
The Photogrammetric Record 30(149): 30–45 (March 2015)
DOI: 10.1111/phor.12090

AN ALGORITHM FOR AUTOMATED ESTIMATION OF
ROAD ROUGHNESS FROM MOBILE LASER SCANNING

DATA

Pankaj KUMAR (pankajkumar@utm.my)

Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia

Paul LEWIS (paul.lewis@nuim.ie)
Conor P. MCELHINNEY (conormce@cs.nuim.ie)

National University of Ireland Maynooth (NUIM), Maynooth, Ireland

Alias Abdul RAHMAN (alias@utm.my)

Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia

Abstract

Road roughness is the deviation of a road surface from a designed surface
grade that influences safety conditions for road users. Mobile laser scanning (MLS)
systems provide a rapid, continuous and cost-effective way of collecting highly
accurate and dense 3D point-cloud data along a route corridor. In this paper an
algorithm for the automated estimation of road roughness from MLS data is
presented, where a surface grid is fitted to the lidar points associated with the road
surface. The elevation difference between the lidar points and their surface grid
equivalents provides residual values in height which can be used to estimate
roughness along the road surface. Tests validated the new road-roughness algorithm
by successfully estimating surface conditions on multiple road sections. These
findings contribute to a more comprehensive approach to surveying road networks.

Keywords: elevation residual, lidar, mobile laser scanning, roughness,
surface grid

Introduction

ROAD TRANSPORTATION PLAYS A VITAL ROLE in the progress and socio-economic growth of
society, enabling the safe movement of goods, people and services. Roads are designed and
built based on numerous design criteria, notably travel time, user comfort and convenience,
fuel consumption, construction, cost and environmental impact (ETSC, 1997). A well-
designed and maintained route infrastructure assists in driver safety as well as in the
efficient use of the overall network in terms of route navigation. Road networks should be
developed and maintained by taking into account the vehicle, driver behaviour and road
infrastructure elements (Treat et al., 1979); to date less consideration has been given to the
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latter factor (IRF, 2003). Analysis shows that accidents due to human error occur mostly at
specific accident hotspots.

Road roughness can be considered an important factor that influences safety conditions
for road users. It affects rolling resistance, ride quality, vehicle operating costs, fuel
consumption and the safety of the road users (Sayers and Karamihas, 1998). Rough roads
are often associated with some of the typical types of road accidents such as loss of control,
running off the road and hitting fixed or moving objects (Bester, 2003). Several studies
have indicated that the accident rate increases with increasing unevenness of the road
surface (Ihs, 2004; Davies et al., 2005). Road roughness needs to be located, measured,
recorded and characterised in a timely, cost-effective manner in order to schedule
maintenance and ensure maximum safety conditions for road users. Mobile laser scanning
(MLS) systems facilitate the acquisition of accurate and dense point-cloud data along route
corridors in a rapid, continuous and cost-effective way. It is proposed that the spatially
referenced 3D data can be used for reliable and precise estimation of roughness along a
road surface. In Kumar et al. (2013), the current authors presented an automated algorithm
for extracting road edge information from MLS data. This algorithm was applied to
estimating road boundaries from lidar data, which are then used to identify the lidar points
that belong to the road surface (Kumar et al., 2014). A priori knowledge of the road surface
area facilitates a more efficient estimation of roughness along its surface. In this paper, an
algorithm is presented for the automated estimation of road roughness from MLS data. This
algorithm provides discrete estimation of road roughness in the form of standard deviation
values of elevation residual points. These residual points are obtained after fitting a surface
grid to the lidar points belonging to the road surface.

This paper is organised as follows. The next section reviews various existing
approaches used for estimating roughness along the road surface. Following this, a stepwise
description of the new road-roughness estimation algorithm is presented. Next, the algorithm
is tested on various road sections. Finally, the road-roughness estimation results are
discussed and conclusions drawn.

Literature Review

Road roughness is generally considered to be the deviation of the road surface from a
designed surface grade that may develop as a result of road use, construction processes or a
combination of these (Farias and de Souza, 2009). Several indices have been developed
which are used to estimate roughness along a longitudinal profile of the road surface. These
indices are computed as dynamic and geometrical values. Dynamic indices, such as the
International Roughness Index (IRI), provide continuous estimation of the roughness based
on a model that simulates a dynamic response of a standard vehicle moving along the road
surface profile at a certain speed. Geometrical indices, such as the standard deviation of
longitudinal roughness, provide discrete estimation of the roughness in the form of standard
deviation values of relative elevation points measured along the road surface.

