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There are three dominant contributing factors that distort short tandem repeat profile measurements,
two of which, stutter and variations in the allelic peak heights, have been described extensively. Here we
characterise the remaining component, baseline noise. A probabilistic characterisation of the non-allelic
noise peaks is not only inherently useful for statistical inference but is also significant for establishing a
detection threshold. We do this by analysing the data from 643 single person profiles for the Identifiler
Plus kit and 303 for the PowerPlex 16 HS kit. This investigation reveals that although the dye colour is a

Keywords: significant factor, it is not sufficient to have a per-dye colour description of the noise. Furthermore, we
Short tandem repeat . R c . . .

Noise show that at a per-locus basis, out of the Gaussian, log-normal, and gamma distribution classes, baseline
Peak height noise is best described by log-normal distributions and provide a methodology for setting an analytical
Distribution threshold based on that deduction. In the PowerPlex 16 HS kit, we observe evidence of significant stutter
G-test at two repeat units shorter than the allelic peak, which has implications for the definition of baseline
Stutter noise and signal interpretation. In general, the DNA input mass has an influence on the noise distribution.

Thus, it is advisable to study noise and, consequently, to infer quantities like the analytical threshold
from data with a DNA input mass comparable to the DNA input mass of the samples to be analysed.
© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Short tandem repeat (STR) allele signal interpretation is a
central tool in forensic analysis, as the number of repeated copies
of a basic motif at given loci can be used to uniquely identify an
individual. Currently, forensically relevant STR loci are processed
via capillary electrophoresis. The relative intensity of the
fluorescent signal is an indication of the number of amplicons in
the sample. The transit time of the amplicons through the capillary
is utilised to determine the size of the fragment, which is translated
into the number of repeat units, i.e. allele. A DNA STR profile will
likely contain the following elements: the desired DNA signal,
disturbance due to the instrument, non-specific amplification, or
other reasons, often termed noise, and artefacts, such as stutter, -A,
and pull-up [1]. The interpretation of DNA profiles, especially from
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low DNA input mass samples, is complicated, because of the
distortion of the DNA signal by the latter elements.

The effects of noise in STR profiles are usually suppressed by
applying an analytical threshold to the data [2-6]. All peaks
smaller than the analytical threshold, which is also referred to as
detection threshold, or minimum distinguishable signal threshold,
are considered indistinguishable from noise and thus are ignored.
Further, a second threshold, the stochastic threshold, has been
used in casework. The stochastic threshold is defined as the value
above which it is reasonable to assume that allelic dropout has not
occurred within a single-source sample [7].

Recently, it was shown that the inclusion of peak height
information results in some improvement over interpretation
methods that use a drop-out probability for low-template samples
[8]. Interpretation methods that utilise peak height or area
information, rather than the binary information of whether a
peak height or area exceeds a threshold or not, have garnered much
attention, and a variety of fully-continuous interpretation plat-
forms have been developed [9-16].

The peak area information is used in [9-12] to establish a
quantitative method for the interpretation of STR mixtures. In
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these methods the peak areas are usually modelled as Gaussian
random variables and baseline noise is not handled explicitly.
Sometimes, noise is modelled implicitly as small peaks with mean
zero [10,12]. In [13], a continuous modelling of the peak height
is used if the peak exceeds a user defined analytical threshold. A
quantitative computer evaluation of DNA mixtures is proposed in
[15,16]. In the latter work, peak heights are modelled as truncated
Gaussian random variables and baseline noise is implicitly treated
as small peaks with mean zero. Although these continuous
methods use peak height information, an analytical threshold is
typically still applied.

Taking the idea of the continuous methods further, it is
consequent to remove the analytical threshold as well, and to
consider the information in the peaks that were previously below
the analytical threshold. The potential of this approach is illustrated
in [17], where the authors present an algorithm to determine
the number of contributors to a DNA mixture. They compare the
maximum allele count method to their method, which uses no
threshold, and show that the latter results in increased accuracy for
samples with low DNA input mass. However, little is known about
the properties of these peaks. In order to derive a meaningful
signal model, it appears necessary to study the distribution of the
baseline noise.

Even in settings where an analytical threshold is applied, the
information of the noise peak height distribution is of relevance
because it can be used to specify the analytical threshold. The fact
that the conservative nature of analytical thresholds has been
criticised led [18] to analyse the baseline noise. Information loss
may be kept low by applying an optimal analytical threshold that
suppresses most of the noise while enhancing the detection of
alleles [6]. However, a common validation platform or best practise
have yet to be established for this purpose [19]. In order to
establish a best practise, a detailed understanding of the behaviour
of noise appears necessary.

Noise in STR profiles is commonly modelled via Gaussian
distributions [18,17], though log-normal distributions have also
been suggested [6]. In [17], a Gaussian noise model is used for
determining the likelihood that a given number of individuals
contributed to a mixed sample. Although utilisation of the Gaussian
model to describe noise provides improved identification over
previous techniques, the authors do not provide analysis indepen-
dent of determining the most likely number of contributors to
confirm its appropriateness. In this paper, we revisit this premise.

