
A 2-D ESPO Algorithm and Its Application
In Pedestrian Path Planning Considering Human Behavior

Zheng Pan1,3 Lei Yan1 Adam C. Winstanley2 A.Stewart Fotheringham3 Jianghua Zheng2
1. Beijing Key Lab of Spatial Information Integration & Its Applications, Institute of RS&GIS, Peking University, Beijing, China

2. Department of Computer Sciences, National University of Ireland, Maynooth, Co.Kildare, Ireland

3. National Center for Geocomputation, National University of Ireland, Maynooth, Co.Kildare, Ireland

Abstract—A 2-D Euclidean shortest path with obstacles (ESPO)
algorithm for pedestrian navigation is developed. ESPO is a
classical algorithm in the field of computational geometry. We
describe some common ESPO algorithms and discuss their
application in pedestrian shortest path determination based on the
generation of a network of paths within a polygon with interior
obstacles. This algorithm can be applied to pedestrian navigation in
open spaces, such as squares, parks and big halls. Path generation
is based on the Dijkstra algorithm, which is extended to solve the
path planning problem not only for path and road networks but
also for open spaces. The algorithm takes human preferences based
on walking conditions into account and can find different paths
with minimum cost for different conditions. The results of this
approach are illustrated through an experimental system. Further
work to integrate the algorithm into a practical pedestrian
navigation system is proposed.

Keywords-ESPO Algorithm; Pedestrian path planning;
Pedestrian behavior

I. INTRODUCTION
It is not always easy for pedestrians to find the right way

to reach their destination in an unfamiliar environment.
Pedestrian path planning algorithms can help them to find an
optimal route. However, most of today’s existing path
planning algorithms are designed for vehicle navigation and
therefore are not ideally suited for pedestrian applications.

Road networks for vehicle navigation only include those
parts that are accessible and permissible for vehicles.
Pedestrians are not tied to these roads, for example, they can
cross open spaces instead of following a constrained path.
Therefore, the biggest difference between vehicle networks
and pedestrian networks is the latter include open spaces or
walking areas.

Walking areas can be defined as features that are
accessible open areas within which no defined path network
is contained. Walking areas includes grasslands, parks,
squares, woods, large halls and any other area without an
obvious path network. Sometimes, there may be internal
features such as a pond or a lawn which can not be traversed.
Pedestrians need to avoid these obstacles.

In this paper, we focus on the task of how to find the
shortest path for a pedestrian in a walking area and, at the
same time, how to avoid internal obstacles. In section 2, we
introduce the graphical representation of walking areas and

explain why the problem of finding a path can be reduced to
an ESPO problem. A detailed description of the problem is
also given. Following that, in section 3, we introduce related
work in the field of ESPO algorithms and two main methods
used to solve the problem. In section 4, we present a
pedestrian shortest path algorithm for walking areas, taking
into consideration human preferences in different conditions.
Simulated results of using the algorithm are given. The paper
closes with some concluding remarks and suggestions of
enhancements for a practical pedestrian navigation system.

II. PROBLEM DESCRIPTION

A. Graphical representation of walking areas
In common road network topologies, we convert the real

road network into an aggregation of nodes and links. In a
pedestrian road network, walking areas are also important
features. They are usually connected into a path network at
specific entrance points.

We can represent a walking area by its minimum
bounding polygon, which can be convex or concave.
Polygons are defined by a boundary of straight lines, and the
shape is ‘closed’ (all the lines connect up). For example,
Figure 1 shows a polygon representing a recreation field,
which is an open area that can be walked across by
pedestrians. In this figure, blue lines represent boundaries of
the walking area and yellow points represent vertices along
the boundary.

Figure 1. Using a polygon to represent a walking area

2009 Third International Conference on Multimedia and Ubiquitous Engineering

978-0-7695-3658-3/09 $25.00 © 2009 IEEE

DOI 10.1109/MUE.2009.86

485

2009 Third International Conference on Multimedia and Ubiquitous Engineering

978-0-7695-3658-3/09 $25.00 © 2009 IEEE

DOI 10.1109/MUE.2009.86

485

Sometimes, there may be an obstacle which can not be
traversed. Pedestrians need to avoid these obstacles. We can
also use its minimum bounding polygon to represent the
obstacle and use a polygon with ‘island’ to represent the
walking area, as shown in the Figure 2.