The IRI was developed by the World Bank in the 1980s in response to a requirement
for a reference scale for road-roughness measurement (Sayers et al., 1986). This measure is
used to provide a continuous estimation based on a model that applies a mathematical
simulation of a standard vehicle moving along the road surface profile at a certain speed.
The model uses a Quarter Car Simulator (QCS), as shown in Fig. 1.

The QCS consists of a sprung mass that represents the vehicle body and an unsprung
mass that represents a wheel and half axle. The sprung mass is connected to the unsprung
mass with a suspension spring and damper. The unsprung mass is in contact with the road
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surface using the wheel spring. During the simulation process, the QCS runs along the road
surface profile at a constant speed, V. The roughness along the road surface generates z0s and
z0u vertical speeds in the sprung and unsprung mass, respectively. The IRI value for a section
of the road surface profile is estimated as

IRI ¼ 1
L

Zx=V
0

jz0s � z0uj dt ð1Þ

where L is a length of the road section in metres, x/V is the time taken by the model to
travel a certain distance x and dt is a time increment. Thus, the IRI is an accumulation of a
vertical displacement divided by the distance travelled by the vehicle that, in turn, provides
the roughness scale. Its value is estimated in m/km or inch/mile units and ranges between 0
and 20 m/km. A 0 m/km value of IRI represents a perfectly smooth road surface; a value of
approximately 6 m/km represents a moderate road roughness; and a value of 20 m/km
represents a bumpy, unpaved road surface (Paterson, 1987). One key advantage of using the
IRI scale for the roughness measurement is its reliability, as it facilitates both repeatability
and stability of results with respect to time (Sayers and Karamihas, 1998).

The standard deviation of longitudinal roughness provides discrete estimation based on
elevation points that are measured at a 1�5 m interval along the longitudinal profile of the
road surface as shown in Fig. 2 (Farias and de Souza, 2009).

These elevation points along the longitudinal profile are measured using straight-edge
profilometers or laser profilers. The relative elevation di for each point is computed as:
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Fig. 1. Quarter Car Simulator.
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Fig. 2. Measurement of elevation points at a 1�5 m interval along the longitudinal profile of the road surface.
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di ¼ hi � 1
2
ðhi�1 þ hiþ1Þ ð2Þ

where hi, hi�1 and hi+1 are the current, previous and next measured elevation values,
respectively. A standard deviation of longitudinal roughness is estimated as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn1
i¼1

ðdi � diÞ2

n1

vuuut ð3Þ

where di is the mean of the values and n1 is the number of points.
Lidar data provides elevation values which have been used for estimating road

roughness. Pattnaik et al. (2003) estimated grade and cross-slope parameters of a road
segment from airborne laser scanning (ALS) data. Road boundaries were delineated using
multi-resolution orthophotographs, a GIS (geographical information system) street database
and a terrain model generated from ALS data. A plane was fitted to the lidar points
belonging to a road using a linear regression model. Residuals for the grade and cross slope
were then estimated by finding a goodness of fit of the regression plane with the lidar
points. Zhang and Frey (2005) also presented a method for estimating the road grade and
banking from ALS data using a linear regression model; however, road boundaries were
extracted based on a priori knowledge of the road width instead of using a surface terrain
model. Yu et al. (2007) presented an approach to characterise and visualise cracks along the
road surface. In their approach, elevation values in each scanner line profile were
thresholded to segment the road profiles; then coarse 3D surface models were reconstructed
using cubic spline interpolation and median filter methods. The cracks in the coarse models
were marked and were employed to reconstruct 3D models of higher detail. The final
detailed models were used to estimate the geometry and shape of cracks along the road
surface. Yen et al. (2010) analysed MLS data to produce digital terrain models of pavement
surfaces. In one of their analyses, a linear plane was fitted to the data points for a 1 mile
(1�6 km) road section and then the vertical offsets were calculated. Bitelli et al. (2012)
described an approach for characterising the texture of the road surface using a 3D laser-
triangulation scanner which works on the principle of calculating the distance from the laser
scanner to the mapping object using a trigonometric triangulation method. In their work,
they extended the mathematical expressions traditionally used for 2D texture indicators to
ones applicable in a 3D context; they also introduced new surface- and volume-based
texture indicators for characterising the road surface. Apart from the laser scanners, inertial
measurement units (IMUs) mounted on mobile vehicles have also been used for measuring
road roughness. Chin (2012) assessed the measurement of road profiles from a terrestrial
laser scanning (TLS) system. This study investigated an optimal sampling interval required
to filter the TLS data for smoothing out the noise without over-smoothing the data. The
cross slope, cross correlation and IRI values were calculated from elevation attributes and
were validated with values from road-profile instruments such as rods and levels,
inclinometers and inertial profilers. Barsi et al. (2006) investigated the use of low-end IMUs
for roughness estimation in which a strong correlation was found in between the roll values
and the rough road surface. Later the same researchers (Kertesz et al., 2007) found
correlated values of vertical acceleration, roll and pitch angles with the road quality and
derived IRI values from the vertical acceleration. Wen (2008) presented a method to detect
the road roughness from IMU data; a time-domain analysis of the data was performed to
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detect the location and magnitude of road bumps, while a frequency-domain analysis was
used to estimate the road-texture information from the IMU data.