Using data sets created at a range of DNA input masses using
both the Identifiler Plus kit and the PowerPlex 16 HS kit, we first
ask in Section 3.2 if there is a mass dependent per-dye colour
representation of the noise. This hypothesis is rejected, particularly
at high input masses. That is, there is no single statistical
distribution that can jointly describe the noise observed at distinct
loci measured in the same dye colour. As a result, it is necessary
to characterise noise on a mass dependent per-locus basis. In
Section 3.4, using statistical analysis, we assess three classes of
distributions, Gaussians, log-normals and gamma distributions, for
their ability to describe measured noise data.

2. Methods
2.1. Data generation and representation

There are different ways to represent the information contained
in an electropherogram. In an idealised signal, i.e., in a signal with
no artefacts or noise, each peak corresponds to an allele that is
present in the DNA sample. Hence, it is possible to specify each
peak location by a tuple consisting of locus and allele name.

We choose a vector representation of the data, similarly to
[20]. To obtain the vector representation from the electropherogram

peak list, we index all possible allele and stutter positions with an
integer from 1 to I, where I denotes the total number of positions.
Then we collect the signal peak heights from all the possible
positions in a vector y = (¥1,¥,,...,¥,)" and call this vector the
measurement vector. If there is no peak detected at a particular
position, a 0 is included in the vector y at the corresponding index.

The data that are used for the analysis in this paper consist of
643 distinct single person profiles from 60 individuals for the
Identifiler Plus kit and 303 distinct single person profiles from
48 individuals for the PowerPlex 16 HS kit. For the IDplus kit, the
643 profiles were generated by targeting an input mass of
0.0078 ng (97 profiles), 0.0156 ng (94 profiles), 0.0313 ng (94 pro-
files), 0.047 ng (74 profiles), 0.0625ng (90 profiles), 0.125 ng
(97 profiles), and 0.25 ng (97 profiles). For the PowerPlex 16 HS Kkit,
the 303 profiles were generated by targeting an input mass of
0.0078 ng (48 profiles), 0.0156 ng (47 profiles), 0.0313 ng (48 pro-
files), 0.0625 ng (48 profiles), 0.125 ng (48 profiles), and 0.25 ng
(48 profiles).

It is to be noted that additional samples targeting 0.5 ng
(45 profiles) and 1 ng (45 profiles) were amplified using both Kits,
but a substantial number of these resulted in at least one locus
with “offscale” peaks, indicating that the detector was saturated.
This resulted in only 29 and 14 0.5ng Identifiler Plus and
PowerPlex 16 HS usable profiles, respectively. In the 1 ng case,
only 2 Identifiler Plus profiles showed no saturation. Given the
number of saturated profiles, the statistical evaluations described
below were not conducted on these “higher” template samples.

The data were generated with the GeneAmp PCR System 9700,
the 3130 Genetic Analyzer, and the GeneMapper ID-X v1.1.1
software, where a constant RFU threshold of one was used. The
injection time was 10 s and the injection voltage 3 kV. In the case of
the Identifiler Plus amplification kit, the 29-cycle protocol was
used and, in the case of the PowerPlex 16 HS kit, the 32-cycle
protocol was chosen. The Identifiler Plus kit includes 15 tetra-
nucleotide STR loci and the PowerPlex 16 HS kit 13 tetranucleotide
and 2 pentanucleotide STR loci. All amplifications and sample
preparations were performed according to the manufacturers’
recommended protocols [21,22].

After generation of the data, all peaks originating from pull-up
or -A were manually removed. In order for peaks to be classified as
pull-up, the peak in question had to be in the same position (0.3
bases) as the allelic peak in another colour channel and have a peak
height of 5% or less of the allelic peak. Further, if a peak fell between
two adjacent allelic peaks in a different dye colour and had a “plateau-
like” shape, then the peak in question was classified as complex pull-
up. A peak was determined to be -A if it was one base shorter (0.3
bases) than an allelic peak. There were no height restrictions for the
complex pull-up and -A artefacts. For a definition and explanation of
the previous terms we refer to [1].

The genotypes of all individuals had been determined before-
hand from high DNA input mass samples.

2.2. Data analysis

We enumerate the profiles from 1 to P, where P denotes the
total number of profiles that are available for a given kit, and
denote the measurement vectors by y? = (yf,y¥. ... ,y,p)T,p =1,...,
P. The components y?, i=1, ..., I, of the measurement vector are
called measurement values. Note that the measurement values
that are given by the GeneMapper ID-X v1.1.1 software are non-
negative integers.

Knowing the genotypes of the individuals, we can group the
components y},y?, ..., yF of each measurement vector into three
categories: true peak, stutter, and noise. We call a component y? of
the measurement vector y? true peak if at index i there is either a
homozygote allele or a heterozygote allele. Stutter is an artefact
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Fig. 1. Normalised histogram of the noise measurement values for locus D35S1358 and a DNA input mass of 0.25 ng. Left: Identifiler Plus kit. Right: PowerPlex 16 HS kit. Most of
the noise measurement values are zero. The inset plot is a magnification without the first bin. Histogram colours (left: green, right: blue) reflect the fluorescent dye colour at

that locus for that kit.

