
ISSC 2012, NUI Maynooth, June 28-29

Performance evaluation of storing and querying

spatial data on mobile devices for offline location
based services

Ricky Jacob*, Sean Smithers**, Adam C. Winstanley*

*Geotechnologies Research Group

Department of Computer Science

National University of Ireland, Maynooth

 email: rjacob@cs.nuim.ie

** Department of Computer Science

National University of Ireland, Maynooth

email: sean.smithers@nuim.ie

Abstract— Use of location based services has been gaining popularity over the years

especially with the increase in smartphone sales. The benefits include helping you find
nearby places of interest like a restaurant, café, atm among others and additional
information like location and distance and providing navigation assistance to these places. In
most cases such services are dependent on the availability of an internet connection on the
phone. Thus the use of such services is lost in scenarios where an internet connection is not
available or not used (due to expensive internet plans) like when visiting another country.
We evaluate the performance of querying spatial data when stored locally on the mobile
device. The circular query and the pointing gesture based geowand query are performed on
a copy of the OpenStreetMap data stored in SQLite on the mobile device. The SpatiaLite
extension provides the vector geodatabase functionalities to query such databases. In this
paper we report on the performance of such queries on mobile devices. We also compare
some features of this offline prototype with alternative proprietary solutions like Google
Places and highlight the importance of Open data and crowdsourcing.

Keywords – location based services, geowand, spatialite, mobile interaction.

I INTRODUCTION

 In the past couple of years mobile phones
have developed into devices not only capable of
making and receiving phone calls but can now access
the internet via Wi-Fi or mobile networks. The
majority of devices known as ‘smart’ phone also
come embedded with a GPS receiver [1] as well as
other in-built sensors like gyroscope, proximity
sensor and accelerometer.
 With the availability of such in-built sensors
in handheld devices like a ‘smart’ phone, Location
Based Services (LBS) have become more and more
popular [2][3][4]. Any application that makes use of
the user’s current geographic location of the mobile
device (hence the user) can be classified as an LBS
application. With the help of such applications, users
are able to find Points of Interest (POI) like café or
restaurants in their local area through
recommendations or queries.
 In the UK alone, 84% of smartphone
owners use their device to search for local
information with 78% of these users taking action
afterwards [5]. This shows the demand for these

types of applications and their benefit to local
businesses and communities.

There is a limitation associated with the
majority of these applications though; they all
require a network connection to function fully [1].
This means that for users without an available
network connection (Wi-Fi or mobile network) or
without the funds to pay for expensive mobile
network data plans while visiting another country
would not be able to use such applications to good
effect [1].

In this paper we test and report upon
performance of an offline spatial database stored in
SQLite (with SpatiaLite extension) on a smartphone.
We used the geographic data obtained from
OpenStreetMap which is Open data produced by
crowd sourcing [6]. We performed two types of
queries – the circular query and the Geowand query.
To check how size and performance are related, we
tested the queries with three datasets – Maynooth,
Ireland and UK.

In the following section 2, we review
literature related to offline location based services
and usefulness of crowd sourced open data.

II LITERATURE REVIEW

In Coelho et al. [1] a system for retrieving and
accessing location packages is proposed and a
prototype system developed to show how this works.
In their paper they propose that user’s access
location based content by scanning a 2D barcode or
RFID tag. This location trigger then accesses the
location content from a local database stored on the
device.

The model proposed by Coelho et al. fails if a
user wants to query what is around them instead of
just accessing information for a single location. They
don’t consider the case where an application queries
spatial data using geometric functions based on the
user’s current position and what is around them.

During the last few years Volunteered
Geographic Information (VGI) such as that provided
by OpenStreetMap has become more and more
popular [8]. The quality and quantity of this data
continues to improve and can provide an alternative
data source to those provided by closed data sets
such as Google Maps or Bing Maps, although this
can depend greatly on the area in question [9].