Some other approaches have also been developed for estimating roughness over soil
and other terrain surfaces from lidar data. Zhang and Russell (2004) demonstrated a
prototype system for estimating ground surface-roughness information using a combination
of a camera and laser scanning system mounted on a mobile robotic platform. A multi-scale
variance method was used over different ground surfaces to characterise an elevation profile
at different spatial scales. Hollaus and H€ofle (2010) investigated two approaches for
estimating terrain roughness from full-waveform ALS data. In the first approach, an
orthogonal regression plane was fitted to the lidar data and then the standard deviations of
the residual elevation points were calculated. In the second approach, the roughness
parameters were estimated from the echo-width attribute of lidar data, which provides
information on the range distribution of scatterers. Both these approaches were found to be
useful for extracting terrain-roughness information. However, the echo-width approach
produced similarly patterned results even for moderate point densities. Diaz et al. (2010)
characterised surface roughness in agricultural soil using MLS data. Lidar data was
interpolated to create a surface grid model with a cell spacing of 1 cm which was used to
estimate the surface roughness.

Lidar data provides elevation information which can be used to estimate road
roughness without a requirement for any simulation process. Its ability to provide reliable
information for estimating road roughness needs to be thoroughly explored. Unlike
traditional methods, laser scanning systems can be used to provide spatially referenced
roughness information along the road surface. Most approaches used to compute roughness
indices are cumulative in nature. Lidar data can be used to provide localised roughness
information along the longitudinal, as well as the transverse, profile of a road surface. Some
of the methods developed for estimating road roughness from lidar data are based on fitting
a regression plane and then computing elevation residuals. There is a need for a more
robust surface-fitting approach that will provide an ideal representation of the road surface.
A priori information of the road boundaries and its surface will facilitate the process of
estimating road roughness. In the next section, the road-roughness estimation algorithm
developed in this research is described.

Road-roughness Algorithm

An automated algorithm for extracting road edges from MLS data was presented in
Kumar et al. (2013). The input consisted of n lidar point-cloud datasets (30 m width; 10 m
length; 5 m height), and also n 10 m navigation data sections, to the road edge extraction
algorithm developed by Kumar (2012). The dimensions of the input data sections were
based on empirical tests as they impact on the efficiency of the process in terms of
computational cost. The selection of a 30 m width ensured the inclusion of the road surface
in the data; a 5 m elevation removed the impact of vertical objects along the route corridor;
while a 10 m length was selected on the basis of the computational cost analysis. The input
road sections were selected with an overlap of 2 m between them, which allows the batch
processing of consecutive and overlapping road sections as required by the road edge
extraction algorithm (Kumar et al., 2013). The algorithm outputs the road boundary, which
is used to identify the lidar points that belong to the road surface. The road-roughness
estimation algorithm is applied to the estimated road surface lidar points. The algorithm is
based on the assumption that by fitting a surface grid to the lidar points belonging to the
road surface and computing the elevation difference, the road roughness could be estimated.
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A workflow of the road-roughness estimation algorithm is shown in Fig. 3. In the following
sections, the algorithm’s four processing steps are described in more detail.

Step 1: Road Surface Estimation

Lidar data provides the input and the road boundary is then estimated using the
automated road edge extraction algorithm. In this first step of the road-roughness algorithm,
the road boundary is used to identify the lidar points that belong to the road surface. A road
boundary is overlaid on the lidar data such that the points outside the road boundary are
removed, while inner points are retained to estimate the road surface (Kumar et al., 2014).