that is induced by the PCR. The amount of stutter is different for the
Identifiler Plus kit and the PowerPlex 16 HS Kkit, in part because
both kits use a different number of PCR cycles. Depending on where
the stutter occurs, we distinguish among N -2, N—1, N+ 1, and
N + 2 stutter. N — 2 stutter denotes a stutter fragment that is two
repeat units shorter than the parent allele. Analogously,
N — 1 stutter is one repeat unit shorter, N+ 1 stutter one repeat
unit longer, and N+ 2 stutter two repeat units longer than the
parent allele. The most relevant stutter is N — 1 stutter, because it
is the strongest [23]; however, the PowerPlex 16 HS kit, which uses
three additional PCR cycles, shows also stutter in the
N — 2 position, an issue we return to in Sections 3.2.1 and
3.4.4. Except in Sections 3.2.1 and 3.4.4, where we also consider
N — 2 stutter, we use the following convention, which is
representative of what is done in practise: We call a component
stutter ifitis eitherin N — 1 orin N + 1 stutter location of a true peak.
All remaining components are called noise. Note that the actual
partitioning of the components of each measurement vector in the
three categories depends on the genotype of the person whose DNA
was used for generating the profile. Thus, for each profile p, we get in
general a different set of noise components, the indices of which we
denote by 7"(p) = {i: y! is a noise component}. In Section 3.1, we
study the frequency of noise measurement values being zero. In
Section 3.2 we do a per-dye colour analysis to study if it is sufficient
to have a per-dye colour description of the baseline noise. Since this
is not the case, we continue in Section 3.4 with a per-locus analysis
of the noise. The computations are done for all 15 STR loci. For
visualisation, however, we restrict to CSF1PO, D3S1358, D5S818,
and TPOX in the figures. The dye colours of these four loci are blue,
green, red, and yellow for the Identifiler Plus kit, and green, blue,
green, and yellow for the PowerPlex 16 HS Kkit.

3. Results
3.1. Frequency of noise measurement value zero

For each kit, we gather the noise components of all

available measurement vectors in a list N' = (ny,n,..., M) =
((J’,p)idn(p))z:]. the elements of which we call noise measurement

values.

In Fig. 1 the normalised histogram of the noise measurement
values is plotted for locus D3S1358 and both kits. It can be seen
that most of the probability mass is concentrated in zero. The
empirical frequency with which noise measurements are zero,
which we denote by p,, is given in Table 1 for the different loci and
for data with a DNA input mass of 0.25ng. This table is
representative of all DNA input masses, as the frequency p, does
not significantly change with DNA input mass.

Let 7% (p) = {ieI™(p) : y/ >0} denote the set of indices of
the noise components with non-zero measurement value. Further,
we call the elements of the list /" = (n{,ng,.. .,njm) =
((yi"’)idwp))’;:l non-zero noise measurement values. In the rest
of the paper, we exclusively consider the non-zero noise
measurement values A",

Depending on the desired goal, for our analysis we restrict
further the collection A" to noise values coming from a specific
dye colour, locus or DNA input mass. With a slight abuse of
notation, we use the same symbol A" for the restrictions, because
the kind of restriction is clear from the context. In Table 1, for
example, we consider in each row only the non-zero noise
measurement values coming from samples with a DNA input mass
of 0.25 ng and from the given locus. || denotes the number of
elements in the collection N'*.

3.2. Baseline noise distribution and dye colour

It is well-known that the statistical properties of the baseline
noise are different for the different dye colours ([24], p. 42). In a
first step, we also confirm this property for our data by performing
the G-test of independence. This tests the hypothesis that two or
more data sets are statistically consistent with being independent
observations from a single source ([25], p. 68). The test indicates
that the distribution of the non-zero noise measurement values is

Table 1

Empirical frequency p, of the noise measurement values being zero and the number
of non-zero noise measurement values |[AN*| for the Identifiler Plus kit and the
PowerPlex 16 HS kit for data with a DNA input mass of 0.25 ng. The high values of p,
show that most of the noise measurement values are zero.

Locus IDplus PowerPlex

Pz W Pz VY
CSF1PO 0.86 119 0.78 61
D13S317 0.81 94 0.66 71
D16S539 0.87 109 0.73 64
D18S51 0.89 328 0.79 203
D195433 0.88 174 - -
D21S11 0.85 382 0.79 272
D2S1338 0.84 169 - -
D3S1358 0.84 143 0.73 98
D55818 0.83 135 0.71 80
D75820 0.86 135 0.74 56
D8S1179 0.81 173 0.80 84
FGA 0.88 469 0.83 254
Penta D - - 0.88 59
Penta E - - 0.86 111
THO1 0.91 110 0.84 47
TPOX 0.89 60 0.88 34
VWA 0.88 159 0.74 115




110

Table 2
List of loci for a given dye colour for the Identifiler Plus and the PowerPlex 16 HS kit.

Dye colour Loci

IDplus Blue CSF1PO, D7S820, D8S1179, D21S511
Green D2S1338, D3S1358, D13S317, D16S539, THO1
Yellow D18S51, D19S433, TPOX, VWA
Red D5S818, FGA, AMEL

PowerPlex Blue D3S1358, THO1, D21S11, D18S51, Penta E
Green D5S818, D13S317, D7S820, D16S539,

CSF1PO, Penta D

Yellow AMEL, VWA, D8S1179, TPOX, and FGA

not independent of the dye colour. We do not present the detailed
results here, because the test confirms what has been known
before ([24], p. 42). A description of how the test is performed
follows below.