To be specific, we use simple polygons to represent
walking areas. A simple polygon is a polygon whose sides
do not intersect. Such a polygon divides the plane into two
regions - the region inside and region outside. A polygon that
is not simple is said to be self-intersecting. Such a polygon
does not necessarily have a well-defined interior and
exterior. When path planning for pedestrians, we need to
know if a location is inside a polygon, so the simple polygon
is an appropriate topology type. Self-intersecting polygons
can always be divided into several simple polygons. As
shown in Fig. 3, the polygon representing walking area A is
a self-intersecting polygon, which intersects itself at point S.
This polygon can be divided into two simple polygons A1
and A2 and the intersection point S can be defined as a
vertex.

Figure 2. Polygons with islands

Figure 3. Converting a self-intersecting polygon into a simple polygon

Therefore, polygons mentioned in the following content
are all simple polygons. The problem of pedestrian path
planning across a walking area can be defined as finding a
shortest path inside a simple polygon.

B. Problem description
In most cases, the shortest path inside a simple polygon

may be the straight line from the start point to end point, as
shown in the Figure 4.

Figure 4. Straight shortest paths inside polygons

Sometimes the shortest path may have to go around
obstacles. With concave polygons, the shortest path will
often pass by vertexes or hug the edge of the polygon for part
of its journey, as shown in the Figure 5.

Figure 5. Shortest paths in concave polygons

Sometimes the shortest path needs to avoid internal
obstacles, as shown in Figure 6.

Figure 6. Shortest paths avoiding internal obstacles

Therefore, the abstract description of the problem of
finding the shortest path inside walking areas can be defined
as: given a simple polygon and a set of polyhedral obstacles
in the polygon, a start point and an end point within the
polygon, find the shortest path inside the polygon between
the two points that avoids all of the obstacles.

According to this description, this problem belongs to the
ESPO (Euclidean shortest path with obstacles) problem. In
this paper, we regard a walking area as a two dimensional
plane, and the algorithm to solve the problem is a 2-D ESPO
algorithm.

486486

III. 2-D ESPO ALGORITHMS
The ESPO problem is well-known in computational

geometry: given a set of polyhedral obstacles in a Euclidean
plane, and a pair of locations, find the shortest path between
the points that does not intersect any of the obstacles. In two
dimensions, the ESPO problem can be solved efficiently, in
polynomial time. In three (and higher) dimensions, however,
the problem is NP-hard in the general case.

Although the problem has drawn the attention of many
researchers in computational geometry, researchers in
geography pay little attention to it because existing path
planning algorithms are usually based on linear graph
networks rather than planes. According to the different
application fields, there are two main kinds of solutions of
the problem: geometric methods and geographic methods.

A. Geometric method: Triangulation
In the field of geometry, this problem have been

researched for many years and several algorithms have been
proposed to solve it [1] [2] [3]. Most of the methods are
based on a triangulation of the polygon. Lee and Preparata’s
approach finds the shortest path between two points inside a
simple polygon in linear time, once a triangulation is known
[4]. The algorithm of Reif and Store [5] uses pre-
computation to speed up queries. Given a source point inside
the polygon, their method produces a search structure so that
the distance from the source point to a query point can be
found in O(log n) time. The shortest path itself can be
obtained in time proportional to the number of turns along it.
Reif and Storer’s method uses the Delaunay triangulation of
the polygon and hence takes O(n log n) preprocessing time.
Guibas et al. [6] show how to set up a similar query structure
with less preprocessing. Their algorithm takes linear time
once a triangulation is known.

B. Geographic method: Extended shortest path algorithm
In geographic information and navigation systems,

shortest path algorithms are central to many tasks. For a
given source node in a pedestrian road network, this problem
is to find the path to the end node with the lowest cost. There
are many well-known methods such as Dijkstra’s algorithm
and Floyd’s algorithm [7] [8]. Floyd’s algorithm is used in
calculating the shortest path among all the nodes, while
Dijkstra’s algorithm is used in calculating the shortest path
from one node to all other nodes. However, these algorithms
are usually used to deal with a graph with nodes and lines
and can’t be directly used to find a path in open space. Some
researchers have proposed extended algorithms to solve
ESPO problems, which are based on the classical shortest
path algorithms, such as Dijkstra or Floyd algorithm but
there are not detailed descriptions of these algorithms.