Lidar Data

Road Boundary

Step 1: Lidar points are 
identified that belong to 

the road surface.

Navigation Data

Step 2: Lidar and 
navigation points are 

rotated around the 
elevation axis and towards 
the easting axis based on 

average heading 
information.

Step 3: Surface 
grid is fitted to the 
lidar points along 
the left side of the 

road surface.

Step 4: Standard 
deviation of elevation 
residuals is found in 

each cell of the surface 
grid along the navigation 
track. Finally, points are 
inversely rotated to their 

original positions.

Fig. 3. Workflow of the road-roughness estimation algorithm.
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Step 2: Data Rotation

In the second step of the road-roughness estimation algorithm, the lidar and navigation
points are rotated around the elevation axis and towards the eastings axis. This rotation is
carried out to assist the process of fitting a surface grid to the lidar points described in the
next section. Both the lidar and navigation points are rotated through an angle φ, which is
calculated from the average heading angle h of the mobile van (Kumar, 2012; Kumar et al.,
2013).

Step 3: Surface Grid

In the third step, the random sample consensus (RANSAC) algorithm is used to fit a
surface grid to the lidar points. The RANSAC algorithm provides a robust fitting of a model
to input points in the presence of outliers (Fischler and Bolles, 1981). Unlike conventional
model-fitting techniques that use as many data points as possible to obtain an initial
solution, the RANSAC algorithm uses the smallest set of initial data points required to fit a
model and enlarges this set with compatible data points (Derpanis, 2010). Here m = 3 is the
number of random points that are required to fit an initial plane using a least squares model
l. The least squares model is fitted to the points based on minimising the sum of the squares
of the residuals, which are the differences between the actual points and the fitted points.
The model l is used to estimate points in the dataset which are within an error tolerance
parameter e. These estimated data points are called consensus points. If the number of
consensus points is equal to, or larger than, a threshold t, then a new least squares model l*
is fitted to these points. Otherwise, the whole process is repeated beginning with a random
selection of m points. After some pre-set number of iterations k, if the number of consensus
points, equal to or larger than t, is not found, then the model fitted with the largest number
of consensus points is accepted.

The RANSAC algorithm uses three specified parameters: e, k and t. The value of e is
calculated experimentally by repeatedly fitting a model to the randomly selected data points
a number of times and then measuring the error between the fitted model and the data
points for each repetition. The value of e is then set as the sum of the mean and standard
deviation of the measured errors (Fischler and Bolles, 1981). This allows e to be set
automatically. If p is the probability that any selected data point is within the error tolerance
value e, and q is the desired probability for getting a good set of data points, then the value
of k is calculated as (Fischler and Bolles, 1981):

ð1� pmÞk ¼ ð1� qÞ ð4Þ

and thus

k ¼ logð1� qÞ
logð1� pmÞ : ð5Þ

The value of the t parameter is calculated as (Collins, 2007):

t ¼ pn1 ð6Þ

where n1 is the number of data points. The fitted surface grid is a representative of what the
ideal road surface should be. This surface is used to measure the elevation residuals along
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the navigation track described in the final step. A surface grid is not fitted to the lidar points
that belong to the complete road surface as it does not provide an accurate representation of
the road surface due to its non-planar shape, as can be seen in Fig. 4(a).

The lidar points are divided into the left and right sides of the road surface based on
their rotated northing values. It is assumed the centre of the road is in the middle of the
extracted road surface. Using the road boundaries from the road edge extraction algorithm,
the road can be easily split into two parts (left and right). A surface grid is fitted to the
lidar points belonging to the left side of the road surface as shown in Fig. 4(b). The size of
the cell in the surface grid is selected based on the surface area of the footprint of the
mobile van’s wheel that comes into contact with the road surface. This cell size is chosen
to measure the roughness experienced at each discrete instant of the vehicle’s movement
over the road surface.

Step 4: Road Roughness

In the final step of the algorithm, the elevation residual values are found by calculating
the difference between the elevation of each lidar point and its respective surface grid point.
A standard deviation of the elevation residuals in each cell along the navigation track of the
mobile van is determined as:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2

Xn2
i�1

ðzi � zÞ2
s

ð7Þ

where

z ¼ 1
n2

Xn2
i¼1

zi ð8Þ

and z is the residual and n2 is the number of residuals in each cell. The estimated standard
deviation values provide roughness information along the longitudinal road surface. Finally,
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Fig. 4. Surface grid represented with red is fitted to the lidar points that belong to: (a) the whole road surface;
(b) the left side of the road surface. Navigation points are represented in the upper part in yellow.
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the lidar points are inversely rotated to their original position along the road surface. In the
next section, experiments using the road-roughness estimation algorithm on various road
sections are presented.

