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Abstract. It has recently been proposed that the model plant, Arabidopsis 
thaliana (thale cress), uses a newly discovered genetic repair system to repair 
errors at the genetic level. A. thaliana uses information from the grandparent’s 
genes as a basis for this correction – so genetic information appears to skip a 
generation. We apply this gene repair strategy to a combinatory optimization 
problem, firstly comparing the performance of parent and grandparent based re-
pair. Subsequent experiments expand our understanding of the GeneRepair al-
gorithm, by examining the parameters of fitness and direction involved in the 
generepair process. Our results point to a tentative explanation as to why A. 
thaliana might have evolved such an apparently complex inheritance process.  

Keywords: Evolutionary optimization, genetic repair, constraints, Arabidopsis 
thaliana. 

1   Introduction 

Evolutionary Optimization (EO) is an optimization strategy that is inspired by Dar-
win’s idea of survival of the fittest. EO effectively implements a “generate and test” 
beam search to find near optimal solutions to complex problems, such as NP-
Complete problems, in a reasonable amount of computing time. A population of can-
didate solutions are created and allowed to converge towards a global optimal under 
the guidance of a suitable fitness function. Evolutionary strategies are effective in 
exploring complex solution spaces, where each individual explores part of the search 
space. However, EO is less suited to enforcing validity constraints [1] on these search 
spaces.  

Evolutionary optimization and related approaches, use biology as their inspiration. 
This paper turns again to the biology domain, looking at some recent advances in the 
study of the Arabidopsis thaliana (thale cress) plant. A. thaliana appears uses a ge-
netic repair process to repair errors in its genes. This repair process uses genetic in-
formation originating in the genes of the grandparent – information which does not 
appear to be detectable in the genes of the parent.  

This paper presents a comparison of these repair strategies, on a standard combina-
toric optimization problem. Results for a biologically inspired penalty points tech-
nique [2] act as a benchmark. The results of our initial experiment and presented and 
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discussed, followed by two supplementary experiments that clarify some issues raised 
by the first experiment.  

To the best of our knowledge, no authors have previously examined the effective-
ness of grand-parent based repair in evolutionary computation, or compared parent 
based and grandparent based approaches to genetic repair.  

2   Gene Repair in Arabidopsis Thaliana  

Arabidopsis thaliana (thale cress) is a model plant used for a wide variety of detailed 
studies and was the first plant genome to be sequenced. The Arabidopsis plant has one 
of the smallest genomes with about 157 million base pairs and five chromosomes. 
The Arabidopsis genome encodes 27,000 genes and 35,000 proteins.  

Lolle et al [3] investigated A. thaliana plants with an organ fusion mutation on the 
Hothead gene (HTH), resulting in an abnormal formation of the plant’s flower. Their 
studies revealed that two plants with the HTH can produce offspring without this 
abnormality, forming perfectly normal plants. The resultant offspring have the normal 
form of the hothead gene (hth), even though this information was present in neither of 
the parent’s genomes. That is, approximately 10% of the offspring were found to 
revert to the normal form of the hothead gene, which is a far higher rate than can be 
explained by random mutation of these specific alleles (which would be of the order 
of 1 per billions per allele per generation). It was found that that these revertant ge-
nomes all appeared to inherit genetic information from their grand-parents genomes, 
which had the normal (hth) form. Thus, genetic information appeared to skip a gen-
eration, reappearing in a subsequent generation. In an interview with the Washington 
Post (March 23rd, 2005) Robert Pruitt referred to this as a “parallel path of inheri-
tance”, which appears to occur in addition to standard Mendelian inheritance. In es-
sence, a corrective template is used to correct broken or damaged sequences of DNA, 
possibly in response to stress placed on the plant due to the presence of a genetic 
mutation.  

While Lolle’s controversial [4] explanation relies on a cache of RNA inherited 
from previous generations, we focus on the explanation offered by Ray [5] that is 
compatible with Lolle’s findings. Ray’s explanation relies on an archival form of 
DNA, that serves to store the ancestral DNA but which is not detected by the proc-
esses used to sequence the regular encoding of DNA.  

Thus, in our implementation each individual maintains its own archive of 2 genera-
tions of ancestral genetic information. This yields a custom made repair template for 
each individual in the population (see Figure 2). 

