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Abstract

Gaussian processes-prior systems generally consist of noisy measure-
ments of samples of the putatively Gaussian process of interest, where
the samples serve to constrain the posterior estimate. Herewe consider
the case where the measurements are insteadnoisy weighted sumsof
samples. This framework incorporates measurements of derivative in-
formation and of filtered versions of the process, thereby allowing GPs
to perform sensor fusion and tomography, it allows certain group invari-
ances (ie symmetries) to be weakly enforced, can be used to model het-
eroskedasticity in output variance, and under certain conditions it allows
the dataset to be dramatically reduced in size. The method isapplied to
a sparsely sampled image, where each sample is taken using a broad and
non-monotonic point spread function.

1 Introduction1

Gaussian process priors are increasingly used as a flexible nonparametric model in a range
of application areas (e.g. O’Hagan, 1978; Rasmussen, 1996;Williams, 1998; Murray-Smith
and Sbarbaro, 2002). Solak et al. (2003) used the fact that the derivative of a Gaussian
process is itself a Gaussian process to integrate function and derivative observations. This
is particularly useful when modeling nonlinear dynamic systems. Here we generalise the
results to arbitrary transformations of a Gaussian process, which in discrete form can be
summarised by a linear transformation. We show four major advantages this can offer:

1. We can fuse information from multiple sensors, where the (potentially nonlinear)
transformation associated with the sensor can be approximated by a linear weight-
ing on discretisation. GP inference can then solve ill-posed inverse problems.

2. We can add ‘artificial’ data points which introduce prior knowledge by enforcing
certain chosen linear constraints, such as symmetry, or higher-order derivative
operators.

3. We can choosen×N linear transformations, whereN is the number of points in
the original training set, which reduce the computational complexity toO(n3) +
O(N2). Forn � N this can lead to a significant improvement in speed. We show
that such mappings can be derived from smooths of less refinedmodels.

4. In many applications we can choose a series of linear transformations which com-
press the training set, as above, and correspond to multi-scale learning.

1Technical Report TR-2003-149, Dept. of Computing Science,Glasgow University, June, 2003.



2 Transformations of Gaussian Process priors

ConsiderN observations of inputsX and outputsY , where we assume theY are drawn
from anN -dimensional normal distribution,

Y ∼ N (0, Σ),

whereΣ is theN ×N covariance matrix, the elements of which are functions of inputsX ,
anN × d matrix. The covariance function is of the form

cov(yi, yj) = C(xi, xj ; θ) = v0 exp

(

−
∑

k

wk(xi,k − xj,k)2

)

+ σ2
y ,

where hyperparameter vectorθ = [w1 . . . wdσy ]. This covariance function reflects prior
beliefs that the target function is smooth, so penalising high-frequency components. The
parameterwk reflects the length-scale of changes in input dimensionk.

We will now assume that instead of observingy’s directly, we observe a transformationm
of the latent variablesy. In the continuous case

output =

∫

Ω

system× inputdΩ,

m(t) =

∫

K(t, x) y(x) dx (1)

which could represent a nonlinear mapping fromx to m. In discrete form this becomes

mk =

N∑

j=1

Kkj Yj . (2)

In other words, for the vector of latentY we observe outputsM = KY , whereK is known.
This could, for example, correspond to an inverse problem such as image restoration, where
the observable is the image, the system is the lens, and the scenery is the input.

The discretised formK defines a linear transformation ofY , which results inM . The
vectorM is therefore drawn from ann-dimensional normal distribution:

M ∼ N (0, KΣKT + ΣM ),

whereΣM is then × n diagonal matrix of observation variances.