There are currently LBS applications
available for Android that function offline such as
the offline readability of Google Maps [2] or
OSMAnd [8] and MapDroyd [9] which both provide
offline OSM maps for Android users. These apps for
android are just simple map viewers, some of which
only include basic search options. Google
applications such as Google Places allow users to
search for nearby POIs by category. This however
can only be used with data provided by Google and
requires a network connection to function. Here the
ability to use custom data would be of great
advantage to users. Events such as conferences could
provide custom POI and map data to attendees
before an event takes place [10]. Colleges and
universities could also provide detailed information,
such as lecture theatre locations, to students on the
campus.

In the following section we discuss the system
components. This is followed by the experiments
carried out to test system performance while
performing spatial queries.

III SYSTEM DESIGN

The development of an offline location based
service requires us to consider few key elements
which constitute the system. We try to understand
them in detail.

a) Data storage
 One of the most important challenges in any

offline system is the storage of data on mobile
devices for querying and manipulation. SpatiaLite is
an extension for SQLite that adds spatial
functionality and is Open Geospatial Consortium
(OGC) compliant. The SpatiaLite provides the vector

geodatabase functionalities to query and manipulate
such SQLite databases. Thus the entire database
obtained for the selected area is stored locally on the
phone.

The data to be stored by the application can
be broken into two areas:

1. Spatial data
2. Map data
The spatial data is the exported OSM data

and, combined with some meta-data, provides the
data for all of the applications functionality. This
data is stored in a SQLite file (.sqlite extension) on
the devices external storage. The OSM data used is
the planet_osm_point table (see Figure 1) taken from
a PostGIS database. This table structure is the one
used by OpenStreetBrowser and is created when
OSM data is imported into a PostGIS database using
osm2pgsql [16].

Figure 1: Database entity relationship diagram

This data is exported from a PostGIS database

to a SpatiaLite file using the ogr2ogr [17] tool. This
process creates several other tables, such as
spatial_ref_sys, used to store spatial meta-data.

After exporting, other tables are added to the
file through the use of a simple SQL script. This
script sets the database up to be used on an Android
device, creates a table to store user favourites
(favourites) and also one to store extra information
on POIs (poi_data).

The map data is a single file (.map extension)
that is used by the application to render map tiles.
The map file is generated using the Mapsforge
plugin for Osmosis by providing an OSM XML file
or shapefile. The structure of this file is defined by
the Mapsforge project.

b) Map
 Representation of geographic data on a map

to help users navigate is an important challenge.
Most of commonly used techniques involve storing
map tiles as PNG files in an organised directory
structure. These tiles are then stitched together by the
map view before being displayed. MapsForge is an
open source project that allows you to generate a
single map file from OSM data [13]. This map file
can be stored locally on the mobile device and is
used by the map view provided for Android to render
the map at runtime. This removes the need to store
individual PNG tiles and is very simple to
implement. Thus Mapforge was used to prepare
maps for the selected databases.

c) POI Queries
 Querying for POI information is one of the

most common services provided by such systems.
There are various query techniques in mobile spatial
interaction like touch2query [14], circular query (as
shown in figure 2) and geowand query [15] as shown
in figure 3.

The circular query takes the current location
A and uses a radius, r to select the query region for
querying the database. Users can search for POIs by
specifying what categories they are looking for and
the max distance they are willing to travel. All
relevant POIs within this radius around the user’s
current position are returned as shown in figure 3.

Figure 2: The circular query for POI search from a

point A with radius r.

The geowand query takes the current location

A and uses a radius, r to select the query region for
querying the database based on phone pointing
gestures. POI search can be narrowed by using the
‘buffered bounding box’ based search method. This
method requires the user’s current position,
direction, d in which the device is pointed, the
desired POI categories and max distance (r in this
case) the user wishes to travel. Based on these three
inputs the destination point is calculated which is r
metres away from point A at an angle of d degree.

Figure 3: The geowand query for POI search from
a point A with radius r along direction d.

From this information, a box is constructed that
extends out on either side of the user and stretches
out as far as the user has specified. Any relevant POI
contained within this box is returned (see Figure 3).
This is achieved using the ST_Within function as
defined by the Open Geospatial Consortium (OGC).

d) User interface design
 The interface was defined to let the user

select the POIs that are of interest to the user. After
selecting the query type and distance information
about the POI is presented to the user with distance
information and link to view it on a map. The user
can save this location information for further use by
marking it as ‘Favourite’.