This paper proposes an extended Dijkstra algorithm to
solve the problem of shortest path finding in walking areas.

IV. PEDESTRIAN SHORTEST PATH ALGORITHM INSIDE
WALKING AREAS

A. Description of algorithm
Let G= (V, E) denote a polygon in the plane having h

holes (“obstacles”) and a total of n vertexes. V is a set of
vertexes and V= {v1, v2,…, vn}, including vertexes of the
polygon and vertexes of each obstacle inside the polygon. E
is a set of edges, including edges of the polygon and edges of
each obstacle inside the polygon. Given a start point s ∈G
and an end point t ∈G, the problem is to find a shortest path
inside the polygon from s to t. Fig. 7~Fig. 10 is an example
of finding the shortest path.

The main steps of the algorithm are as follows:
a) Given a polygon and a pair of points, as shown in

Figure 7

Figure 7. Polygon and start/end point

b) Connect the start point s to each vertex of the
polygon

c) If the connecting line is completely within the
polygon, then take it as a link, as shown in Figure 8.

Figure 8. Connecting start point and polygon vertices

d) Execute the same steps to the end point, as shown in
Figure 9.

Figure 9. Connecting end point and polygon vertices

e) Connect each pair of vertices of the polygon
f) If the connecting line is in the polygon, then take it

as a link, as shown in Figure 10.

487487

Figure 10. Connecting pairs of vertices

g) Form a path network using all polygon edges and
links

h) Find a shortest path in the road network using
Dijkstra’s algorithm, as shown by the dotted lines in
Figure 11.

Figure 11. Shortest path from s to t

Fig. 12 is the detail flow chart of our pedestrian shortest
path algorithm in walking areas.

Figure 12. Flow chart for shortest path algorithm in walking areas

488488

B. Experimental Results
We take the map of the NUI Maynooth campus as a case

study. There are several plots of lawn in the campus, which
can be regarded as walking areas. In Figure 13 a pedestrian
wants to walk between the points marked by flags.

Figure 13. Example of walking area and start/end points

As mentioned in Figure 12, for each vertex v of the
polygon, draw a straight line between v and the start point s,
and add these lines to the set L of links by eliminating those
lines extending outside the polygon. The result is represented
by the black lines shown in Figure 14.

Figure 14. Construct links between start point and vertices

In the same way, connect lines between the end point and
all appropriate vertices, and add them to L, shown by the
black lines in Figure 15.

Next, connect each pair of vertices of the polygon and
add these lines to the set L of links after eliminating those
lines extending outside the polygon (Figure 16).

Therefore, the set of links, L, is made up of four parts:
edges of polygon (blue lines in Figure 13), links constructed
by start point (Figure 14), links constructed by end point
(Figure 15), and links constructed by pairs of vertices (Figure
16). The set of nodes, N, is made up of two parts: vertexes of
polygon and a pair of locations.

Figure 15. Construct links between end point and vertices

Figure 16. Construct links between each apir of vertices

We can execute Dijkstra algorithm to find the shortest
path inside the polygon based on the network R(N, L), as
shown in Figure 17.

Figure 17. Shortest path computed in walking area

Figure 18 is another example. In this case, the pedestrian
would first go straight to a vertex of the obstacle, and walk
along an edge of the obstacle, before going to another vertex.

489489

Figure 18. Shortest path following the edge of an obstacle

Taking the network computed in the walking area and the
fixed path network on its exterior, we can construct on-the-
fly an integrated network, which including nodes, links, and
walking areas. A hybrid pedestrian shortest path algorithm
can then be applied in the integrated network. By considering
human walking preferences, we can apply costs to the
network links to develop a practical pedestrian navigation
system.

