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Abstract

Gaussian processes-prior systems generally consist sy moéasure-
ments of samples of the putatively Gaussian process ofeisttewhere
the samples serve to constrain the posterior estimate. Wieensider
the case where the measurements are inste&y weighted sumef
samples. This framework incorporates measurements ofadieg in-
formation and of filtered versions of the process, therelonéihg GPs
to perform sensor fusion and tomography, it allows certatug invari-
ances (ie symmetries) to be weakly enforced, can be useddelhet-
eroskedasticity in output variance, and under certain itiomd it allows
the dataset to be dramatically reduced in size. The methapdked to
a sparsely sampled image, where each sample is taken usingagdnd
non-monotonic point spread function.

1 Introduction?

Gaussian process priors are increasingly used as a flexibjfgamametric model in a range
of application areas (e.g. O’'Hagan, 1978; Rasmussen, Ygidgms, 1998; Murray-Smith
and Sbarbaro, 2002). Solak et al. (2003) used the fact teati¢hivative of a Gaussian
process is itself a Gaussian process to integrate functidrdarivative observations. This
is particularly useful when modeling nonlinear dynamicteyss. Here we generalise the
results to arbitrary transformations of a Gaussian proagkih in discrete form can be
summarised by a linear transformation. We show four majeaathges this can offer:

1. We can fuse information from multiple sensors, where poegntially nonlinear)
transformation associated with the sensor can be approséhg a linear weight-
ing on discretisation. GP inference can then solve ill-pdseerse problems.

2. We can add ‘artificial’ data points which introduce priorokvledge by enforcing
certain chosen linear constraints, such as symmetry, drehigrder derivative
operators.

3. We can choose x N linear transformations, whet¥ is the number of points in
the original training set, which reduce the computatiomahplexity toO(n?) +
O(N?). Forn < N this can lead to a significant improvement in speed. We show
that such mappings can be derived from smooths of less refioeiels.

4. In many applications we can choose a series of linearfsamations which com-
press the training set, as above, and correspond to malé-&arning.
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2 Transformations of Gaussian Processpriors
ConsiderN observations of inputX and outputd”, where we assume thé are drawn
from an N-dimensional normal distribution,

Y ~ N(0,%),

whereY is the N x N covariance matrix, the elements of which are functions pfite X,
anN x d matrix. The covariance function is of the form

cov(y;, y;) = C(xs, 253 60) = vo exp <— Zwk(aci,k — xj7k)2> + 05,
k

where hyperparameter vectbr= [w; ...wqo,]. This covariance function reflects prior
beliefs that the target function is smooth, so penalisirghHirequency components. The
parametetuv;, reflects the length-scale of changes in input dimenkion

We will now assume that instead of observigig directly, we observe a transformation
of the latent variableg. In the continuous case

output = /systemx inputds?,

Q
m(t) = /K(t,ac)y(x)dx Q)

which could represent a nonlinear mapping froro m. In discrete form this becomes
N

mg = Z Kkj Y} (2)
j=1

In other words, for the vector of latelitwe observe outputd/ = K'Y, whereK is known.
This could, for example, correspond to an inverse problesh as image restoration, where
the observable is the image, the system is the lens, andeherscis the input.

The discretised fornf defines a linear transformation &f, which results inA/. The
vectorM is therefore drawn from an-dimensional normal distribution:

M~ N(O,KSKT + %),
whereX ), is then x n diagonal matrix of observation variances.

If we wish to predict somé/, given X, My, K7, and X», K5 then the conditional mean
and variance are

po1 = KoyXppK] (K\SK] + %) M, (3)
Yo1 = Yy — KoXpK{ (KK +Sy) P K150 KT (4)
By selecting the transformatidii,, associated with the mapping from the latent spate
the outputs at the test points, we can perform inference to any of the variables chosen. If

K, = I, then we are inferring directly from observations af/;, and implicitly solving
the inverse problem of finding the conditional mean and vaeaof the latent variablg.

In cases where the mapping is applied to the observatioanmiterrmf/, this would
provide a straighforward way of introducing heteroskeidagtinto the GP model.

2.1 Learningthe covariancefunction parameters

The log-likelihood, given the training dafd; is

1 1 N
L= -3 log |K1Z1 KT + S| — §M1T(K121K1T + %) My — 71 log 2.



If we wish to maximise the likelihood, we use the derivativihwespect to the hyperpa-
rameters), whereQ = K131 K{ + Xy,

oL 1 _,0Q 1 7,00 4
= = = =) +=-M QM
26 2”(Q ae)+2 1@ 5@ M ®)
and optimise the hyperparameters using an appropriatmecdive used a conjugate gra-
dient approach, or use a Markov-Chain Monte Carlo algorithiamplement a numerical
integration.

The ability to adapt the parameters of the covariance fanatieans that the regularising
effect is automatically estimated from the data, reducheyut;, of uninformative input
dimensions (see discussion in Williams (1998)) — this isantgnt in learning in general,
but especially interesting for the inverse problem aspefctisis paper.

