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Abstract—A 2-D Euclidean shortest path with obstacles (ESPO) 
algorithm for pedestrian navigation is developed. ESPO is a 
classical algorithm in the field of computational geometry. We 
describe some common ESPO algorithms and discuss their 
application in pedestrian shortest path determination based on the 
generation of a network of paths within a polygon with interior 
obstacles. This algorithm can be applied to pedestrian navigation in 
open spaces, such as squares, parks and big halls. Path generation 
is based on the Dijkstra algorithm, which is extended to solve the 
path planning problem not only for path and road networks but 
also for open spaces. The algorithm takes human preferences based 
on walking conditions into account and can find different paths 
with minimum cost for different conditions. The results of this 
approach are illustrated through an experimental system. Further 
work to integrate the algorithm into a practical pedestrian 
navigation system is proposed. 

Keywords-ESPO Algorithm; Pedestrian path planning; 
Pedestrian behavior 

I.  INTRODUCTION 
It is not always easy for pedestrians to find the right way 

to reach their destination in an unfamiliar environment. 
Pedestrian path planning algorithms can help them to find an 
optimal route. However, most of today’s existing path 
planning algorithms are designed for vehicle navigation and 
therefore are not ideally suited for pedestrian applications. 

Road networks for vehicle navigation only include those 
parts that are accessible and permissible for vehicles. 
Pedestrians are not tied to these roads, for example, they can 
cross open spaces instead of following a constrained path. 
Therefore, the biggest difference between vehicle networks 
and pedestrian networks is the latter include open spaces or 
walking areas. 

Walking areas can be defined as features that are 
accessible open areas within which no defined path network 
is contained. Walking areas includes grasslands, parks, 
squares, woods, large halls and any other area without an 
obvious path network. Sometimes, there may be internal 
features such as a pond or a lawn which can not be traversed. 
Pedestrians need to avoid these obstacles. 

In this paper, we focus on the task of how to find the 
shortest path for a pedestrian in a walking area and, at the 
same time, how to avoid internal obstacles. In section 2, we 
introduce the graphical representation of walking areas and 

explain why the problem of finding a path can be reduced to 
an ESPO problem. A detailed description of the problem is 
also given. Following that, in section 3, we introduce related 
work in the field of ESPO algorithms and two main methods 
used to solve the problem. In section 4, we present a 
pedestrian shortest path algorithm for walking areas, taking 
into consideration human preferences in different conditions. 
Simulated results of using the algorithm are given. The paper 
closes with some concluding remarks and suggestions of 
enhancements for a practical pedestrian navigation system. 

II. PROBLEM DESCRIPTION 

A. Graphical representation of walking areas 
In common road network topologies, we convert the real 

road network into an aggregation of nodes and links. In a 
pedestrian road network, walking areas are also important 
features. They are usually connected into a path network at 
specific entrance points. 

We can represent a walking area by its minimum 
bounding polygon, which can be convex or concave. 
Polygons are defined by a boundary of straight lines, and the 
shape is ‘closed’ (all the lines connect up). For example, 
Figure 1 shows a polygon representing a recreation field, 
which is an open area that can be walked across by 
pedestrians. In this figure, blue lines represent boundaries of 
the walking area and yellow points represent vertices along 
the boundary. 

 
Figure 1.  Using a polygon to represent a walking area 
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Sometimes, there may be an obstacle which can not be 
traversed. Pedestrians need to avoid these obstacles. We can 
also use its minimum bounding polygon to represent the 
obstacle and use a polygon with ‘island’ to represent the 
walking area, as shown in the Figure 2. 

To be specific, we use simple polygons to represent 
walking areas. A simple polygon is a polygon whose sides 
do not intersect. Such a polygon divides the plane into two 
regions - the region inside and region outside. A polygon that 
is not simple is said to be self-intersecting. Such a polygon 
does not necessarily have a well-defined interior and 
exterior. When path planning for pedestrians, we need to 
know if a location is inside a polygon, so the simple polygon 
is an appropriate topology type. Self-intersecting polygons 
can always be divided into several simple polygons. As 
shown in Fig. 3, the polygon representing walking area A is 
a self-intersecting polygon, which intersects itself at point S. 
This polygon can be divided into two simple polygons A1 
and A2 and the intersection point S can be defined as a 
vertex. 

 
Figure 2.  Polygons with islands 

 

 
Figure 3.  Converting a self-intersecting polygon into a simple polygon 

Therefore, polygons mentioned in the following content 
are all simple polygons. The problem of pedestrian path 
planning across a walking area can be defined as finding a 
shortest path inside a simple polygon. 

B. Problem description 
In most cases, the shortest path inside a simple polygon 

may be the straight line from the start point to end point, as 
shown in the Figure 4. 

 

Figure 4.  Straight shortest paths inside polygons 

Sometimes the shortest path may have to go around 
obstacles. With concave polygons, the shortest path will 
often pass by vertexes or hug the edge of the polygon for part 
of its journey, as shown in the Figure 5. 