However, it is less clear whether the statistical properties also
depend on the locus itself, rather than on the dye colour. If there
was no dependence on the locus except for the dye colour, it would
be sufficient to model the baseline noise on a per-dye colour basis,
which in turn would result in a simplified noise model.

In this section, we analyse the dependence of the noise
distribution on the locus, performing the G-test of independence.
The test is done separately for each kit, DNA input mass, and dye
colour. The dye colours and the corresponding loci for the
Identifiler Plus kit and the PowerPlex 16 HS kit are given in Table 2.

In order to create the contingency table for the test, we first
fix the kit, DNA input mass, and dye colour. Each row of the
contingency table contains the data for one locus. If L denotes the
number of loci for the given dye colour, then the table has L rows.
The data are binned so that the observed frequency in each bin is
larger than or equal to 5, simultaneously for all loci. The exact
binning procedure is described in Appendix A. If the binning results
in K bins, the contingency table has K columns.

After the contingency table is created, we perform the G-test
of independence, which is described in Appendix B. Additionally,
we interpret the tests for the different DNA input masses as a
compound test and perform the Holm-Bonferroni correction [26].

Table 3
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The Holm-Bonferroni correction is a method to control the family-
wise error rate when several statistical tests are being performed
by adjusting the alpha level, or equivalently, the p-value of each of
the individual hypotheses. Details about the Holm-Bonferroni
test can be found in Appendix C. For our commentary, we select a
significance level of 5% so that if the p-value is smaller than 5%, the
hypothesis that the noise distribution is independent of the locus
is rejected. If the p-value is larger than 5%, the hypothesis is not
rejected.

In Tables 3 and 4, we show the results of the independence test
for the Identifiler Plus and PowerPlex 16 HS Kkit, respectively. For
the Identifiler Plus kit, we observe that, for most of the dye colours
and DNA input masses, the hypothesis is not rejected, indicating
that the distribution of the non-zero noise measurement values
is independent of the locus for these dye colours. However, for
the blue dye the hypothesis is rejected for the three largest DNA
input masses 0.0625 ng, 0.125 ng, and 0.25 ng, meaning that the
distribution of the non-zero noise measurement values is not
independent of the locus. Interestingly, for the PowerPlex 16 HS
kit, the same three DNA input masses are rejected for the blue dye.
Further, it can be seen that, for the PowerPlex 16 HS kit and the
DNA input masses 0.125 ng, and 0.25 ng, the hypothesis is rejected
for all dye colours. This gives us a strong indication that for this kit
and the higher DNA input masses, the distribution of the non-zero
noise measurement values depends on the locus.

Since this dependency is more pronounced for the higher DNA
input masses, it is reasonable to assume that the allelic peaks
contribute to the noise. One possible way of contribution is in the
form of N — 2 stutter.

3.2.1. Influence of N — 2 stutter

For the PowerPlex 16 HS kit, some loci result in some unusual
high noise peaks, as shown in Fig. 6 at locus D3S1358. A closer
analysis shows that some of these peaks arein N — 2 or N + 2 stutter
position, suggesting they are part of the PCR stutter pattern.

If we distinguish between all noise components that are in
N — 2 stutter position and those that are not, we observe the
following difference between both groups. For the data from the
PowerPlex 16 HS kit and a DNA input mass of 0.25 ng, for 7 of the

Identifiler Plus kit: G-test of independence for loci. The column p contains the p-value (in %) of the G-test, the column pyp the p-value (in %) after Holm-Bonferroni correction,
and the column Rej. the rejection decision according to the Holm-Bonferroni correction using a significance level of 5%. For the blue dye colour and high DNA input masses,

the hypothesis of independence is rejected.

DNA input (ng) Blue Green Yellow Red

p PHB Rej. p PHB Rej. p PHB Rej. p PHB Rej.
0.0078 5.8 174 No 42.6 100.0 No 0.3 24 Yes 354 100.0 No
0.0156 62.8 62.8 No 29.5 100.0 No 51.1 100.0 No 88.7 100.0 No
0.0313 4.3 17.3 No 43.4 86.9 No 4.9 29.1 No 80.7 100.0 No
0.047 13.5 27.1 No 1.6 9.8 No 15.7 62.9 No 18.4 92.1 No
0.0625 0.2 1.2 Yes 70.3 70.3 No 60.4 60.4 No 96.5 96.5 No
0.125 04 2.1 Yes 40.6 100.0 No 58.3 100.0 No 14.2 99.5 No
0.25 0.8 39 Yes 0.6 4.4 Yes 5.0 249 No 14.6 87.8 No

Table 4

PowerPlex 16 HS kit: G-test of independence for loci. The column p contains the p-value (in %) of the G-test, the column pyg the p-value (in %) after Holm-Bonferroni
correction, and the column Rej. the rejection decision according to the Holm-Bonferroni correction using a significance level of 5%. For high DNA input masses, the hypothesis

of independence is rejected for all dye colours.