If K is uncertain, then we can take a parametric mddgl, z; 0), and identifyd, or po-
tentially use a second Gaussian process as a prior for thpintgfi (¢, «). The covariance
function and mean function can be chosen appropriatelyeriipg on knowledge of the
mapping fromz, y to m.

2.2 Examplesof transformations

The linear transformatiok” can be used to perform a number of roles:

221 Filteringthedata

The K can represent filters applied to the latent variables befbsrvation, reflecting
sensor characteristics or intervening transformatiomefstates by other means. As noted
above, the sensor characteristics describeH {h =) could be nonlinear, changing with
statex, while retaining a linear transformatioii on discretisation. Explicitly building
the sensor characteristics into the model will tend to béebeionditioned than simply
pre-filtering the data with an inverse model.

2.2.2 Enforcing constraints

We can add new data points which enforce constraints, sath tlveighted sum of outputs
equals some constant. For example, symmetry inythris for a one-dimensional function
can be achieved using matrices of the form

1 -1 1 1
Keven = 1 -1 ‘| ) Kodd = l 1 1
1 -1 11

for

X=[z a2 x3 —33 —19 —11], M=[0 0 00 0 0]".
which will produce an even or odd function depending on th&imahosen. Examples of
inference with Gaussian process priors incorporating syoimetry constraints are shown

in Figure 1.

An alternative approach to enforce symmetry would be by eymeite design of the covari-
ance function, which would be more appropriate for fully sgatric functions. The use of
individual data points as constraints does have potertis@ages where prior knowledge
of symmetry is restricted to localised regions.
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(a) No symmetry constraints
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(b) Odd symmetry constraints
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(c) Even symmetry constraints

Figure 1: lllustration of use of artificial data points erdimg symmetry locally. Circles
are normal observed outputs, crosses are points-axis where symmetry constraint has
been added. Model mean and 2 std. dev. contours are shows.tiNdtbecause of this
sparse enforcement of symmetry the error region about feer@d symmetric portion of
the curve is much looser than on the side with the data.



2.2.3 Differentiation

An example of enforcing weighted constraints is to represdenivatives. These can be
implemented by differences, e.qg. for first and second diévas,

1 -1 1 -2 1
1 1 -1 1 1 -2 1
K/:_ K//:_
Am ... ... 3 Ax ... ... ... )
1 -1 1 -2 1

whereAz indicates the distance between pointginWe can continue in this manner to be
able to add arbitrary linear combinations of higher-ordenditives, i.e. differential forms.
We can therefore add prior knowledge of combinations ofvégiies of any order, by
including fictitious pairs of data poin{g:1, 22), and their known derivative:, or include
information from different sensors which measure diffédgrivatives ofy.

3 Fusion of multiple transfor mations of latent variables

In the case of an observation vecfar composed of a number of vectatg;, = K,;Y, we
have

M,y Ky
Mo Ky

M = . = . Y = KY.
My, Ky,

We can now integrate multiple observations which might beixture of readings from
different physical sensors, artificial data points in therf@f constraints on the function,
or differential operators applied to the data, to derive @ehbased on a latent variahje
which is compatible with all of them. Such consistent ingtigm of multiple observations,
constraints and derivatives is far from trivial, as can bsesbed in the theoretical and
practical problems associated with design and verificatibgain scheduled and fuzzy
controllers (Leith and Leithead, 1999).

3.1 Relevancefor solving inverse problems

If the filters K; are derived from the physics of the sensing mechanisms, tticesp-
proach give us any advantages for solving inverse probleBtafidard approaches to in-
version of ill-posed problems use regularisation wheratgmh components corresponding
to small singular values are filtered out. A common approashlevuseY = K+M =
(KTK)~'KTM, where the inversion would be based around SVD or the Géasedal
SVD approach, including a filter matrik would filter the singular values dfK 7 K).
Specific examples of this include Tikhonov regularisatishere a regularisation operator
Q(Y), is added — minimising K'Y — M || + Q(Y"). See Hansen (1997) for a review.

In the GP case presented in this paper, the smoothnessaiah&rprovided by the co-
variance function. As shown in equation (3),= X1 KT (KX KT)~*M. Numerically,
the inversion ofK X K7 should be better conditioned. Via the covariance functienefv
fectively include estimated or prior knowledge about nois& and M, and correlation
among elements of, which improve the condition number of the matd&>K” and
have a regularising effect on the solution.

3.2 Example: Reconstruction of Imagesfrom Ganglion Cell Signals

Consider & x k pixel image measured using noisy sensors, then lineamgfibamed by
a suitem < k? of on-center off-surround (see Figure 2 for the activationction as a
function of distance from the centre) receptive fields prioiransmission through a noisy
channel. Given the values received, along with a noise naddieé channel and knowledge



of the receptive fields, we wish to estimate the original imabhis reconstruction problem,
intended to be reminiscent of interpretation of signalg 8ewugh the optic nerve, is shown
in Figure 3, with varying levels of sparsitg, = 41, m = 225 and 1000 pixels in image
available.

