

A PostGIS-Based Pedestrian Way finding Module
Using Open Street Map Data

Jianghua Zheng1,2*, Zhangang Zhang2, Błażej Ciepłuch2, Adam C. Winstanley2, Peter Mooney2 and Ricky Jacob2
1 School of Resources & Environment Science, Key Lab of City Inteligenlizing and Environment Modeling

Xinjiang University, Urumqi 830046, China,
2 Department of Computer Science, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

*Corresponding author, e-mail: itslbs@126.com

Abstract—Open source GIS (OSG) is a fast developing field.
When OSG is combined with Web2.0 and Service Orientated
Architectures (SOA) technologies and more applications of
Public Participation GIS, it has many advantages over
commercial GIS software. Despite this, OSG still needs more
improvement in terms of stability and functional integrity. In
order to build more robust, more practical, and more functional
LBS applications, this research investigates pedestrian-orientated
wayfinding, with special requirements as its study topic. We
describe some Web 2.0 routing APIs which can be easily used to
provide general shortest path planning. However, these APIs
cannot provide guidance services for specific user groups with
special requirements, such as tourists in small towns. We take
Maynooth as case-study. Maynooth is the only University town in
Ireland with a population of approximately 20,000. This research
uses OpenStreetMap (OSM) as spatial data source. OSM
contains very spatially rich dataset. It is stored and managed in
PostGIS/PostgreSQL. Through previous work on LBS
applications using the CloudMade Routing API and OSM data,
we present a Java-based wayfinding module implementing a
restricted area version of Dijkstra algorithm. A set of native
PostGIS spatial functions are used to improve performance of the
routing algorithm. Results from our wayfinding algorithm are
presented and compared with those obtained by using the
CloudMade Routing API. Our results are promising and show
that this special version of Dijkstra algorithm can take advantage
of the spatial data stored in OSM. This work provides a base to
build more effective pedestrian wayfinding algorithms which can
be implemented in open source software and open APIs. This
approach provides a feasible and economical LBS solution for
small towns, villages and tourism regions outside larger cities.

Keywords-OpenStreetMap(OSM);CloudMade;PostGIS;
Pedestrian; Wayfinding

I. INTRODUCTION
Wayfinding is a key function of Location Based Services

(LBS) for various types of users, including vehicle drivers,
pedestrians, bicycle riders, and those travelling by public
transportation. Most commercial LBS applications contain
wayfinding module with standard shortest path planning
algorithm and mostly together with various navigational aids,
including verbal navigational directions, route description in
text, static/interactive maps, animations, additional landmarks,
and virtual/enhanced environments. Actually, wayfinding
algorithms are the core, especially for pedestrian navigation
applications because of complexity of pedestrians’ behaviors.

For example, Millonig and Schechtner [1] divide application
areas of pedestrian navigation into six categories: tourism,
business trips, recreational trips, rescue services, military and
security operations, and individual navigational aid. Each of
the six types of applications might have special characteristics
of users’ behaviors to be taken into account when they carry
out the applications. Namely, navigation services need
personalized wayfinding modules to satisfy various users
requests based on different types of behaviors. It is obvious
that current commer-cial exciting wayfinding applications,
such as “Get Directions” function of Google Maps, “Get
directions” function of Microsoft Bing Maps, and that of
NAVITIME (Japan), which mainly focus on wayfinding
services at most general cases, even some them go further and
provide services for not only vehicles but also pedestrians or
users seeking services of bus transfer. We have to develop our
own wayfinding module if we want to realize a wayfinding
service to meet the requirements of a special user group. Fox
examples, a type of users may want to find shortest path in
open-boundary areas/walking areas [2], such as squares, parks
and grasslands. Some users may want to choose an optimal
route which is mostly covered with shelters as it is raining
heavily. Some others might want to choose a most reliable path
to avoid being lost on the way to a destination. Though it is
convenient and efficient to realize a navigation system by using
third party wayfinding APIs, such as CloudMade Routing APIs,
and directions in the Google Maps API, to provide navigation
services, we have to develop our own wayfinding modules as
potential third-party components for various special
requirements of users. Open source GIS tools are most suitable
for this purpose.

II. BACKGROUND AND RELATED WORK
With wide spreading of Web2.0 and SOA (Service

Oriented Architecture) technologies and penetration of Public
Participation GIS (PPGIS), the advantages of OSG(Open
Source GIS) applications are stronger than ever.

• First, more and more people take part in development of
OSG will make the software and applications more powerful in
functions. This is virtuous circle.

• Second, since having open architectures, if more and
more users are involved in and more and more applications
based on OSG are released, the OSG tools will be more robust
and practical.