If we wish to predict someM2 givenX1, M1, K1, andX2, K2 then the conditional mean
and variance are

µ2.1 = K2Σ12K
T
1 (K1ΣKT

1 + ΣM )−1M1 (3)

Σ2.1 = ΣM − K2Σ12K
T
1 (K1ΣKT

1 + ΣM )−1K1Σ21K
T
2 (4)

By selecting the transformationK2, associated with the mapping from the latent spacey to
the outputs at the test pointsx2, we can perform inference to any of the variables chosen. If
K2 = I, then we are inferringy directly from observations ofM1, and implicitly solving
the inverse problem of finding the conditional mean and variance of the latent variabley.

In cases where the mapping is applied to the observation variance termσ2
y , this would

provide a straighforward way of introducing heteroskedasticity into the GP model.

2.1 Learning the covariance function parameters

The log-likelihood, given the training dataM1 is

L = −
1

2
log |K1Σ1K

T
1 + ΣM | −

1

2
MT

1 (K1Σ1K
T
1 + ΣM )−1M1 −

N1

2
log 2π.



If we wish to maximise the likelihood, we use the derivative with respect to the hyperpa-
rametersθ, whereQ = K1Σ1K

T
1 + ΣM ,

∂L

∂θ
= −

1

2
tr

(

Q−1 ∂Q

∂θ

)

+
1

2
MT

1 Q−1 ∂Q

∂θ
Q−1M1 (5)

and optimise the hyperparameters using an appropriate routine – we used a conjugate gra-
dient approach, or use a Markov-Chain Monte Carlo algorithmto implement a numerical
integration.

The ability to adapt the parameters of the covariance function means that the regularising
effect is automatically estimated from the data, reducing the wk of uninformative input
dimensions (see discussion in Williams (1998)) – this is important in learning in general,
but especially interesting for the inverse problem aspectsof this paper.

If K is uncertain, then we can take a parametric modelK(t, x; θ), and identifyθ, or po-
tentially use a second Gaussian process as a prior for the mappingK(t, x). The covariance
function and mean function can be chosen appropriately, depending on knowledge of the
mapping fromx, y to m.

2.2 Examples of transformations

The linear transformationK can be used to perform a number of roles:

2.2.1 Filtering the data

The K can represent filters applied to the latent variables beforeobservation, reflecting
sensor characteristics or intervening transformation of the states by other means. As noted
above, the sensor characteristics described inK(t, x) could be nonlinear, changing with
statex, while retaining a linear transformationK on discretisation. Explicitly building
the sensor characteristics into the model will tend to be better conditioned than simply
pre-filtering the data with an inverse model.

2.2.2 Enforcing constraints

We can add new data points which enforce constraints, such that a weighted sum of outputs
equals some constant. For example, symmetry in they-axis for a one-dimensional function
can be achieved using matrices of the form

Keven =

[
1 −1

1 −1
1 −1

]

, Kodd =

[
1 1

1 1
1 1

]

for

X = [ x1 x2 x3 −x3 −x2 −x1 ]
T

, M = [ 0 0 0 0 0 0 ]
T

.

which will produce an even or odd function depending on the matrix chosen. Examples of
inference with Gaussian process priors incorporating suchsymmetry constraints are shown
in Figure 1.

An alternative approach to enforce symmetry would be by appropriate design of the covari-
ance function, which would be more appropriate for fully symmetric functions. The use of
individual data points as constraints does have potential advantages where prior knowledge
of symmetry is restricted to localised regions.
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(a) No symmetry constraints
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(b) Odd symmetry constraints
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(c) Even symmetry constraints

Figure 1: Illustration of use of artificial data points enforcing symmetry locally. Circles
are normal observed outputs, crosses are points onx-axis where symmetry constraint has
been added. Model mean and 2 std. dev. contours are shown. Note that because of this
sparse enforcement of symmetry the error region about the inferred symmetric portion of
the curve is much looser than on the side with the data.



2.2.3 Differentiation

An example of enforcing weighted constraints is to represent derivatives. These can be
implemented by differences, e.g. for first and second derivatives,

K ′ =
1

∆x







1 −1
1 −1

. . .
. . .
1 −1







, K ′′ =
1

∆x







1 −2 1
1 −2 1

. . .
. . .

