng. . Pittsburgh, PA.
May 1989, pp. 123-132.

171 D. Whitgift, MelhodS Und f i K J / S f O ~ S O f i n ’ U f F Co&’ur-uliOrl MUMrgPVfe f~ f
New York: Wiley. 1991.

[X I I.S.O., “LOTOS-A formal description technique based on the temporal
ordering of observational behavior.” ISO8807. 1989.

[9] T. Bolognesi and E. Brinksma, “Introduction to the IS0 specification
language LOTOS,” Comput. Neworks und ISDN Swf.. vol. 14, pp.
25-59. Jan. 1987.

[101 P. H. J. van Eijk, C. A. Vissers. and M. Diaz. The Fomiul Desc ripriori
Trcht7ryrre LOTUS.

I 1 11 R. Milner. “A calculus of communicatine svstenis.” Le[,fur-e Notes i i i

(231 J . Fernindez and L. Mounier, “Verifying hisimulation\ on the fly,”
in Forniul De.sc,i.ipfiori fi4viiyue.s 111, J . Quemada. J. Mafias. and E.
Vazquei. Eds. Amsterdam, The Netherlands: North-Holland. 1991. pp.

1241 J. C. Femindc;., “Aldebaran: A toc>! for the veritjcation of communicat.
ing processes.” Tech. Rep. SPECTRE c14, LGI-IMAG, 19x9.

1251 T. Bolognesi and M. Caneve, “Squiggles: A tool for the ai,alysis
LOTOS specifications.” in Formal D~.sc.r-rptio,r Tc.c~htiJqrte,s. K . J. Turner,
Ed. Amsterdam, The Netherlands: North-Holland, 1989. pp. 201-2 16.

1261 E. Madelaine and D. Vergamini, “Tools for process algebras.” in For-mol
Ilc\c~r.rprioti Tc.c~hrriyue.s /I:. K. Parker and G. Rose, Eds. Amsterdam.
The Netherlands: North-Holland. 1992, pp. 463466.

161 S. Patel, R. A. Om, M . T. Norrin, and D. W. Buutard. “Tools to support 9 1-1 07.

Amsterdam, The Netherlands: Elsevier, 1989.

II61

1171

- ,
Cnmpurrr .%ivnw, vol. 9.
C. A. R. Hoare. Commioiicoti!r,q Seyiteutid Pr-~~w\te.s. Engiewood
Cliffs, NJ: Prentice-Hall, 1985.
D. W. Bustard and M . D. Harrison, “Animating process-oriented apeciti-
cations: experiences and lessons,” in PJYJC. IEE Colloquium A/ctoniatifi,p
Formul Mvthods for Comprrt. Assisrrd Pr-ofotypitrg. London. January
1992.
H. Alexander. “Structuring dialogues using CSP,“ in Formu/ Mctliods
in Human-Compurer. Interaction. M . Harrison and H. Thimhlehy. Eds.
Cambridge: Cambridge Univ. Press, 1991.
P. H. J . van Eijk and H. Eertink. “Design of the Lotosphere .;ymbolic
LOTOS $imulator,” in For-mul Desc.r.ipfioti Tec.kriiqirvs 111. J . Quemada.
J . Mafias. and E. Vazquez Eds. Amsterdam. The Netherlands: North-
Holland, 1991. pp. 709-712.
P. H. J . van Eijk. “The Lotosphere Integrated Tool Environment Lite.”
in Formal Deso.iptio~i k h n i q u c ~ s /I!. K. Parher and G. Rose Eds.
Amsterdam. The Netherlands: North-Holland. 1992, pp. 4 7 3 4 7 6 .
A. C. Winstanlev and D. W. Bustard: “EXPOSE: An animation tool

New York: Springer-Verlag. 1980.

.~
for process-oriented formal description.;.” Softw,ur-e Eri,?. ./.. vol. 6. pp.
4 6 3 4 7 5 , Nov. 1991.

[181 L. Logrippo, “The University of Ottawa LOTOS toolkit,“ in Fornrul
Drxription Techniyurs I / / . J. Quemada, J . Mafias, and E. Vazquei Ed\
Amsterdam, The Netherlands: North-Holland. 1992, pp. 689-697.

[191 G. Leon, C. D. Kloos. G. GonrAlez. M . A. Ruz. S. Marchena. I.. Santa\,
and J . Navarro, “ASDE: Design of a transforniational environment
for LOTOS.” in Formul Desc,riprron Trc /iriiqirr.\ I / . S.T. Vuong Ed.
Amsterdam. The Netherlands: North-Holland. pp. SOIL5 16. 1990.

1201 R. Milner, Commirnir,o/iu,i arid Cowurwnc?.. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

Dabid W. Bustard received the B Sc degree in
phy\ic\ and M Sc and Ph D degree\ in computer
science from Queen\ Univer\itj, Belfa\t in 1971,
1973, and 1980, re\pecti\ely

He wa\ a Viwing Re\e.irch Fcllciv. at the
Briti\h Telecommunication\ Re\edrch Labordtorie\
at Martlc\ham, England in 1989 and d Vi\iting
Scientist at the Software Engineering In\titute dt
Cdmegie Mellon in 1990 He held variou\ po\h at
Queen\ Univer\ity train 1974 to 19x9 before taking
u p his current post of Professor 0 1 Computing

Science at the Uni\er\ity of Uhter in 1990 Hi\ current main area of intere\t
is requirements engineering He dl50 lead\ the Requirement\ Dehnition
Rc\carch Group at the Univcr\itj ot L M e r

Adam C. Winstanley received the B.A. degree in
archaeology from the University of Cambridge in
1978. Al‘ter several years working as an archaeolo-
gist and cartographer with the Ordnance Survey of
Northern Ireland. he received the M.Sc. degree in
computer sciencc from Queen’s University. Belfast
in 1987. followed by a Ph.D. degree in 1992.

He was a research ofticer on the S[uffold project
in the Department of Computing Science. Univenity
of Ulstcr between 1990 and 1993 before returning to

1211 R. Paige and R. E. Tarjan, “Three Partition Refinement Algorithms.”
SlAM J . Comptru,q. vol. 16, pp. 973-989. 1987.

1221 K. G. Larsen, “Context-Dependent bisimulation between proccsse\.“
Univ.. of Edinburgh, Tech. Rep. CST-37-X6. 1986.

Queen’s University as a temporary lecturer in Com-
puter Science. He is currently a research fellow in the Artificial Intelligence
Research Group at Quem’s University with interests in A I applications for
gcogrnphical information systems and quantitative problem solving.