3   The TSP Evolutionary Optimization Problem 

To examine the performance of various GeneRepair strategies, we used the standard 
problem called the Traveling Salesman’s Problem (TSP) (or the Hamiltonian Circuit 
problem). This NP complete problem involves finding the shortest path that visits 
each of a number of vertices (cities), visiting each just once and returning back to the 
original vertex (city). The TSP problem is thus a minimization problem, where the 
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best results correspond to a lower tour length. In this paper we use the results gener-
ated for the 51 city traveling salesman problem (eil51) from the standard TSPLib 
problem set. We point out that our focus was on comparing the effectiveness of 
GeneRepair strategies and not on producing short tours for this problem set per se. 

One specific requirement for the problem domain was that it has identifiable valid-
ity constraints. That is, invalid solutions to this problem can be generated and can be 
identified. A TSP solution is invalid if the tour does not visit all cities, if a city is 
visited twice or if the tour does not return to the starting city.  

The mutations of A. thaliana studied by Lolle et al [3] were from living plants, 
which were thus viable plants. There are a relatively small number of known viable 
(living) mutations of A. thaliana, corresponding to a tiny fraction of combinations of 
its 157 million base pairs. In contrast, the TSP does not have such viable mutants as 
all mutants form invalid (non-viable) solutions to the problem. These non-viable solu-
tions are repaired immediately, whereas A. thaliana does not appear to involve ge-
netic repair until the next generation. While our experiments appear to involve a 
slightly more pro-active gene-repair process, it was considered that is was not a very 
significant difference. These differences may perhaps lie more in the environmental 
stress factors that trigger gene repair in A. thaliana. 

All experiments were run with the same experimental set-up, where only the de-
scribed parameters were changed between experimental conditions. Initial experi-
ments were conducted with a population size of 500 for 500,000 generations. This 
yields an overall search space that examines 250,000,000 different possible tours. We 
point of that this is a tiny fraction of the total search space of approximately 1.5.*1064 
possible tours. Several independent runs were conducted for each experimental condi-
tion, to counteract against the randomized nature of EO. (A computer cluster was used 
to support simple independent simulations).The best results produced at each stage 
were recorded, as well as the generation at which those results were generated. The 
best and average results are presented in the next section. 

4   Evolutionary Optimization with GeneRepair 

This paper applies the genetic repair process described by Lolle [3] and Ray [5] to an 
otherwise standard EO algorithm (with unmodified crossover and mutation opera-
tors). The GeneRepair process is largely independent of the application domain itself. 
The only influence the problem domain has is through the genetic strings of the an-
cestor population. Thus, we conclude that this repair process is (largely) domain inde-
pendent and may work as well or even better on a variety of other problem domains. 
This may be related in some way to the findings of Lolle et al [3] who found that gene 
repair in Arabidopsis thaliana appeared to operate throughout the DNA sequence and 
thus appear to be a general mechanism for extra-genomic inheritance.  

However, before examining the GeneRepair process itself, we must first look at the 
underlying EO algorithm. 

4.1   Representation 

Each allele in our EO algorithm encodes a single city and each city is uniquely en-
coded. Therefore there is a 1-to-1 association between cities of the TSP problem and 
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the city’s representation within the EO algorithm. Solutions to the TSP are formed as 
an ordered list of cities and the entire population is composed of a fixed number of 
individual tours (see Figure 1). Tours are stored as a fixed length and ordered list of 
cities (the number of cities in TSP determining the length of representation). So, the 
relative order of cities determines their position within a tour.  

This representation allows two types of genomic error to occur to individuals 
within a population. Firstly, duplicate errors may occur when a city is repeated within 
a candidate tour in the population. Secondly, omission errors occur when a city is 
absent from a candidate solution in the population. We highlight that error is a viola-
tion of the solution constraints as required by the TSP. Because of our fixed-length 
encoding, omission and duplicate errors are always found in pairs. Thus, an omission 
error is always has a corresponding duplicate error. As can be seen in Figure 1, dupli-
cation of the “2” causes omission of “6” from the genetic sequence. Repairing such 
errors shall be discussed in Section 4.2 below.  