 

Figure 5.  Shortest paths in concave polygons 

Sometimes the shortest path needs to avoid internal 
obstacles, as shown in Figure 6. 

 

 

Figure 6.  Shortest paths avoiding internal  obstacles 

Therefore, the abstract description of the problem of 
finding the shortest path inside walking areas can be defined 
as: given a simple polygon and a set of polyhedral obstacles 
in the polygon, a start point and an end point within the 
polygon, find the shortest path inside the polygon between 
the two points that avoids all of the obstacles. 

According to this description, this problem belongs to the 
ESPO (Euclidean shortest path with obstacles) problem. In 
this paper, we regard a walking area as a two dimensional 
plane, and the algorithm to solve the problem is a 2-D ESPO 
algorithm. 
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III. 2-D ESPO ALGORITHMS 
The ESPO problem is well-known in computational 

geometry: given a set of polyhedral obstacles in a Euclidean 
plane, and a pair of locations, find the shortest path between 
the points that does not intersect any of the obstacles. In two 
dimensions, the ESPO problem can be solved efficiently, in 
polynomial time. In three (and higher) dimensions, however, 
the problem is NP-hard in the general case.  

Although the problem has drawn the attention of many 
researchers in computational geometry, researchers in 
geography pay little attention to it because existing path 
planning algorithms are usually based on linear graph 
networks rather than planes. According to the different 
application fields, there are two main kinds of solutions of 
the problem: geometric methods and geographic methods. 

A.  Geometric method: Triangulation 
In the field of geometry, this problem have been 

researched for many years and several algorithms have been 
proposed to solve it [1] [2] [3]. Most of the methods are 
based on a triangulation of the polygon. Lee and Preparata’s 
approach finds the shortest path between two points inside a 
simple polygon in linear time, once a triangulation is known 
[4]. The algorithm of Reif and Store [5] uses pre-
computation to speed up queries. Given a source point inside 
the polygon, their method produces a search structure so that 
the distance from the source point to a query point can be 
found in O(log n) time. The shortest path itself can be 
obtained in time proportional to the number of turns along it. 
Reif and Storer’s method uses the Delaunay triangulation of 
the polygon and hence takes O(n log n) preprocessing time. 
Guibas et al. [6] show how to set up a similar query structure 
with less preprocessing. Their algorithm takes linear time 
once a triangulation is known. 

B. Geographic method: Extended shortest path algorithm 
In geographic information and navigation systems, 

shortest path algorithms are central to many tasks. For a 
given source node in a pedestrian road network, this problem 
is to find the path to the end node with the lowest cost. There 
are many well-known methods such as Dijkstra’s algorithm 
and Floyd’s algorithm [7] [8]. Floyd’s algorithm is used in 
calculating the shortest path among all the nodes, while 
Dijkstra’s algorithm is used in calculating the shortest path 
from one node to all other nodes. However, these algorithms 
are usually used to deal with a graph with nodes and lines 
and can’t be directly used to find a path in open space. Some 
researchers have proposed extended algorithms to solve 
ESPO problems, which are based on the classical shortest 
path algorithms, such as Dijkstra or Floyd algorithm but 
there are not detailed descriptions of these algorithms. 

This paper proposes an extended Dijkstra algorithm to 
solve the problem of shortest path finding in walking areas. 

IV. PEDESTRIAN SHORTEST PATH ALGORITHM INSIDE 
WALKING AREAS 

A. Description of algorithm 
Let G= (V, E) denote a polygon in the plane having h 

holes (“obstacles”) and a total of n vertexes. V is a set of 
vertexes and V= {v1, v2,…, vn}, including vertexes of the 
polygon and vertexes of each obstacle inside the polygon. E 
is a set of edges, including edges of the polygon and edges of 
each obstacle inside the polygon. Given a start point s ∈G 
and an end point t ∈G, the problem is to find a shortest path 
inside the polygon from s to t. Fig. 7~Fig. 10 is an example 
of finding the shortest path. 

The main steps of the algorithm are as follows: 
a) Given a polygon and a pair of points, as shown in 

Figure 7 

 
Figure 7.  Polygon and start/end point 

b) Connect the start point s to each vertex of the 
polygon 

c) If the connecting line is completely within the 
polygon, then take it as a link, as shown in Figure 8. 

 

 
Figure 8.  Connecting start point and polygon vertices 

d) Execute the same steps to the end point, as shown in 
Figure 9. 

 

 
Figure 9.  Connecting end point and polygon vertices 

e) Connect each pair of vertices of the polygon 
f) If the connecting line is in the polygon, then take it 

as a link, as shown in Figure 10. 
 

487487



 
Figure 10.  Connecting pairs of  vertices 

g) Form a path network using all polygon edges and 
links 

h) Find a shortest path in the road network using 
Dijkstra’s algorithm, as shown by the dotted lines in 
Figure 11. 