. . .
1 −2 1







,

where∆x indicates the distance between points inx. We can continue in this manner to be
able to add arbitrary linear combinations of higher-order derivatives, i.e. differential forms.
We can therefore add prior knowledge of combinations of derivatives of any order, by
including fictitious pairs of data points(x1, x2), and their known derivativem, or include
information from different sensors which measure different derivatives ofy.

3 Fusion of multiple transformations of latent variables

In the case of an observation vectorM composed of a number of vectorsMi = KiY , we
have

M =







M1

M2

...
Mk







=







K1

K2

...
Kk







Y = KY.

We can now integrate multiple observations which might be a mixture of readings from
different physical sensors, artificial data points in the form of constraints on the function,
or differential operators applied to the data, to derive a model based on a latent variabley
which is compatible with all of them. Such consistent integration of multiple observations,
constraints and derivatives is far from trivial, as can be observed in the theoretical and
practical problems associated with design and verificationof gain scheduled and fuzzy
controllers (Leith and Leithead, 1999).

3.1 Relevance for solving inverse problems

If the filters Ki are derived from the physics of the sensing mechanisms, doesthis ap-
proach give us any advantages for solving inverse problems?Standard approaches to in-
version of ill-posed problems use regularisation where solution components corresponding
to small singular values are filtered out. A common approach would useY = K+M =
(KT K)−1KT M , where the inversion would be based around SVD or the Generalised
SVD approach, including a filter matrixL would filter the singular values of(KT K).
Specific examples of this include Tikhonov regularisation,where a regularisation operator
Ω(Y ), is added – minimising||KY − M || + Ω(Y ). See Hansen (1997) for a review.

In the GP case presented in this paper, the smoothness constraint is provided by the co-
variance function. As shown in equation (3),Y = Σ12K

T (KΣKT )−1M . Numerically,
the inversion ofKΣKT should be better conditioned. Via the covariance function we ef-
fectively include estimated or prior knowledge about noisein Y andM , and correlation
among elements ofY , which improve the condition number of the matrixKΣKT and
have a regularising effect on the solution.

3.2 Example: Reconstruction of Images from Ganglion Cell Signals

Consider ak × k pixel image measured using noisy sensors, then linearly transformed by
a suitem � k2 of on-center off-surround (see Figure 2 for the activation function as a
function of distance from the centre) receptive fields priorto transmission through a noisy
channel. Given the values received, along with a noise modelof the channel and knowledge



of the receptive fields, we wish to estimate the original image. This reconstruction problem,
intended to be reminiscent of interpretation of signals sent through the optic nerve, is shown
in Figure 3, with varying levels of sparsity,k = 41, m = 225 and 1000 pixels in image
available.
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Figure 2: Activation function of centre-surround ‘neurons’ for distance from centre

Figure 3: Example of use of GP for solving inverse problem. Source image (top left)
is sparsely presented, with additive noise (top right) to neurons, and responses on output
‘neurons’ measured (bottom left). Inference in GP model to training data gives inferred
reconstructed image (bottom right).

4 Learning with large data-sets

A major limiting factor in the acceptance of GP-prior approaches in practice is the com-
putational effort associated with large training sets, as the complexity grows atO(N3) for
a training set withN points. Attempts to overcome this include the use of the Nyström
method (Williams and Seeger, 2001), selection mechanisms (Seeger et al., 2003), mixtures
of GPs (Shi et al., 2002), and Bayesian committee machine (Tresp, 2000).

A key feature of the filtering approach is that theKi need not be square matrices. In fact
in many applications the filter can represent a significant reduction in the number of data



points, soK will be n × N wheren � N . Note that in the equations for the inference
and likelihood calculations we needed to invertKΣKT , which is the major computational
hurdle for this method, scaling asO(N3). For nonsquareK we now need only invert an
n × n matrix, as opposed to anN × N . We still need to calculate the covariance values of
Σ for all N points, but this isO(N2). To further increase the efficiency of the method we
can eliminate points from the calculation of the covariancematrixΣ which correspond to a
column of entries inKi,j yj which are below some thresholdε. In such cases, the original
observationyj associated with this column has little impact on the model’spredictions at
the chosen test points.