 

1 3 4 5 9 7 8 2 6 
3 2 1 5 9 7 8 6 4 
7 2 1 8 2 3 4 9 5 
4 3 9 8 1 6 7 5 2

 
 
1 2 3 4 5 6 7 8 9 

Population Fixed Repair Template 

 

Fig. 1. The third Individual has duplicate and missing information, which must be repaired 

4.2   Fitness Function, Crossover, Mutation 

Before we present the GeneRepair operator, we first clarify the structure of the EO 
that is working in conjunction with GeneRepair. We now briefly describe the opera-
tors of fitness evaluation, selection, crossover and mutation rates. We point out that 
these are all generic operators, none of which are tailored to the given problem do-
main (see [6] for a discussion of specialized operators). The fitness function operates 
on individual tours, calculating the Euclidean distance between each city pair in turn, 
returning the sum of the individual inter-city distances. 

Previous work on the GeneRepair operator has investigated the performance of 
parent based repair [7, 8]. This was compared to the performance of a variety of alter-
native strategies for implementing constraints on EO. In particular, this work explored 
how GeneRepair interacted with the standard evolutionary parameters, especially 
mutation rate and crossover mechanism.  

While the results of Mitchell [7] indicate that best results are produced using Tour-
nament selection, the results in this paper used Truncation selection with a truncation 
factor of 2. Thus, at the end of every generation the fittest half of the population we 
replicated and replaced the less-fit half of the population. The decision to use Trunca-
tion selection was made because of its simplicity and because it made detailed analy-
sis of results (not discussed here) easier to conduct. Similarly, single point crossover 
was used to create new individuals. Thus, a random point on the genetic sequence of 
both parents is chosen, the first portion of the first parent and the last portion of the 
second parent are combined to form the new individual (solution).  
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Mitchell [7] indicates that GeneRepair requires a relatively low rate of (point) mu-
tation - 2% of the alleles in the population are mutated on every generation. This low 
rate of mutation may be explained because the GeneRepair operator has a mutagenic 
effect, meaning that the background level of mutation can be somewhat lower than 
may otherwise be expected.  

4.3   The GeneRepair Adjunct Operator 

The GeneRepair operator is used in this paper to ensure that all solutions in the popu-
lation are valid – that there are no omission or duplication errors in any of the solu-
tions stored in the population. Such error can be generated from two different sources. 
Firstly, the crossover operator combines genetic information from two individual to 
create a new individual. We use single point crossover that chooses a single point 
along the allele sequence of both parents, combining the first half of one parent with 
the second half of the other parent. Thus a new individual is formed. 

Genetic errors are identified when the genetic information of newly generate off-
spring violate the (mathematical) constraints of the TSP. We identify on two catego-
ries of error: omission errors and duplication errors (as discussed in Section 4.1 
above). 

 Population Parent Template Grand- Parent Template 

9 4 6 5 3 1 8 2 7 
3 6 1 5 9 8 4 7 2
8 2 9 7 3 1 6 4 5 
6 7 4 3 1 8 5 2 9

4 5 3 1 2 8 6 7 9 
9 1 6 3 5 4 7 2 8 
8 2 9 4 3 5 6 7 1 
6 7 4 3 8 2 9 5 1 

4 9 6 5 3 1 8 2 7 
3 6 1 5 9 7 8 2 4 
8 2 9 7 4 8 3 6 9 
7 3 5 6 8 4 1 2 9 

 

Fig. 2. Does Parent or Grandparent based Correction yields better results? 

Mitchell [7] and Mitchell et al [8] and others [9] examined several biologically and 
non-biologically inspired templates, but did not explore the use of a grandparent 
based repair template.  

4.3.1   Template Origin  
Our first objective was to compare the performance of parent based GeneRepair with 
that of grand-parent based GeneRepair. Template driven GeneRepair operates in two 
phases as follows. The first phase (called error detection) identifies all occurrences of 
duplicate errors in the current population. In our first experiment, these duplicate 
errors were identified in a fixed left-to-right manner. So the second and subsequent 
occurrences of cities within a tour are detected as errors and are sent to the second 
phase, called correction. (This left-to-right decision shall be addressed further in Sec-
tion 4.3.2 below.) These duplication errors can be seen as the bold figures in the Cur-
rent Population of Figure 2 above.  
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The second phase (called error correction) of GeneRepair repairs the identified er-
rors. While each individual was being examined, the cities of the current population 
are tagged in the parent and grandparent populations. Thus, un-tagged information in 
both populations form an ordered list of missing cities. These missing cities are used 
to replace the duplicate cities in a left-to-right manner.  