 

 
Figure 11.  Shortest path from s to t 

Fig. 12 is the detail flow chart of our pedestrian shortest 
path algorithm in walking areas.  

 
Figure 12.  Flow chart for shortest path algorithm in walking areas 
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B. Experimental Results 
We take the map of the NUI Maynooth campus as a case 

study. There are several plots of lawn in the campus, which 
can be regarded as walking areas. In Figure 13 a pedestrian 
wants to walk between the points marked by flags. 

 

 
Figure 13.  Example of walking area and start/end points 

As mentioned in Figure 12, for each vertex v of the 
polygon, draw a straight line between v and the start point s, 
and add these lines to the set L of links by eliminating those 
lines extending outside the polygon. The result is represented 
by the black lines shown in Figure 14. 

 

 
Figure 14.  Construct links between start point and vertices 

In the same way, connect lines between the end point and 
all appropriate vertices, and add them to L, shown by the 
black lines in Figure 15. 

Next, connect each pair of vertices of the polygon and 
add these lines to the set L of links after eliminating those 
lines extending outside the polygon (Figure 16). 

Therefore, the set of links, L, is made up of four parts: 
edges of polygon (blue lines in Figure 13), links constructed 
by start point (Figure 14), links constructed by end point 
(Figure 15), and links constructed by pairs of vertices (Figure 
16). The set of nodes, N, is made up of two parts: vertexes of 
polygon and a pair of locations. 

 

 
Figure 15.  Construct links between end point and vertices 

 

 
Figure 16.  Construct links between each apir of vertices 

We can execute Dijkstra algorithm to find the shortest 
path inside the polygon based on the network R(N, L), as 
shown in Figure 17. 

 

 
Figure 17.  Shortest path computed in  walking area 

Figure 18 is another example. In this case, the pedestrian 
would first go straight to a vertex of the obstacle, and walk 
along an edge of the obstacle, before going to another vertex. 
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Figure 18.  Shortest path following the edge of an obstacle 

Taking the network computed in the walking area and the 
fixed path network on its exterior, we can construct on-the-
fly an integrated network, which including nodes, links, and 
walking areas. A hybrid pedestrian shortest path algorithm 
can then be applied in the integrated network. By considering 
human walking preferences, we can apply costs to the 
network links to develop a practical pedestrian navigation 
system. 

C. Consideration of Human Behavior 
For pedestrian path planning, different conditions 

underfoot may influence path selection. A shortest path 
means a minimum cost path, but the cost used can be path 
length, journey time, human effort, some other factor or a 
combination of these. Other factors can be a preference for 
indoor routes, outdoor routes or paved paths depending on 
weather conditions. The pedestrian shortest path algorithm 
can adapt in different conditions by calculating the 
corresponding costs.  

As an example, we will take a path from the main 
entrance of our campus to a student residence as an 
example, to show different minimum cost paths. 

 
Shortest Length Path 

Under ordinary circumstances, a pedestrian would like to 
choose the shortest length path. The fundamental link cost is 
calculated according to the length of each link.  

Costs can be varied by changing the cost change rate α, β, 
as follows: 

Cost = length •α + β                       (1) 
In this case, we can set α=1 and β=0. 
As shown in Figure 19, the pedestrian takes a shortest 

length path by crossing grasslands. 

 
Figure 19.  Shortest length path over a hybrid network 

 
Easy-Walk Priority Path 

Not all pedestrians demand the shortest path to a 
destination. For example, wheelchair-bound people would 
prefer to select a paved road or in wet weather people may 
prefer to avoid soft surfaces. In these cases, we can choose 
appropriate values of α and β to reduce the cost of paved 
roads. As shown in Fig. 20, the pedestrian walk along paved 
roads to his destination. Although it is not a shortest length 
path, it’s a minimum effort path. 

 

 
Figure 20.  Easy-walk route keeping to paved pathways 

 
Indoor Priority Path  

In the case of bad weather, the use of covered sidewalks 
or indoor routes may be preferred. Accordingly, we can 
change the value of α and β to reduce the cost of indoor paths 
(Figure 21). 
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Figure 21.  Path with preference for indoor routes 

 

V. CONCLUSION 
The Euclidean Shortest Path with Obstacles (ESPO) 

algorithm can be used to find routes in unrestricted walking 
areas, such as parks, squares and woods. This paper 
describes the well-known geometric ESPO algorithm and its 
application in the field of pedestrian navigation, and 
proposes a 2-D ESPO algorithm based on the classical 
Dijkstra algorithm. This algorithm is applicable in open 
spaces, within which no obvious path network is contained. 
To make the resulting path suitable for a practical pedestrian 
navigation system, this algorithm can also consider different 
human preferences under different environmental conditions 
by adjusting the costs calculated for each link. In addition it 
can be integrated into a more classical network-based route-
finding algorithm which considers sidewalks, footpaths, 

foot-bridges, building interiors and other pedestrian routes. 
Further work will explore this integration and also the 
communication of routes in cartographic, diagrammatic and 
textual form for users. 
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