DNA input (ng) Blue Green Yellow

p puB Rej. p puB Rej. p PuB Rej.
0.0078 18.8 37.6 No 17.2 51.6 No 7.7 7.7 No
0.0156 12.9 38.6 No 0.0 0.0 Yes 6.9 13.8 No
0.0313 56.5 56.5 No 70.6 70.6 No 0.3 13 Yes
0.0625 0.1 0.2 Yes 61.6 100.0 No 6.0 18.0 No
0.125 0.0 0.0 Yes 0.0 0.0 Yes 0.1 0.3 Yes
0.25 0.0 0.0 Yes 0.0 0.0 Yes 0.0 0.0 Yes
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Table 5

Identifiler Plus kit with N — 2 stutter removed: G-test of independence for loci. The column p contains the p-value (in %) of the G-test, the column pyp the p-value (in %) after
Holm-Bonferroni correction, and the column Rej. the rejection decision according to the Holm-Bonferroni correction with significance level 5%. Excluding N — 2 stutter

reduces the number of rejections.

DNA input (ng) Blue Green Yellow Red

p PuB Rej. p PuB Rej. p PuB Rej. p PuB Rej.
0.0078 17.8 71.0 No 54.6 100.0 No 0.5 3.2 Yes 30.3 100.0 No
0.0156 445 445 No 47.2 100.0 No 69.1 69.1 No 79.5 100.0 No
0.0313 119 59.6 No 81.3 100.0 No 2.4 121 No 67.9 100.0 No
0.047 31.7 63.4 No 1.7 11.7 No 422 100.0 No 4.2 29.1 No
0.0625 0.2 13 Yes 85.8 100.0 No 45.5 100.0 No 94.5 94.5 No
0.125 53 32.1 No 98.7 98.7 No 479 95.8 No 46.2 100.0 No
0.25 31.7 95.1 No 50.9 100.0 No 15 9.1 No 439 100.0 No

15 loci, the maximum observed noise measurement value in
N — 2 stutter location is larger than 50 RFUs. In contrast, the
maximum observed value of the noise peaks that are not in
N — 2 stutter location is larger than 50 RFUs only for 2 of the 15 loci.

It is a matter of convention, whether to treat peaks in
N — 2 stutter position as noise peaks or not. We chose to categorise
them not as stutter, but as noise peaks in the previous section,
because this seems to be closer to what is done in practise.
However, from a modelling perspective, it might be beneficial to
treat peaks in N — 2 stutter position as artefacts in order to
separate the effects of stutter more rigorously.

To study the impact of N — 2 stutter, we remove all noise peaks
in N — 2 stutter location and redo the test of independence. The
results of the test, which are shown in Tables 5 and 6, are different
from the previous results. In particular, for some of the higher DNA
input masses, the hypothesis that the noise distribution is
independent of the locus is no longer rejected. However, for the
PowerPlex 16 HS kit, there are still DNA input masses and dye
colours for which the hypothesis of independence is rejected, and
thus a simple per-dye colour noise model is not sufficient. For that
reason, we choose to perform a per-locus analysis of the noise.

3.3. Quantisation

As already mentioned in Section 2.2, the measurement values
yP,i=1, .., I, that are given by the GeneMapper ID-X v1.1.1
software, and consequently the noise measurement values, are
non-negative integers. However, the true measurement values,
being light intensities, are supposed to be non-negative real
numbers. That is, the measurement values y?, i=1, ..., I, that are
available for our analysis are quantised versions of the true but
unknown values y*, i=1, ..., I. In the statistical literature this is
also known as grouped data. We model this reduction in
information by y? =Qy?f, where Q denotes the quantisation
operator that is defined as

Q=[x+l (1)

2

|x| denotes the largest integer smaller than or equal to x.

Table 6

Since the true but unknown noise values are non-negative real
numbers, we choose to model the noise by continuous instead of
discrete random variables. However, in order to account for the
quantised measurement values, we need to quantise the continu-
ous random variables. The influence of the quantisation operator
on the distribution of a random variable is as follows. If X is a
continuous random variable with cumulative distribution function
(CDF) Fx(x) = P(X < x), then the CDF of the quantised random
variable QX is given by

Fox(3) = P(QX < x) = P(xs 1x] +%) :Fx(m +%>

3.4. Baseline noise distribution

To identify a simple parametric class of distributions that
is consistent with the non-zero noise measurement values, we
use the statistical G-test ([25], p. 53). The G-test is a goodness-
of-fit test that is used to test the hypothesis that some observed
data are drawn from a distribution. For fixed locus and fixed
DNA input mass, we conduct the test for the quantised log-
normal, quantised Gaussian, and quantised gamma distribution
classes.

Each of these classes is a two-parameter class, providing a
succinct description which is essential for calibration and,
ultimately, to facilitate inference. Gaussian random variables,
while commonly employed for noise characteristics, suffer the
drawback of possibly taking both negative and positive values,
which is inappropriate in the present application. Both log-normal
and gamma random variables only take non-negative values and
are right-skewed. The log-normal class, in particular, has often
been found to well represent biological quantities [27].

We explain the test for the log-normal reference distribution
class, as other reference distributions are treated analogously.