The first tab the user sees is the search tab
(see Figure 4a). A list of all POI categories is
displayed here in alphabetical order. To search for
POIs the user can check boxes beside each category
they would like to include. A search button, at the
bottom of this screen, will present different search
options to the user via a dialog box (see Figure 4b)
when pressed. This box asks the user to input the
maximum distance they would like to travel, which
can be changed using the onscreen slider. The
current value of the slider is displayed to help the
user select their distance. Below this, the user can
chose between the different search methods by
selecting one of the radio buttons shown. From here,
the user can chose to continue or to cancel. If the
user decides to continue the screen will update with a
list of results based on the user’s search criteria.

Figure 4: a) The Search tab with POI category list

b) Advance features like distance and query type (circular
and geowand)

Results are displayed as POI name along with

the POI category displayed below it. The distance
from the user’s location to that POI is also shown. If
a user clicks on POI from the results list they will be
shown a screen containing more detailed information
on that particular POI (see Figure 5a). They will also
have the ability to add this POI to their favourites or
view the POI on the map from here. To do this the
user just has to click the relevant button on screen.

Figure 5: a) Additional POI information and

marked as favourite. b) Map interface to view location
information (Mapforge)

Various options are available in this tab by

pressing the menu button on the device. From here
the user will have the option to view their saved
favourites, to select a database file to load or to view
information on the application itself.

The second tab contains the map interface
(see Figure 5b). The map view is a familiar and
intuitive interface used in popular map applications
such as Google Maps [2]. The user has the ability to
scroll around the map using swiping gestures and
also zoom-in and out using pinch gestures. There is
also on-screen buttons for zooming.

Again, further options are available to the
user by pressing the menu button on the device
whilst viewing this tab. In this case, the user will

have the option to view their current location (places
a marker on the map at users location), the option to
select a map file to load or to view additional
information.

The class diagram of the entire system is
shown below in figure 6.

Figure 6: Class diagram of the system

IV EXPERIMENTS

Inputs for this experiment were the database
and map files produced for three datasets –

1) Maynooth,
2) Ireland & Northern Ireland and
3) UK.

This let us check for system performance with
various size of dataset.

a) Performance
To test performance a location, max distance,

POI categories and orientation (see Table 1) were
chosen and searches were performed using these
with both the radius and buffered box methods on the
3 databases generated. For convenience the same
parameters were used for each database. As the time
for these queries varies, each one was performed 3
times and the average time taken as the result.

Table 1: Performance testing input

b) Database result evaluation

To compare results produced by this application with
those of Google Places an arbitrary location, POI
categories and maximum distance was chosen and
the same search performed in each application. Tests
were performed using two different categories as
seen in Table 2.

Table 2: Inputs for comparison of different

applications

IV RESULTS
a) Database size

From Table 3 we see that the size of the files
generated for the different areas are reasonable and
could certainly be stored locally on a mobile device.
Most current mobile devices come with multiple
Gigabytes of storage built-in to the device or with the
option to expand the storage space through the use of
an SD card.

Table 3: File sizes for map and POI data

b) Query performance

From Table 4 it can be seen that the number of POIs
in the database does have a direct effect on the
performance of the queries being ran, especially for
the buffered box method.

Table 4: Search query performance

The buffered box helps to reduce the query region to
give information based on the road the user is willing
to take. But depending on the size of the dataset, the
buffered box search method can take too long to
compute making this method unusable under certain
circumstances.
As an indication for how this performance might
map to other city level datasets, based on the number
of POIs for some popular world cities was also
recorded (as in Table 5).

Table 5: Search query performance

c) Comparison with proprietary systems

The results returned by this project exceeded those
returned by the Google Places application for both
Test 1 and Test 2 (see Table 6). The results returned
by the Google Places application were also irrelevant
in both cases as an engineering company was also
returned as a result in both tests.