Experimentation

Four sections of road were selected to test the road-roughness estimation algorithm.
These four sections covered 120 m of urban and national primary roads. These road sections
were selected to demonstrate the effectiveness of the algorithm to estimate the roughness
present along their surfaces. The processed data was collected using the experimental
Platform (XP-1) MLS system which has been designed and developed at the National
University of Ireland Maynooth (NUIM) (Kumar, 2012). Fig. 5 shows the four selected
road sections: Figs. 5(a) and (b) show the first and second 10 m urban roads; Figs. 5(c) and
(d) depict the third and fourth 50 m urban and national primary roads.

(a) (b)

(c) (d)

Fig. 5. Digital image of selected road sections: (a) first 10 m section of urban road; (b) second 10 m section of
urban road; (c) third 50 m section of urban road; (d) fourth 50 m section of national primary road.
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To process each 10 m road section, there is one (n = 1) 30 m 9 10 m 9 5 m section
of lidar data and also one (n = 1) 10 m section of navigation data. To process each 50 m
road section, n = 6 sections of lidar data covering 30 m 9 10 m 9 5 m were used together
with n = 6 sections, 10 m long, of navigation data. In the third and fourth road sections,
there was an overlap of 2 m between adjacent lidar sections (Kumar et al., 2013). In order
to avoid the dual estimation of roughness in the overlapping portions, the duplicate points
in the first of the two overlapping lidar sections was removed. Thus, in the first and second
lidar sections, the duplicate points in the first section were removed; in the second and
third lidar sections, the duplicate points in the second lidar section were removed, and so
on.

The road-roughness estimation algorithm was applied to the four selected road
sections. Parameter e was estimated experimentally in the algorithm. Probabilities of
p = 0�50 and q = 0�99 were selected, meaning there was a 50% likelihood of selecting any
data point within the error tolerance and a 99% probability of producing a good set of
points. Using these two probabilities and m = 3 in equation (5), the number of iterations k
was calculated as 35. The threshold parameter t was computed by multiplying the number
of points n1 in the respective lidar section by the probability p using equation (6). The
values of the e and t parameters used for fitting surface grids to the lidar sections are
shown in Table I.

The φ angle was calculated as 90° – h in each navigation section of the road
sections. The length and width of each cell in the surface grid was 0�215 and 0�18 m,
respectively. These values were estimated based on the measured surface area of the
footprint of the mobile van’s wheels that come into contact with the road surface. The
fitted surface grids and lidar points along the navigation track of the tested road sections
are shown in Fig. 6.

Finally, a standard deviation of the elevation residual values was calculated in each cell
along the navigation track in the various road sections. The roughness along the right side
of the road surface was not estimated due to a lower point density of the lidar data along
that side. This was due to the use of a single laser scanner in the XP-1 system during the
data acquisition process, which led to the acquisition of lidar data with a lower point
density along the right side of the road section compared with its left side (Kumar, 2012).
In the tested road sections, the average of the lidar point density samples collected over the
left and right sides of the urban road section was 880�66/m2 and 142�18/m2, respectively,
while the average of the point density samples collected over the left and right sides of the

Table I. Parameters e and t used in the road-roughness estimation algorithm.

Lidar sections Road sections

First Second Third Fourth

e (m) t e (m) t e (m) t e (m) t

1 0�03 16 495 0�02 23 868 0�08 6986 0�02 19 642
2 0�06 10 174 0�04 20 665
3 0�02 7767 0�03 20 662
4 0�07 7860 0�01 20 399
5 0�03 9392 0�05 20 969
6 0�04 11 389 0�03 24 327
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national primary road section was 1031�75/m2 and 45�84/m2, respectively (Kumar et al.,
2013).