The log-normal cumulative distribution function (CDF) with
parameters v and 7 is given by

[1 + erf <7ln(:\)/g V)} (2)

N —

Fy:(x) =

PowerPlex 16 HS kit with N — 2 stutter removed: G-test of independence for loci. The column p contains the p-value (in %) of the G-test, the column pyp the p-value (in %) after
Holm-Bonferroni correction, and the column Rej. the rejection decision according to the Holm-Bonferroni correction with significance level 5%. Excluding N — 2 stutter

reduces the number of rejections.

DNA input (ng) Blue Green Yellow

p Pus Rej. p PhB Rej. p Pus Rej.
0.0078 394 100.0 No 29.3 100.0 No 3.3 13.4 No
0.0156 61.9 100.0 No 0.3 1.4 Yes 85.7 85.7 No
0.0313 18.4 73.8 No 72.3 100.0 No 9.9 29.7 No
0.0625 0.9 43 Yes 89.9 89.9 No 1.6 8.1 No
0.125 72.0 72.0 No 344 100.0 No 30.1 60.1 No
0.25 0.0 0.2 Yes 0.1 0.5 Yes 0.0 0.0 Yes
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Table 7

Estimates ¥ and 7 of the parameters v and t of the log-normal distribution obtained
by the maximum-likelihood parameter estimation from data with a DNA input
mass of 0.25ng.

IDplus PowerPlex

Locus D T v T

CSF1PO 1.12 0.47 2.07 0.67
D13S317 1.55 0.52 2.22 0.63
D16S539 1.52 0.50 2.50 0.95
D18S51 2.01 0.43 1.90 0.74
D195433 2.09 0.41 - -

D21S11 1.19 0.50 1.77 0.67
D2S1338 1.54 0.57 - -

D3S1358 1.76 0.59 2.46 0.94
D5S818 213 0.35 2.30 0.83
D7S820 1.10 0.40 2.14 0.52
D8S1179 134 0.67 1.85 0.71
FGA 2.03 0.38 2.02 1.06
Penta D - - 1.47 0.41
Penta E - - 1.42 0.47
THO1 1.38 0.52 1.92 0.54
TPOX 2.08 0.40 1.77 0.62
VWA 1.97 0.36 2.21 0.65

where

erf(x) = \/iﬁ/ox exp(—t2)dt

denotes the error function. If X is a log-normal random variable,
then the parameters v and 7 are the mean and standard deviation
of the associated Gaussian distribution, i.e. of log(X). The CDF of
a quantised log-normal distributed random variable with

parameters v =V and T = 7 is given by

P00 = Fae (L) +5). 3)

3.4.1. Maximum-likelihood parameter estimation

In a first step, we determine the maximum-likelihood estimate of
the parameters v and t of the log-normal distribution from our data.
Since our data, i.e., the available noise measurement values, are
quantised, we cannot use the usual maximume-likelihood estimators
for the parameters of the log-normal distribution, but need to take
the binning into account in the estimation. In our case, the bins
are given by (0.5, 1.5], (1.5, 2.5], (2.5, 3.5], .. .. For ke N, let (x, Xi]
denote the k-th bin and o, = |{j=1,...,|N"] :n}r € (X, X} the
observed number of non-zero noise measurement values in bin k,
which is the number of noise measurement values equal to k. We
obtain the maximum-likelihood estimates ¥, T of the parameters v, T
by maximising numerically the log-likelihood function

B
lv,7)=C+ ZOkIOg(Fv.r(Xk) —Fy (X)), (4)
k=1

where C denotes a constant that does not depend on the
parameters v and 7. B = max{ke N : o, #0} denotes the number
of bins that are considered in (4). To solve the optimisation
problem, the Nelder-Mead method in SciPy 0.13.2, Python 3.3.3
(64 bit) is used [28].

The estimates ¥ and 7, obtained from data with a DNA input
mass of 0.25 ng, are listed in Table 7 for the different loci. Further,
for the loci CSF1PO, D3S1358, D5S818, and TPOX, the estimates ¥
and 7 are plotted as a function of the DNA input mass in Fig. 2. For
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Fig. 2. Maximum-likelihood estimates ¥ and 7, the two parameters of the best-fit log-normal distribution, as a function of the DNA input mass for different loci. The locus and
the dye colours of the kits for that locus, where the first colour is for the Identifiler Plus kit and the second for the PowerPlex 16 HS kit, are given in the upper right corner of
each subplot. For the Identifiler Plus kit, the parameters are almost constant over the given DNA input mass range, whereas for the PowerPlex 16 HS kit, there is a slight

increase. Colours reflect the fluorescent dye colour at that locus for that kit.
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the Identifiler Plus kit, the parameters are almost constant over the
DNA input mass range of 0.0078 ng to 0.25 ng for most of the loci,
whereas for the PowerPlex 16 HS Kkit, a slight increase can be
noticed. This again suggests that there may be a dependence of
the noise distribution on the DNA input mass, a phenomenon that
we already observed in Section 3.2.

3.4.2. Results of the G-test

Having determined ¥ and %, we apply the G-test, which is
described in Appendix D. As reference probability distribution, we
use the distribution of a quantised log-normal distributed random
variable with parameters v = Vand t = 7, the CDF of which is given
by (3). In Figs. 3 and 4 we see, as a solid line, the empirical CDF

VT
FE(X |./\/‘+ Zl{n+<x} (5)

of the non-zero quantised noise measurement values in A", and,
as a dashed line, F]. ;(x), Le., the CDF of a quantised log-normal
distributed random vanable with parameters v =¥ and t = 7 for
the loci CSF1PO, D3S1358, D5S818, and TPOX and data obtained
from samples with a DNA input mass of 0.25 ng. Fig. 3 contains the
data for the Identifiler Plus kit and Fig. 4 the data for the PowerPlex
16 HS kit.