Table 6: Input for different application results

comparison

V CONCLUSION

 It has been shown that there are ways to
store and query spatial data on a mobile device. The
solution implemented has allowed two different
search methods (circular search and geowand
serach) but could certainly be extended to include
others as well. The use of SpatiaLite meant that SQL
written to run in PostGIS on a server can easily be
ported to run on a mobile device as SpatiaLite is
OGC compliant.
 Maps can also easily be provided offline for
users using open source services like Mapsforge and
their implementation of MapView for Android.
 In experimenting with the two search
methods implemented, it was shown that, while these
methods are feasible, the size of the dataset has a
huge influence on the performance. As seen, it is
possible to store the data required on a mobile device
but it may not be possible to perform certain queries
on large datasets. This suggests that this
implementation is more suited to querying smaller
datasets for cities and towns than larger, national,
datasets.
 The tools and data used by this project have
also shown that there are open source components
available to build this type of application using open
data like OpenStreetMap. The results can even out-
perform proprietary alternatives (such as Google
Places) depending on the area and the level of
geographic data coverage.

ACKNOWLEDGEMENT
Research presented in this paper was funded by a
Strategic Research Cluster grant (07/SRC/I1168)
by Science Foundation Ireland under the National
Development Plan.

REFERENCES
[1] P. Coelho, A. Aguiar and J. Lopes,

“OLBS: Offline Location Based Services,” in Next
Generation Mobile Applications, Services and
Technologies (NGMAST), Cardiff, 2011.

[2] Google, “Google Maps for Mobile,”
http://www.google.ie/mobile/maps [Accessed April
2012].

[3] Yelp! Inc., “Yelp for Mobile”,
http://www.yelp.com/yelpmobile. [Accessed April
2012]

[4] Foursquare Labs Inc., “Foursquare”,
https://foursquare.com/download/. [Accessed April
2012]

[5] J. Spero, “Google Inc.”,
http://googlemobileads.blogspot.com/2012/02/consu
mers-love-their-smartphones-now.html.[Accessed
April 2012]

[6] OpenStreetMap, “OpenStreetMap”,
http://www.openstreetmap.org/. [Accessed April
2012]

[7] Michael Kenteris, Damianos Gavalas, and
Daphne Economou Mytilene, “E-guide: a
multiplatform mobile application tourist guide
exemplar”, Multimedia Tools Appl. 54, 2 (August
2011), 241-262.

[8] P. Mooney, P. Corcoran and A.
Winstanley, “Towards quality metrics for
OpenStreetMap,” in SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, San Jose, 2010.

[9] B. Ciepłuch, R. Jacob, P. Mooney and A.
Winstanley, “Comparison of the accuracy of
OpenStreetMap for Ireland with Google Maps and
Bing Maps,” in 9th International Symposium on
Spatial Accuracy Assessment in Natural Resuorces
and Enviromental Sciences, 2010.

[10] R. Jacob, J. Zheng, A. Winstanley, B.
Ciepluch and P. Mooney, “Campus Guidance
System for International Conferences Based on
OpenStreetMap,” in Proceedings of 9th International
Symposium, W2GIS, Maynooth, 2009.

[11] OSMAnd., “OSM Android Offline”,
http://osmand.net/. [Accessed April 2012]

[12] MapDroyd, “MapDroyd App”,
https://mapdroyd.com/. [Accessed April 2012]

[13] Mapforge, “Mapforge – free mapping
and navigation tools”,
http://code.google.com/p/mapsforge/. [Accessed
April 2012]

[14] J. Yin, and J. Carswell, “Touch2Query
Enabled Mobile Devices: a Case Study using
OpenStreetMap and iPhone”. 10th International
Symposium on Web & Wireless GIS (W2GIS2011),
Springer LNCS; Kyoto, Japan, March, 2011.

[15] R. Jacob, and P. Mooney, and AC.
Winstanley, “Whats up that street? Exploring streets
using a Haptic GeoWand", ADVANCES IN
LOCATION-BASED SERVICES Lecture Notes in
Geoinformation and Cartography, 2012, Springer-
Verlag Berlin Heidelberg pages 91 - 103. Eds Georg
Gartner and Felix Ortag. November 2012

[16] OSM2pgsql, “OSM to PgSQL”,
http://wiki.openstreetmap.org/wiki/Osm2pgsql.
[Accessed April 2012]

[17] ogr2org, “Convert to Spatialite”,
http://www.gdal.org/ogr2ogr.html.[Accessed April
2012]

