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Introduction

Formal transformations somehow resembling the usual derivative are surprisingly common in computer science, with
two notable examples being derivatives of regular expressions [1] and derivatives of types [2, 3]. A newcomer to this list
is the incremental λ-calculus, or ILC, a “theory of changes” that deploys a formal apparatus allowing the automatic
generation of efficient update functions which perform incremental computation [4]. An example of this would be
using the ILC derivative-like operator D to alter a function f : B → B, which performs some major reorganization
on a database (of type B), into the update function D f : B → ∆B → ∆B. Here ∆B is the type of changes to B.
So D f , given an initial database, maps a change to that input database to a change to the output database. This in
principle, and as shown in their work also in practice, allows enormous savings when the change to the input is small
compared to the size of the input itself. Resemblance to the standard derivative can be exhibited by a simple example

D (λ x . f (g x)) (λ x x′ . D f (g x) (D g x x′)) (1a)

or

D (f ◦ g) x D f (g x) ◦ D g x (1b)

which seems suspiciously similar to the familiar Calculus 101 chain rule.
The ILC is not only defined, but given a formal machine-understandable definition—accompanied by mechanically

verifiable proofs of various properties, including in particular correctness of various sorts. Here, we show how the
ILC can be mutated into propagating tangents, thus serving as a model of Forward Accumulation Mode Automatic
Differentiation.1

This mutation is done in several steps. These steps can also be applied to the proofs, resulting in machine-checked
proofs of the correctness of this model of forward AD.

The Mutagenic Steps

There are two differences between the incremental λ calculus and forward AD. First, changes rather than tangents

are propagated. These changes are elements of change sets, and constitute finite (i.e., not infinitesimal) modifications.
(For example, a change to a list might consist of swapping the first two elements, and a change to a number might
consist of increasing its value by 5.) In numerics, these would be “differences” rather than “differentials”, and ∆
rather than ∂. Second, the changes are passed as additional arguments instead of being bundled together with primal
values. Passing changes in additional arguments makes great sense in the domain of incremental computation, where
the whole point of the construction is to partially evaluate a function D f : α → ∆α → ∆β with respect to f ’s original
input, yielding a mapping of changes to changes: ∆α → ∆β. But in the context of forward AD, we wish to propagate
tangent values in parallel with primal values, which necessitates both bundling the “new” values with the original
ones, and including the original output in the output of the transformed function.

We proceed to eliminate these two differences. This is done in two stages. First, considering only power series

change sets to the base type R. And second, uncurrying the outputs of the derivative operator and causing it to
propagate change sets and primal values bundled together all the way through to its output. Truncating the power
series changes them into Dual Numbers [7], yielding the familiar Forward AD. A commutative diagram of these steps
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Figure 1: Mutating the Incremental λ-Calculus (ILC) into Forward-Mode Automatic Differentiation (Forward AD).

is shown in Figure 1. The original ILC is in the top left, with relevant changes indicated with transitions to new
states or nodes. Each of these edges leads to a different combination of forward AD in the ILC. The power series and
uncurry steps can be taken in either order, so the diagram should commute.

Let us describe these two steps in a bit more detail.

Step One: Power Series

To see how power series change sets are introduced, we note that the ILC allows change sets to be defined for any base
type τ . These change sets need only obey a particular set of axioms, which in our context amounts to associativity
of addition of real numbers. We constrain ourselves to consider only change sets to reals: the base type R. We then
represent these change sets not as differences, but instead as power series (in some variable ε) with a zero constant
term. This means that the change set of x : R is a term of the form 〈zps

ε
〉, where

〈zps
ε
〉 ::= 0 | ε ∗ 〈ps

ε
〉 (2a)

〈ps
ε
〉 ::= R | R+ 〈zps

ε
〉 (2b)

∆R ≡ 〈zps
ε
〉 (2c)

For a specific value of ε (possibly subject to conditions of convergence) this would take on a particular numeric value.
We further define an operator coeff which takes a nonnegative integer index and a power series in ε wrapped in a λ
expression, i.e., (λε . 〈ps

ε
〉), and yields the requested coefficient of the given power series.

coeff 0 (λε . r) r (where ε 6∈ FV(r)) (3a)

coeff 0 (λε . r + ε ∗ e) r (where ε 6∈ FV(r)) (3b)

coeff 0 (λε . ε ∗ e) 0 (3c)

coeff i (λε . r + ε ∗ e) coeff (i− 1) (λε . e) (where i > 0 and ε 6∈ FV(r)) (3d)

coeff i (λε . ε ∗ e) coeff (i− 1) (λε . e) (where i > 0) (3e)

For instance,
coeff 2 (λε . 0.1 + ε ∗ (0.2 + ε ∗ (0.3 + ε ∗ (0.4 + ε ∗ (0.5 + · · · ))))) 0.3

Useful properties of such a change set are straightforward to establish: closure under the derivatives of the numeric
basis functions, and dependence during such operators of coefficients only on coefficients of the same or lower order.
The first property is necessary for consistency, while the second allows these power series to be truncated at ε2,
thus yielding the tangents of standard forward AD. With this machinery, we could define the familiar derivative
diff : (R → R) → (R → R), for instance diff sin = cos, as

diff f x ≡ coeff 1 (λε . (D f x (ε ∗ 1))) (4)

By defining coeff to distribute over algebraic datatypes

coeff i (λε . Constructor e1 · · · en) Constructor (coeff i (λε . e1)) · · · (coeff i (λε . en)) (5a)

and post-compose over functions

coeff i (λε . (λx . e)) (λx . coeff i (λε . e)) (where x 6= ε) (5b)

this machinery can find directional derivatives of functions with non-scalar output, including Church-encoded output.
In this formulation, the tagging necessary to distinguish distinct nested invocations of derivative-taking operators

[8, 9] is handled by the standard λ-calculus mechanisms for avoiding variable capture during β-substitution, e.g.,
α-renaming.



Step Two: Uncurrying and Bundling

The second step is uncurrying arguments, and bundling the output. We need to change the type of the derivative
operator from

D : (t1 → t2 → · · · → tn → u) → (t1 → ∆t1 → t2 → ∆t2 → · · · → tn → ∆tn → ∆u) (6)

to

D̂ : (t1 → t2 → · · · → tn → u) → (Ft1 → Ft2 → · · · → Ftn → Fu) (7)

where Ft is isomorphic to t ×∆t, a primal value bundled with its change set. If we define F (t1 → t2) = Ft1 → Ft2
then this yields a simpler type signature,

D̂ : t → Ft (8)

The mechanics of this change are straightforward, requiring that the ILC reductions be modified to take the new
shape. Note that, thus uncurried and carrying primal and change set values in tandem, the chain rules of Equation 1
are simplified: D̂ (f ◦ g) D̂ f ◦ D̂ g.
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