The first experiment compared the effectiveness of parent and grandparent based 
GeneRepair, on the TSP problem described above. Table 1 summarizes these results, 
showing the shortest tour identified across these experiments and the mean results 
produced by each strategy.  

Table 1. GrandParent based GeneRepair outperforms parent based repair 

 Min Mean 

Parent Strategies 505.43 549.43 

GrandParent Strategies 491.18 548.24 

As shown above, the grandparent strategy far outperformed the parent strategy on 
these experiments. In fact, all grandparent based results outperformed all of the parent 
based results. Additionally, the relatively high mean of the Grandparent based repair 
was due to one particularly poor result of this strategy.  

Not only did grandparent based repair generate better results, it did so in 
significantly fewer generations that the parent strategy. The grandparent strategy 
reached a result within 15% of the optimal in 5,500 generations while the parent 
strategy reached a result within 19% of the optimal in 8,350 generations. Also, we 
point out that our focus was on comparing strategies inspired by Arabidopsis thaliana 
and little effort went into tailoring our EO to generate good results for this problem set. 

An explanation for the superior performance of grand-parent based repair, we turn 
to the differences between the offspring and its parent and grandparent. We point out 
that the grandparent has a higher probability of being different to the individual being 
repaired than its immediate parent. Thus, grandparent based repair generally has a 
larger disruptive effect on the individual than parent based repair. As our EO 
converges, the diversity in the population tends to reduce so that there is little 
difference between parent and offspring. (Mutation or even adaptive mutation is often 
used to counteract this tendency, allowing convergence to a global rather than a local 
optimum). Thus, we theorize that the grandparent proves to be a better template for 
repair than the parent, because of its potential for greater dissimilarity with the 
individual. This conclusion suggests that great-grandparent based repair should 
further outperform grandparent based repair – this being the subject of our current 
work. However, we do expect a decreasing pay-off as additional generations are 
archived in the repair process. As with Arabidopsis thaliana, it may well be that the 
additional expense of adding generations may not produce a commensurate payback 
in performance.  

Another interesting observation arose from our analysis of these experiments. 
When a single occurrence of a duplication error is identified, both parent and grand-
parent strategies will generate the same new repaired individual. So when converging 
towards a global optimum for the given problem, we might expect fewer errors and 
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thus less of a difference between parent and grandparent strategies. Therefore, much 
of the difference between these two strategies will occur earlier in the evolutionary 
process.  

4.3.2   Direction of Error Detection 
The next experiment attempted to assess the impact that the direction of error detec-
tion has upon solution quality. In addition to the left-to-right error identification strat-
egy, two other strategies were investigated: right-to-left and random direction. The 
left-to-right and right-to-left were fixed throughout whereas the random direction 
changed for every individual in each generation.  

The next experiment compared these three repair directions: (i) operating repair 
from right to left, (ii) operating repair from left to right and (iii) operating repair in a 
random direction. 

Table 2. The Random Direction GeneRepair Produced Best Results 

 Min Mean 

Left-to-Right 471.44 519.67 

Right-to-Left 483.36 529.27 

Random 459.74 514.25 

The results for this experiment are summarized in Table 2 above. Firstly, GeneRe-
pair produces the best results when it proceeds in random and changing directions. 
The random strategy outperformed the two fixed direction strategies, on the best re-
sult generated and as an average across all runs of this experiment.  

4.3.3   Fitness of Template 
The final factor that we investigated was whether the fitness of the recorded ancestors 
had any impact on the goodness of the solutions generated. In the earlier experiments, 
at the end of each generation the genetic material of the fittest parent was recorded for 
each individual. This then formed part of the repair template for that individual.  

In the next experiment, we explored the impact of recording a randomly selected 
parent for each individual. Thus for the randomly selected parent condition, the parent 
chosen to be moved into the repair genome was selected randomly, without any refer-
ence to the fitness of the two parents. It was expected that the superior fitness of the 
fittest condition would outperform the random parent conditions.  