The result of the G-test is a p-value, which is a measure of
the quality of a fit. We select a significance level of 5%, so that if the
p-value is smaller than 5%, the hypothesis that the samples are
taken from the reference distribution is rejected. If the p-value is
larger than 5%, the hypothesis is not rejected.

Tables 10 and 11 give the p-values for the different distribu-
tions, loci, and DNA input masses. Table 10 contains the data for the
Identifiler Plus kit and Table 11 the data for the PowerPlex 16 HS
kit. For the Identifiler Plus kit and a DNA input mass of 0.25 ng,

except for locus D18S51, the p-values for the log-normal
distribution are larger than 5%. This shows that the log-normal
model provides good statistical consistency with the data. In
contrast, all p-values for the Gaussian distribution are smaller than
5%, which is significant for the rejection of the hypothesis that the
non-zero quantised noise measurement values follow a Gaussian
distribution. For small DNA input masses, the gamma distribution
class shows consistency with the data that is comparable to the
log-normal distribution class. For large DNA input masses, there
are more rejections for the gamma distribution class. For the
PowerPlex 16 HS Kkit, the results are less clear; however, the log-
normal distribution class still gives the best fit. The last row in both
of the tables gives the number of rejections after a Holm-
Bonferroni correction across the loci. Qualitatively, the results
remain unchanged with this correction.

3.4.3. Visual comparison of the three distributions

In Figs. 5 and 6 we provide a visual comparison of the fit of the
log-normal, the Gaussian, and the gamma distribution, where the
parameters of the three distributions are obtained, as described in
Section 3.4.1, from the data, by a maximume-likelihood estimation.
We see the normalised histogram of the non-zero quantised noise
measurement values together with the pseudo probability density
functions (PDF) of the three distributions. By pseudo PDF we mean
the function that is constant over the intervals (k — 1/2, k +1/2],
keN, and has a value equal to the probability mass of the
corresponding distribution in each interval. Out of the three
distributions, the log-normal distributions (dashed line) visually
give the best fit.

3.4.4. Influence of N — 2 stutter on the quality of fit
In this section we study the influence of N — 2 stutter on the
outcome of the G-test. To this end, we remove all noise peaks in
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Fig. 3. Identifiler Plus kit: Empirical CDF FE of the non-zero quantised noise measurement values (——) and CDF of the quantised log-normal random variable Fg_f (- ---)with
parameters v = D and t = £ for a DNA input mass of 0.25 ng. The close match between the empirical CDF FE and ng is visible. Colours (top left: blue, top right: green, bottom

left: red, bottom right: yellow) reflect the fluorescent dye colour at that locus.
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Fig. 4. PowerPlex 16 HS kit: Empirical CDF FF of the non-zero quantised noise measurement values (——) and CDF of the quantised log-normal random variable Fg s (----)with
parameters v = D and 7 = 7 for a DNA input mass of 0.25 ng. The close match between the empirical CDF FE and ng is visible. Colours (top left: green, top right: blue, bottom
left: green, bottom right: yellow) reflect the fluorescent dye colour at that locus.
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Fig. 5. Identifiler Plus kit: Normalised histogram of the non-zero quantised noise measurement values ((___]) and pseudo PDF of a quantised log-normal distributed random
variable (——), a quantised Gaussian distributed random variable (- - - -), and a quantised gamma distributed random variable («+-ss-- ) for a DNA input mass of 0.25 ng. The
parameters of the distributions are determined by the maximume-likelihood estimators. The log-normal distributions visually give the best fit. Colours (top left: blue, top
right: green, bottom left: red, bottom right: yellow) reflect the fluorescent dye colour at that locus.
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Fig. 6. PowerPlex 16 HS kit: Normalised histogram of the non-zero quantised noise measurement values ((___]) and pseudo PDF of a quantised log-normal distributed
random variable (——), a quantised Gaussian distributed random variable (- - - -), and a quantised gamma distributed random variable (-ss--=: ) for a DNA input mass of
0.25 ng. The parameters of the distributions are determined by the maximum-likelihood estimators. The log-normal distributions visually give the best fit. Colours (top left:
green, top right: blue, bottom left: green, bottom right: yellow) reflect the fluorescent dye colour at that locus.

N — 2 stutter location and redo the analysis as described before. We
do not report all results, but only those that are unexpected.
It has to be noted that removing the noise peaks in N — 2 stutter

location leads to a further reduction of the amount of data, as can
be seen in Table 8. In particular, for the PowerPlex 16 HS kit there
are certain DNA input mass and locus combinations for which
there is insufficient data to perform the G-test.