Supported by a Strategic Research Cluster grant (07/SRC/I1168) by
Science Foundation Ireland under the National Development Plan and the
National Natural Science Foundation of China (No. 40801058).

• Third, together with mashups techniques, it is efficient
and low cost to realize applications using OSG software.

• Fourth, it is more feasible and economical to implement
creative applications to meet some special requirements and
realize personalized services by using OSG software than those
of commercial ones.

The gap between OSG software and commercial ones will
be greatly narrowed. Since LBS applications generally have
rich commercial values, OSG software will benefit a lot to
minor enterprises in LBS field.

Richard M. Stallman gives first concept definition of Free
Software in form of four freedoms: 1) The freedom to run the
program for any purpose; 2) The freedom to study how the
program works, and adapt it to your needs; 3) The freedom to
redistribute copies; 4) The freedom to improve the program,
and release your improvements to the public, so that the whole
community benefits. [3] If strictly stick to this definition,
CloudMade [9] should not be listed in Table I because it is a
product, including a set of map-based APIs, belongs to a
company with the same name and one of whose founders is
also a founder of OpenStreetMap (OSM). This might be a
major reason why CloudMade APIs could utilize OSM data
seamlessly. CloudMade provides Navi Studio as a suite of tools
to build fully featured turn-by-turn navigation applications on
any mobile platform. It also provides CloudMade Routing API
(http://developers.cloudmade.com/projects/show/routing-http-
api, 2010) for web and mobile applications with similar
functions. CloudMade is free for LBS applications in the event
that visitor volume of routes or local searches functions is
limited to no more than 5,000 per month [4]. This newly added
pricing policy limits its commercial applications. In this paper,
we list it in components library in Table I mainly because it is
free to use for small applications and let users to edit map data
which can also be shared or edited by others.

OpenStreetMap is a free map of the entire world and
founded by Steve Coast in July 2004. It allows you to view,
edit, and use geographical data in a collaborative way from
anywhere on Earth [5]. It is a public participation map source
and is fast developing since its foundation was established in
April 2006. It let users have more choices on styles of spatial
data, fresher data, more detailed data of tiny villages, etc. And
best of all, all the services are free. OSM data can be well
stored and managed by open source SDBMS (Spatial Database
Management Systems) such as PostGIS/PostgreSQL[10,11]
and MySQL Spatial/MySQL. OSM data can also be easily
converted into other widely used spatial data formats, such as
KLM (Google Earth) and SHP (ArcGIS). As extension of
PostgreSQL, PostGIS is used to support a range of important
GIS functionality, including full OpenGIS support, advanced
topological constructs (coverages, surfaces, and networks),
desktop user interface tools for viewing and editing GIS data,
and web-based access tools. Its functions are much like ESRI's
SDE or Oracle's Spatial extension. Latest release of ArcSDE
9.3 supports PostGIS layers.

pgRouting [6] is a free, open-source project maintained by
PostLBS, which provides core tools for Location Based
Services (LBS) as Open Source Software (OSS). Main goal of

pgRouting is to provide routing functionality, currently
including traditional Dijkstra algorithm, A* algorithm,
Traveling Sales Person (TSP) algorithm, Shooting Star
algorithm, and Driving Distance calculation function, to
PostgreSQL/PostGIS. Pulis and Attard [7] present a LBS
prototype, which provides shortest path service considering
multiple variables by using PostGIS and pgRouting as
extensions of PostgreSQL. Neis and Zipf [8] show that
pgRouting is a powerful OSG component for wayfinding. It is
seldom to see academic references about the topic, even less
about wayfinding, and existing references are mostly recently
published.

III. PROBLEMS DESCRIPTION
Though CloudMade Routing API is powerful and free of

charge for small applications, its original codes are not open so
that we cannot edit them for special needs from specific group
of users. We cannot use the Routing API to realize wayfinding
services for such special requirements, for example, the three
cases mentioned in Section 1. Though pgRouting provides
more wayfinding strategies than CloudMade does, it is not
convenient to use in other OS platforms than Linux. As to
develop applications of the three cases mentioned in Section 1,
we have to build our own wayfinding modules based PostGIS
with OSM data. In this paper, we implement an improved
Dijkstra algorithm, which does Dijkstra path planning in a
restricted area, as the first step. Its main contributions lie in two
parts. One is to build a reusable java module to create road
network topology. The other is realization of the restricted area
shortest path planning algorithm. How to realize applications
of the three cases mentioned in Section 1 will be discussed in
the future.