C. Consideration of Human Behavior
For pedestrian path planning, different conditions

underfoot may influence path selection. A shortest path
means a minimum cost path, but the cost used can be path
length, journey time, human effort, some other factor or a
combination of these. Other factors can be a preference for
indoor routes, outdoor routes or paved paths depending on
weather conditions. The pedestrian shortest path algorithm
can adapt in different conditions by calculating the
corresponding costs.

As an example, we will take a path from the main
entrance of our campus to a student residence as an
example, to show different minimum cost paths.

Shortest Length Path

Under ordinary circumstances, a pedestrian would like to
choose the shortest length path. The fundamental link cost is
calculated according to the length of each link.

Costs can be varied by changing the cost change rate α, β,
as follows:

Cost = length •α + β (1)
In this case, we can set α=1 and β=0.
As shown in Figure 19, the pedestrian takes a shortest

length path by crossing grasslands.

Figure 19. Shortest length path over a hybrid network

Easy-Walk Priority Path

Not all pedestrians demand the shortest path to a
destination. For example, wheelchair-bound people would
prefer to select a paved road or in wet weather people may
prefer to avoid soft surfaces. In these cases, we can choose
appropriate values of α and β to reduce the cost of paved
roads. As shown in Fig. 20, the pedestrian walk along paved
roads to his destination. Although it is not a shortest length
path, it’s a minimum effort path.

Figure 20. Easy-walk route keeping to paved pathways

Indoor Priority Path

In the case of bad weather, the use of covered sidewalks
or indoor routes may be preferred. Accordingly, we can
change the value of α and β to reduce the cost of indoor paths
(Figure 21).

490490

Figure 21. Path with preference for indoor routes

V. CONCLUSION
The Euclidean Shortest Path with Obstacles (ESPO)

algorithm can be used to find routes in unrestricted walking
areas, such as parks, squares and woods. This paper
describes the well-known geometric ESPO algorithm and its
application in the field of pedestrian navigation, and
proposes a 2-D ESPO algorithm based on the classical
Dijkstra algorithm. This algorithm is applicable in open
spaces, within which no obvious path network is contained.
To make the resulting path suitable for a practical pedestrian
navigation system, this algorithm can also consider different
human preferences under different environmental conditions
by adjusting the costs calculated for each link. In addition it
can be integrated into a more classical network-based route-
finding algorithm which considers sidewalks, footpaths,

foot-bridges, building interiors and other pedestrian routes.
Further work will explore this integration and also the
communication of routes in cartographic, diagrammatic and
textual form for users.

ACKNOWLEDGEMENTS
This project was partly supported by the StratAG project,

funded under the Science Foundation Ireland Strategic
Research Cluster Programme (07/SRC/I1168).

REFERENCES
[1] Leonidas J. Guibas, John Hershberger, “Optimal shortest path queries

in a simple polygon”, Third Annual Symposium on Computational
Geometry, pp50 – 63, Waterloo, 1987.

[2] Leo Guibas, John Hershberger, Daniel Leven, Micha Sharir, Rober E.
Tarjan, “Linear time algorithms for visibility and shortest path
problems inside simple polygons”, 1986

[3] John Hershberger, Subhash Suri, “Efficient computation of Euclidean
shortest paths in the plane”, 1993

[4] D. T. Lee and F. Preparata, “Euclidean shortest paths in the presence
of rectilinear barriers”, Networks, vol.14 (1984), pp.393-410

[5] J. Reif and J. Storer, “Shortest paths in Euclidean space with
polyhedral obstacles”, Technical Report CS-85-121, Computer
Science Department, Brandeis University, 1985. Submitted to Journal
of the ACM

[6] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R. Tarjan, “Linear
time algorithms for visibility and shortest path problems inside
simplepolygons”, Proceedings of the 2nd ACM Symposium on
Computational Geometry(1986), pp.1-13

[7] Chai Dengfeng, Zhang Dengrong, “Algorithm and its application of
N shortest paths problem”, 2001

[8] Nuno M. Garcia, Przemyslaw Lenkiewicz, Mario M. Freire, Paulo P.
Monteiro, “On the performance of shortest path routing algorithms
for modeling and simulation of static source routed networks – an
extension to the Dijkstra algorithm”, 2007

491491