Results and Discussion

Surface deviation maps were generated for the tested road sections to create a visual
representation of the roughness present along their surfaces, as shown in Fig. 7. The
surface deviations were calculated as the elevation residuals between the lidar points and
the fitted surface grid points. The deviation maps were generated with red and blue
representing the highest and lowest values, respectively, at their extreme ends. In the first,
second and third road sections, there was more variation on the surface, while in the
fourth road section the variation was less. In the surface deviation maps of the first and
second road sections, linear and square patterns were observed, respectively, which
corresponded to the roughness present along their surfaces in the real-world environment
as shown in Figs. 5(a) and (b). These patterns observed in the surface deviation maps
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Fig. 6. Fitted surface grid is represented in red and lidar points along the navigation track are represented in
black in the (a) first, (b) second, (c) third and (d) fourth road sections.

KUMAR et al. An algorithm for automated estimation of road roughness frommobile laser scanning data

© 2015 The Authors

The Photogrammetric Record © 2015 The Remote Sensing and Photogrammetry Society and John Wiley & Sons Ltd40



were validated by matching their geographical eastings and northings coordinates with the
coordinates in the digital images.

Box plots of the standard deviations of the elevation residual points along the navigation
track in the tested road sections are shown in Fig. 8. A statistical analysis was also
completed of the standard deviation values calculated for the four road sections as shown in
Table II. Considering just the minimum and maximum values, the best results were produced
for the fourth road section, while results were found to be poorest for the third road section.
The mean and median values were lowest for the fourth road section, while they were
highest for the second road section. Similarly, the number of outliers were least for the fourth
road section but highest for the first road section. These values indicate a smoother surface in
the fourth road section (along a national primary road) and uneven surface at some of the
points in the first, second and third road sections (in urban areas). There is also a correlation
between the calculated standard deviation and the IRI values, which allows the quantification
of the estimated road roughness into standard reference-scale values. However, this
comparison was not carried out as it was outside the scope of this study.
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Fig. 7. Surface deviation maps for the (a) first, (b) second, (c) third and (d) fourth road sections. Red and blue
represent the highest and lowest values, respectively; green represents small deviations.
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Conclusion

In this paper a novel approach for estimating road roughness from MLS data has been
presented. The approach is based on the assumption that fitting a surface grid to the road
surface lidar points provides elevation residual values that can be used for estimating road
roughness. This surface-fitting process is an attempt to automatically reconstruct an ideal
road surface. The successful estimation of roughness from the four tested road sections
validates the algorithm. These research findings can be used to provide rapid, cost-effective

(a) (b)

(c) (d)

Fig. 8. Box plot of the standard deviations of the elevation residual points along the navigation track in the (a) first,
(b) second, (c) third and (d) fourth road sections.

Table II. Statistical analysis of the standard deviations of the elevation residual points along the navigation
track in the first, second, third and fourth road sections.

Road sections

First Second Third Fourth

Minimum (mm) 0 2�38 0 0
Maximum (mm) 18�22 12�53 20�14 3�87
Lower adjacent (mm) 0 2�38 0 1�01
Upper adjacent (mm) 6�92 9�56 5�32 3�55
25th percentile (mm) 3�17 3�38 1�88 1�88
75th percentile (mm) 5�41 6�18 3�29 2�56
Mean (mm) 5�23 5�25 2�88 2�18
Median (mm) 3�76 4�54 2�31 2�19
Outliers (%) 17�39 8�11 7�83 3�91
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and comprehensive information to the road authorities in order to schedule maintenance and
ensure maximum safety conditions for road users.

Further research is required to investigate optimal values of the parameters used in the
RANSAC algorithm in order to fit a surface grid that would best represent an ideal road
surface. The underlying point density of the lidar data will affect the surface grid fitting. The
limitations of point density on the surface grid fitting approach needs to be investigated to
recommend a point density for different road surface grades. There is also a need to study the
effect of different scanner setting, configuration and vehicle operating speed on road-
roughness measurement results. The use of more than one laser scanner or a double-pass
approach in which the vehicle is driven back and forth along the road, can be employed to
acquire uniform and dense point clouds along both sides of the road section (Kumar et al.,
2013). This will allow the estimation of the roughness along both the left and right sides of a
road section. In comparison with the traditional road-roughness measurement methods, this
algorithm has the additional benefit of estimating the spatially referenced and localised
roughness information along the road surface. Unlike QCS and longitudinal roughness
standard deviation methods, it can provide an estimate of the roughness across any track on the
road section including the transverse road profile. The algorithm, through the use of lidar
technology, provides an accurate estimation of road roughness without using any simulation
model. One shortcoming of this road-roughness estimation methodology, however, is that it
may not produce a continuous measure of roughness similar to the conventional QCS method.
One solution might be to use a sliding surface grid technique in which the grid could be
modelled to slide along the road surface. The standard deviation values could be estimated at
each instant which could provide a dynamic estimation of the roughness along the road
surface. Direct comparison with the international standard IRI scale is required to aid
interpretation of the road-roughness estimation in these experiments. Additional research is
required to find a correlation between the calculated standard deviation and the IRI values
along the road surface. This will allow the estimated road roughness to be quantified against
this globally accepted IRI scale.
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R�esum�e