Figure 3. Example of use of GP for solving inverse problemurSe image (top left)
is sparsely presented, with additive noise (top right) toraes, and responses on output
‘neurons’ measured (bottom left). Inference in GP modekaining data gives inferred
reconstructed image (bottom right).

4 Learning with large data-sets

A major limiting factor in the acceptance of GP-prior apprioes in practice is the com-
putational effort associated with large training sets hascomplexity grows ab(N?3) for

a training set with/V points. Attempts to overcome this include the use of the fyst
method (Williams and Seeger, 2001), selection mechaniSeeger et al., 2003), mixtures
of GPs (Shi et al., 2002), and Bayesian committee machiresfTr2000).

A key feature of the filtering approach is that the need not be square matrices. In fact
in many applications the filter can represent a significatiticéon in the number of data



points, soK will be n x N wheren <« N. Note that in the equations for the inference
and likelihood calculations we needed to invBIEK T, which is the major computational
hurdle for this method, scaling @(N?3). For nonsquaré& we now need only invert an

n X n matrix, as opposed to ai x N. We still need to calculate the covariance values of
¥ for all N points, but this iSD(N?). To further increase the efficiency of the method we
can eliminate points from the calculation of the covariamegrix > which correspond to a
column of entries ink; ; y; which are below some threshaddIn such cases, the original
observatiory; associated with this column has little impact on the modmksictions at
the chosen test points.

To summarize, when < N this method results in substantially decreased compufatio
burden because

invert  covar naive
—~ —
complexity= O(n?®) + O(N?) < O(N?®)

4.1 Reusing effective kernelsfrom earlier models

A practical approach for finding a suitablé, with n < N, is use our prior knowledge of
the problem to determine appropriate filters. An alterrgitito base the filter on existing
approximate models, which might be less computationalpeesive to estimate. We now
generalise this idea to a broader class of model — we takeistingxnonlinear representa-
tion of the input—output relationship from any linear-retparameters nonlinear empirical
model, and at any input point of interest, we can calculaeffective kernel of the model.

For any basis function model, such as an RBF network, spliogetretc, with basis func-
tions ¢;(z), and weighting parametefs, the estimated outpuf* for a test inputz* is
vo= Y, qbi(:z:*)éi = @(x*)é, where the parameters are identified using standard ap-
proaches, e.gl = ®(X)*Y. We can now reinterpret the basis function model as smooth-
ing the training outputsy* = ®(2*)®(X)*Y, where the vectok, = ®(z*)®(X)* is

the effective kernela weighting of they’s in the training set for the model prediction at
test pointz*. Repeating this at all points in the training set gives usstheothing matrix

S = ®(X)®(X)*. The larger the value of the entriés ;, the more leverage observation
y; has on the prediction gf;. We can use this effective kernel as a way of generating rows
of the linear transformation matrik” to create new, filtered training data. The filter will
be well-suited to the specific modelling task, and its agpitn creates ‘high-value’ data
points.

4.2 Example: Multi-scale learning

We illustrate the ability of the approach to reduce the cotaenal complexity of learning,
by creating a series of filters which include progressivetyrenpoints from the training
data, filtered at finer scales. In this case the filters are angsad, triangular weighting
filters, starting with two points and doubling the number ofints in each filter.  To

show that the approach can perform well with very small trejrsets, which incorporate
information from a larger number of training points, seeufreA4.
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Figure 4: lllustration of multiple-filter approach to reduan original training set of 500
points down to 35 training points. This is significantly leetthan subselecting 35 of the

original training points as can be seen in the lower figures.

5 Conclusions

We have demonstrated how transformations of Gaussian ggquéors can, for known

transformations, allow us to use GPs to consistently fugrmation from multiple sen-

sors, which is of immediate practical importance in manyiesgring applications. We
also demonstrate the use of GPs to solve ill-posed invergdggms. The amount of noise
on both latent variables and observed variables, and the@trnbregularisation required in
the inversion process, are automatically optimised duaitigptation of the model covari-
ance hyperparametefsMore detailed comparison of these benefits with the algmsth
currently used in the inverse-problems community is rezplir

The incorporation of ‘artificial’ data points is a novel wayibtroduce prior knowledge by
enforcing certain chosen linear constraints, such as symgnue higher-order derivative
operators, which is easy to use, and has application in s&rahgreas. The reduction in
the computational complexity t0(n3) + O(N?) for GP’s may also be very significant in

2Optimised — as far as the choice of prior made is appropriata fiven task.



broadening the application base of GP inference, and tBegeeat scope for extension of
the methods to create interesting multi-scale learningrélgms, and for stepwise optimi-
sation or integration of covariance hyperparameters.
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