Table 3. Comparison of Fittest Ancestral Template with Random Ancestral Template 

 Min Mean 

Random Parent 493.84 538 

Fittest Parent 483.36 529.29 

Random Grandparent 459.74 514.25 

Fittest Grandparent 475.68 517.99 
 



406 A. FitzGerald and D.P. O’Donoghue 

As shown above a random choice of ancestor proved to be superior to using the fit-
test of the two. This experiment also concretes the findings of the first experiment in 
that once again the grandparent was superior to the parent as a GeneRepair template. 
One explanation for the random ancestor from either generation outperforming the 
fittest ancestor may be deduced by examining the crossover technique used in this 
evolutionary strategy. The crossover is single point crossover where the point is cho-
sen randomly for each individual. This means that the fittest ancestor does not neces-
sarily have more impact on the individual than the other ancestor. We can theorize 
from this that because the fittest ancestor does not always have a larger impact on the 
individual it is not necessarily the best template to use for repair and a random tem-
plate is more appropriate. The results above also confirm the results shown in Table 2 
as the tour length of 459.74 which was achieved using a Random Grandparent repair 
template was found by conducting repair in a random direction  

4.3.4   Penalty Points 
We also examined the performance of the penalty points approach to enforce con-
straints, using the “death penalty” whereby invalid individuals are prevented from 
being used in crossover. The result of this experiment is shown in Table 4. As can be 
seen in Table 4 this approach produces significantly less-fit individuals that was pro-
duced by GeneRepair (Tables 1, 2 & 3).  

Table 4. Death Penalty Approach 

 Min Mean 

Death Penalty 1486.4 1584.94 

4.3.5   Summary of Results 
Each one of the repair directions described in Section 4.3.2 was tested for each of the 
inheritance template shown in Table 2 so there are in essence twelve different results 
to the experiment described in Section 4.3.3 rather than three.  

The results of all twelve experiments are summarized in Fig. 3 below. The lines in-
dicate the best solutions produced by each strategy across all runs of that strategy. The 
depicted results for each strategy were selected by choosing the best results at the end 
of the 500,000 generations. Each line indicates the best solution found thus far and as 
can be seen, this gradually converges towards the global optimal. (For this problem 
the known global optimal was 426. We were very pleased with the results of grand-
parent based repair – given that truncation selection was used. We expect even better 
results with Tournament selection and a much larger search space). 

Best results are shown by the bottom line on Figure 3. This depicts the result for 
GeneRepair operating in a random direction using a randomly chosen grandparent as 
its repair template. This result is followed closely by the other GeneRepair techniques 
which use the grandparent as a repair template.  
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Fig. 3. Comparison of 12 different GeneRepair techniques 

5   Conclusion 

Evolutionary Optimization (EO) is an approach to optimization inspired by Darwin’s 
idea of survival of the fittest. EO is a very are effective in exploring complex solution 
spaces, but are less suited to supporting validity constraints between the search pa-
rameters. This paper presents an approach to genetic repair that is inspired by the 
Arabidopsis thaliana plant. This plant is capable of making repairs to its own genes 
by making use of genetic information originating in the individuals grandparent. Con-
troversially, this genetic information appears to skip the parent’s generation. Our 
GeneRepair mechanism is inspired by an “archival DNA” explanation, though an 
alternative RNA based explanation exists. Errors in an individual plant’s genes are 
repaired by comparison to the grandparents “template” DNA, which also serves to 
correct these errors. 

We adapt this approach to genetic repair by applying it to a standard constrained 
optimization problem – the Traveling Salesman’s Problem (TSP). This applied evolu-
tionary optimization techniques, using unmodified crossover and mutation operators. 
An adjunction GeneRepair process ensured the validity of all solutions generated. 
This comparison found that GeneRepair based on a grandparent template produced 
better results than that of the parent based template. These results echoes recent ad-
vances in genetics, identifying non-Mendelian inheritance on the Arabidopsis 
thaliana plant [3]. A subsequent experiment indicates that archiving a randomly cho-
sen parent produced better results than biasing the genetic archival process in favor of 
the fittest parent – and thus fittest grandparent. Our final experiment showed that the 
GeneRepair process produces best results when operating in random (and changing) 
directions. This approach outperformed both of the fixed direction strategies tested.  
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Not only do our results echo the controversial theory of Lolle et al [3], they also 
shed new light on this theory of non-Mendelian inheritance. First, that the repair 
seems to work best when it uses a randomly chosen grandparent and, secondly that 
repair should repair violations in a random order. Building upon Lolle’s [3] results, 
these findings suggest a general approach to enforcing constraints on combinatorial 
optimization problems, opening up new possibilities for exploration. 
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