IV. USING POSTGIS TO BUILD A WAYFINDING MODULE
WITH OSM DATA

OSM data can be flexible stored in PostGIS/PostgreSQL
database, which is adopted by our prototype. A reasonable
link-node network for path planning is essential to build own
wayfinding modules. However, the original OSM data cannot
meet the needs. Intersections of roads in OSM are like general
basic geometric points stored in database. We need methods to
obtain the intersections of roads as the nodes of the link-node
network for path computing. This is the first task. The second
one is much easier – calculating length of each possible link
between nodes. The third is using a certain path planning
algorithm to calculate for optimal routes. As to improve
quality of service of the being built wayfinding module by
reducing the computing time, we want to develop a restrict
area shortest path Dijkstra algorithm by using standard
PostGIS functions.

We built a reusable Java module (top.jar) to obtain
network topology for next wayfinding module. The module
can automatically generate link-node relationships, including
orientation, length, line geometry and id of link and nodes.
After obtaining network topology, we can run optimal path
planning algorithms based on it. Since PostGIS does not
provide the function to generate network topology up to the
latest version 8.4, the module, top.jar, is a useful tool. PostGIS
provides many useful functions to fulfill task of building a

wayfinding module with restricted area Dijkstra algorithm.
The following lists major functions at each phase and its
instance to demonstrate the realization of the wayfinding
module.
• To find cross roads

ST_Crosses(geometry, geometry)

(http://postgis.refractions.net/documentation/manual-
1.3/ch06.html#id2574517)

SELECT b.osm_id, b.way FROM planet_osm_line a,
planet_osm_line b where a.osm_id = 39505657 and
ST_Crosses(a.way,b.way);

• To filter a restricted area for path planning
If we want to obtain the shortest path from point A to
point B, calculate the strait distance between them and
then use the distance as the radius and the points A and B
as centres to form two individual circles A and B . The

part of link-node network inside the BA is the
restricted area for path planning computing.
ST_distance(geometry, geometry)
 Returns the smaller distance between two geometries.
ST_max_distance(linestring,linestring)
 Returns the largest distance between two line strings.
ST_DWithin(geometry, geometry, float)
 Returns true if geometries are within the specified
 distance of one another. Uses indexes if available.
ST_Intersection(geometry, geometry)
 Returns a geometry that represents the point set
 intersection of the Geometries.
We use above functions to realize the target to obtain the
restricted area. Figure 2 shows an example of this phase
result (From John Hume Building to Arts Building)

Figure 1. Mechanism of obtaining restrict area

Figure 2. Example of restricted area

• To obtain intersections of roads

ST_Line_Locate_Point (geometry a_linestring, geometry
a_point);

-It returns a float between 0 and 1 representing the
location of the closest point on LineString to the

given Point, as a fraction of total 2d line length. We
can use the returned location to extract a Point.

ST_line_interpolate_point(linestring, float location)

-It returns a point interpolated along a line. First
argument must be a LINESTRING. Second argument
is a float8 between 0 and 1 representing fraction of
total LineString length the point has to be located.

S_AsEWKT(geometry)

-It returns a Geometry in EWKT format (as text).

 An example: A LineString with the interpolated point at 20%
position (0.20) --Return point 20% along a 2d line.

SELECT ST_AsEWKT (ST_Line_Interpolate_Point

(the_line, 0.20)) FROM (SELECT
ST_GeomFromEWKT ('LINESTRING(25 50, 100 125,
150 190)') as the_line) As foo;

Result is like this:

POINT(51.5974135047432 76.5974135047432)

ST_Line_Substring (geometry a_linestring, float
startfraction, float endfraction);
-It returns a LineString being a substring of the input

one starting and ending at the given fractions of total
2d length. Second and third arguments are float8
values between 0 and 1. This only works with
LINESTRINGs.

An Example: A linestring seen with 1/3 midrange overlaid
(0.333, 0.666) --Return the approximate 1/3 mid-range part
of a LineString as in Figure 9b.

SELECT ST_AsText (ST_Line_SubString
(ST_GeomFromText (‘LINESTRING (25 50, 100 125,
150 190)'), 0.333, 0.666));

Result is like this:
LINESTRING (69.2846934853974 94.2846934853974,100

125,111.700356260683 140.210463138888)

• To obtain length of the links in the restricted area

ST_Length(geometry)

-It returns the length of this link in its associated spatial
reference.

After this step, we obtain link-node network for computing
optimal path.