To summarize, whenn � N this method results in substantially decreased computational
burden because

complexity=

invert
︷ ︸︸ ︷

O(n3) +

covar
︷ ︸︸ ︷

O(N2) �

naive
︷ ︸︸ ︷

O(N3)

4.1 Reusing effective kernels from earlier models

A practical approach for finding a suitableK, with n � N , is use our prior knowledge of
the problem to determine appropriate filters. An alternative is to base the filter on existing
approximate models, which might be less computationally expensive to estimate. We now
generalise this idea to a broader class of model – we take an existing nonlinear representa-
tion of the input–output relationship from any linear-in-the-parameters nonlinear empirical
model, and at any input point of interest, we can calculate the effective kernel of the model.

For any basis function model, such as an RBF network, spline model etc, with basis func-
tions φi(x), and weighting parametersθi, the estimated output̂y∗ for a test inputx∗ is
ŷ∗ =

∑

i φi(x
∗)θ̂i = Φ(x∗)θ̂, where the parameters are identified using standard ap-

proaches, e.g.̂θ = Φ(X)+Y . We can now reinterpret the basis function model as smooth-
ing the training outputs,̂y∗ = Φ(x∗)Φ(X)+Y , where the vectork∗ = Φ(x∗)Φ(X)+ is
the effective kernel, a weighting of they’s in the training set for the model prediction at
test pointx∗. Repeating this at all points in the training set gives us thesmoothing matrix
S = Φ(X)Φ(X)+. The larger the value of the entriesSi,j , the more leverage observation
yj has on the prediction of̂yi. We can use this effective kernel as a way of generating rows
of the linear transformation matrixK to create new, filtered training data. The filter will
be well-suited to the specific modelling task, and its application creates ‘high-value’ data
points.

4.2 Example: Multi-scale learning

We illustrate the ability of the approach to reduce the computational complexity of learning,
by creating a series of filters which include progressively more points from the training
data, filtered at finer scales. In this case the filters are noncausal, triangular weighting
filters, starting with two points and doubling the number of points in each filter. To
show that the approach can perform well with very small training sets, which incorporate
information from a larger number of training points, see Figure 4.
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(a) Original training data (circles) and fil-
tered subsets (crosses)
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(b) GP model response compared to true
function
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(c) Subset of original training data (circles)
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(d) GP model response compared to true
function

Figure 4: Illustration of multiple-filter approach to reduce an original training set of 500
points down to 35 training points. This is significantly better than subselecting 35 of the
original training points as can be seen in the lower figures.

5 Conclusions

We have demonstrated how transformations of Gaussian process priors can, for known
transformations, allow us to use GPs to consistently fuse information from multiple sen-
sors, which is of immediate practical importance in many engineering applications. We
also demonstrate the use of GPs to solve ill-posed inverse problems. The amount of noise
on both latent variables and observed variables, and the amount of regularisation required in
the inversion process, are automatically optimised duringadaptation of the model covari-
ance hyperparameters.2 More detailed comparison of these benefits with the algorithms
currently used in the inverse-problems community is required.

The incorporation of ‘artificial’ data points is a novel way to introduce prior knowledge by
enforcing certain chosen linear constraints, such as symmetry, or higher-order derivative
operators, which is easy to use, and has application in a range of areas. The reduction in
the computational complexity toO(n3) + O(N2) for GP’s may also be very significant in

2Optimised – as far as the choice of prior made is appropriate for a given task.



broadening the application base of GP inference, and there is great scope for extension of
the methods to create interesting multi-scale learning algorithms, and for stepwise optimi-
sation or integration of covariance hyperparameters.
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