La rugosit�e d’une route est la d�eviation de la surface de la route par rapport �a la surface conc�ue, qui
influence les conditions de s�ecurit�e pour les usagers de la route. Le balayage laser mobile (MLS) offre un
moyen rapide, continu et rentable pour recueillir des nuages de points 3D tr�es pr�ecis et denses le long d’une
route. Cet article pr�esente un algorithme pour l’estimation automatique de la rugosit�e de la route �a partir de
donn�ees MLS, o�u une grille est ajust�ee sur les points lidar cens�es repr�esenter la surface de la route. La
diff�erence entre les altitudes des points lidar et de leurs �equivalents dans la grille fournit des valeurs r�esiduelles
de hauteur qui peuvent être utilis�ees pour estimer la rugosit�e �a la surface de la route. Des tests ont valid�e ce
nouvel algorithme en estimant les caract�eristiques de la surface sur de multiples sections de route. Ces r�esultats
contribuent �a une approche plus globale du relev�e topographique des r�eseaux routiers.

Zusammenfassung

Die Rauhigkeit einer Strassenoberfl€ache ist die qualitative Abweichung der tats€achlichen Oberfl€ache von
der geplanten Oberfl€ache. Eine solche Abweichung beeinflußt die Sicherheitsbedingungen f€ur Straßennutzer. Mit
Mobile Laserscanning Systemen (MLS) k€onnen schnell, kontinuierlich und auf kosteng€unstige Weise hochgenaue
und dichte 3D-Punktwolken entlang eines Straßenkorridors erfasst werden. Dieses Paper stellt einen
Algorithmus zur automatischen Bestimmung der Oberfl€achenrauhigkeit in MLS Daten vor. Ein
Oberfl€achenraster wird an die Punkte der Straßenoberfl€ache angepasst. Die Residuen zwischen Lidarpunkten
und den entsprechenden H€ohen des angepaßten Gitters k€onnen zur Sch€atzung der Rauhigkeit verwendet werden.
In Tests mit verschiedenen Straßenabschnitten wurde der neue Algorithmus hinsichtlich der Sch€atzung der
Oberfl€achenbeschaffenheit validiert. Auf Basis dieser Ergebnisse kann ein noch umfassender Ansatz zur
Erfassung von ganzen Straßennetzen angegangen werden.

Resumen

La rugosidad de una carretera es la desviaci�on de la superficie dise~nada que afecta las condiciones de
seguridad de los usuarios de la carretera. Los sistemas de l�aser m�oviles proporcionan una manera r�apida,
continua y barata de recolectar nubes de puntos 3-D densas y de gran precisi�on a lo largo de un corredor. En
este art�ıculo se presenta un algoritmo para la estimaci�on autom�atica de la rugosidad de la carretera, d�onde
una malla se ajusta a los puntos l�ıdar asociados con la superficie de la carretera. La diferencia entre la
elevaci�on de los puntos l�ıdar y los equivalentes en la malla proporcionan residuos en altura usados para
estimar la rugosidad de la superficie a lo largo de la carretera. Las comprobaciones validan el nuevo
algoritmo de rugosidad de la carretera al estimar con �exito las condiciones de la carretera en diversas
secciones de carretera. Estos resultados contribuyen a un enfoque m�as amplio de la medida de las
caracter�ısticas de redes de carreteras.

摘要

路面平整度是衡量道路表面和设计表面之差的等级,对道路使用者的安全条件的度量。移动激光扫描

(MLS)系统提供了一种快速获取低成本、高精确和高密度的沿着路线走廊的连续三维点云数据的方式。本

文提出从MLS数据自动估计路面平整度的算法,该算法利用一个路面格网来拟合激光点云,两者之间在高程

上的残差值可以被用来衡量路面平整度。试验充分验证了本文所提出的新算法针对多路段路面平整度处理

的可靠性,本文的这些发现为路网测量提供了一种更全面的手段。
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