• Using Dijkstra algorithm to calculate the shortest
path in the restricted area

• Output the optimal path and represent it on map

Above is the main procedure to build own wayfinding
module using PostGIS with OSM data. We make the module as
a java component for sharing. The wayfinding module is
programmed in Java (dijkstra.jar). We package it as a jar

A B

library file, which other users can use freely. We can use
NetBeans IDE (or other IDE). Then, add the dijkstra.jar file
and the PostgreSQL JDBC library to the Libraries for
prototype developing.

Figure 3. Work flow of the wayfinding module

V. ANALYSIS OF THE BUILT WAYFINDING MODULE

(a) From John Hum Building to Arts Building with own module

(b) From John Hum Building to Arts Building with CloudMade Routing API

(c) From John Hum Building to Saint Mary's Boys' National School

Maynooth with own module

(d) From John Hum Building to Saint Mary's Boys' National School

Maynooth with CloudMade Routing API

Figure 4. Prototype demonstration

We compare their features by result representations. From
Figure 3a and Figure 3b, we can see our wayfinding module
has similar path to that from CloudMade Routing API. The
minor difference is the former provides centre-line of roads as
part of the optimal path while the latter provides boundary of
the road because it takes the area as walking area not a road
segment. Both of the results are reasonable to the reality
however ours is a little longer than that of the latter. Figure 3c
and Figure 3d show another case. The former is more
complicated though most pedestrians use this path. Figure 3d
is simple and it is the shortest path though some us may think
the path in Figure 3c is the shortest path by eyes. The major
reason why results of CloudMade Routing API are more
accurate is our wayfinding module adopts a lossy algorithm.
Namely, when we build restricted areas, there may lose some
useful nodes and links. This reflects the strategy of using space
to exchange for time.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we present a wayfinding module with

implementing Dijkstra algorithm in a restricted area based on
our own module for generating network topology. The
restricted area is obtained by a built java component, which
realized by a set of PostGIS functions. From prototype
demonstration and comparison between the newly built
wayfinding module and CloudMade Routing API, we find the
result of the presented module is effective and efficient though
its results might not be the shortest paths. However, this work
provides foundation of realizing the special wayfinding
requirements of the three cases mentioned in Section 1, which
are future work of our research group.

ACKNOWLEDGMENT
Research presented in this paper was funded by a Strategic

Research Cluster grant (07/SRC/I1168) by Science Foundation
Ireland under the National Development Plan. The authors
gratefully acknowledge this support and the support from the
National Natural Science Foundation of China (No. 40801058).

REFERENCES
[1] Millonig, A. and Schechtner, K., 2007. “Developing Landmark Based

Pedestrian Navigation Systems”, IEEE Transactions on Intelligent
Transportation Systems, vol.8 no.1, pp.43-49

[2] J. H. Zheng, A. Winstanley, A. S. Fotheringham and Z. Pan, “A Two-
Level Path Planning Algorithm and Its applications for 2D Pedestrian
Navigation with Open Boundary Areas”. Proceedings of LBS2009
Symposium, Nottingham UK, 3rd Sep. 2009

[3] M. Neteler and H. Mitasova, “OPEN SOURCE GIS: A GRASS GIS
Approach (Third Edition)”, Springer Science+Business Media, LLC.,
USA, 2008

[4] CloudMade Web Pricing, EB/OL]. Availbale from
http://cloudmade.com/pricing/web [Accessed on 17 Feb. 2013]

[5] OpneStreetMap,[EB/OL].Availbale from http://www.openstreetmap.org/
[Accessed on 25 Jan. 2013]

[6] PgRouting, [EB/OL]. Availbale from http://pgRouting.postlbs.org/
[Accessed on 25 Jan. 2013]

[7] M. Pulis and M. Attard, “Exploring the Shortest Route Options:
Applying Environmental Indicators to Calculating Shortest Route”,
[EB/OL]. Availbale from http://matthewpulis.info/paper.pdf [Accessed
on 25 Jan. 2013]

[8] P. Neis and A. zipf, “Zur Kopplung von OpenSource, OpenLS und
OpenStreetMaps in OpenRouteService.org”, [EB/OL]. Availbale from
http://www.geographie.uni-
bonn.de/karto/publications/pdf/conference/AGIT2008.OpenRouteServic
e.FullPaper.pdf [Accessed on 25 Jan. 2011]

[9] CloudMade, [EB/OL]. Availbale from http://cloudmade.com/ [Accessed
on 25 Jan. 2013]

[10] PostGIS, [EB/OL]. Availbale from http://postgis.refractions.net/
[Accessed on 25 Jan. 2013]

[11] PostgreSQL, [EB/OL]. Availbale from http://www.postgresql.org/
[Accessed on 25 Jan. 2013]