First, we observe a change in the DNA input mass dependence
of the parameter estimates ¥ and 7. Unlike the slight increase that
is observed in Section 3.4.1, here the parameter estimates are
virtually constant, as shown in Fig. 7 for the loci CSF1PO, D3S1358,

Table 8

Empirical frequency p, of the noise measurement values being zero and the number
of non-zero noise measurement values |[N*| for the Identifiler Plus kit and the
PowerPlex 16 HS kit for data with a DNA input mass of 0.25 ng and with N — 2 stutter

removed.

D5S818, and TPOX. One potential explanation of this observation
could be that the increase of the parameter estimates towards the
higher DNA input masses is caused by N — 2 stutter products.

The normalised histogram of the non-zero noise measurement
values with N — 2 stutter removed and the pseudo PDFs of the
quantised log-normal, Gaussian, and gamma distributions with
parameters determined by the maximum-likelihood estimators
are visualised in Figs. 8 and 9. Removing the N — 2 stutter peaks
leads to a reduction in the number of large noise measurement
values, as can be seen clearly at locus D3S1358 for both kits by
comparing Fig. 5 with Fig. 8 and Fig. 6 with Fig. 9.

However, the quality of the fits is in general not significantly
improved, an observation confirmed by the results of the G-test,
given in Tables 12 and 13. Comparing Table 10 with Table 12 and
Table 11 with Table 13, we see a slight improvement for the high
DNA input masses, but also a slight deterioration for the low DNA
input masses. While for the PowerPlex 16 HS kit the number of

Locus IDplus PowerPlex rejections for the log-normal distribution class after Holm-
s I P, V] Bonferroni correction is reduced for the high DNA input masses
CSF1PO 0.88 90 0.86 31
D13S317 0.86 59 0.77 39
D165539 0.89 76 0.82 35 Table 9
D18S51 0.90 288 0.83 151 Choice of the analytical threshold (AT) for a Gaussian noise model and for a log-
D195433 0.90 140 _ _ normal noise model (AT},), second and third columns. Also shown is log base 10 of
D21S11 0.87 318 0.82 221 the resulting probability that a single noise measurement exceeds that threshold
D251338 0.88 108 - - (10g(Pmeas)), column four, and the log base 10 of the probability that at least one of
D3S1358 0.89 91 0.84 49 50 noise measurements, as seen, approximately, per profile in our data, exceeds the
D55818 0.84 106 0.82 42 threshold (log(pprofite)). column five.
g;g??gg gg; 1;2 g:é ;g k AT ATln log(pmeas) log(pproﬁle)
FGA 0.89 434 0.86 198 3 n+30 exp(v+371) —2.8697 —1.1850
Penta D - - 0.88 55 4 n+4o exp(v+47) —4.4993 —2.8007
Penta E - - 0.87 91 5 n+50 exp(v+57) —6.5426 —4.8437
THO1 0.92 93 0.87 31 6 w+60 exp(v+6T) -9.0059 ~7.3069
TPOX 0.90 46 0.92 18 7 n+7o exp(v+71) —11.8928 -10.1939
VWA 0.89 131 0.80 76 8 n+8c exp(v+81) —15.1764 —13.4775
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Identifiler Plus kit: p-values of the G-test in %. In the last row, the number of rejections after a Holm-Bonferroni correction across the loci with significance level 5% is given.
The Gaussian distribution class exhibits the most rejections. We have the fewest rejections for the log-normal distribution class.

Locus 0.0078 ng 0.0156ng 0.0313ng 0.047 ng

log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma
CSF1PO 84.1 1.7 80.2 109 0.0 34 32.8 4.4 63.1 9.0 33.0 259
D2S1338 43.8 0.0 35.9 63.1 0.0 55.2 69.9 0.0 20.9 222 0.0 8.3
D3S1358 0.8 0.0 1.4 13.5 1.9 32.6 271 0.2 34.5 33 0.0 7.4
D5S818 103 2.6 232 22.7 15.0 29.6 5.1 7.6 9.5 2.0 153 6.3
D7S820 373 0.0 29.9 50.0 03 56.6 0.2 0.0 14 16.6 5.8 56.9
D8S1179 19.7 1.0 46.4 4.3 0.5 13.6 8.9 0.0 0.0 30.1 0.3 38.5
D13S317 36.4 30.4 67.7 54.2 111 67.1 235 23.2 60.4 56.0 0.0 28.1
D16S539 28.0 1.7 47.7 42.5 4.7 61.7 143 0.4 135 0.1 0.7 0.3
D18S51 32.8 0.0 42.8 18.0 0.1 56.4 0.6 0.1 44 11.0 30.8 61.0
D19S433 8.5 14.6 40.0 12.0 7.3 34.3 0.0 1.1 0.1 23.8 10.2 47.3
D21S11 63.3 0.0 123 3.1 0.0 4.7 5.0 0.0 1.1 49.3 0.0 6.5
FGA 31.8 0.0 64.1 7.8 0.0 9.7 3.0 0.1 36.3 20.5 0.1 46.0
THO1 0.9 0.1 2.7 0.9 0.8 3.2 47.6 0.9 474 7.8 0.0 0.0
TPOX 0.5 14 1.0 5.1 39 6.5 27.5 76.5 51.2 33 1.4 2.7
VWA 171 65.4 52.4 25.8 27.6 60.8 0.8 43.5 124 7.3 0.4 7.2
# Rej. 0 7 0 0 7 0 2 8 2 1 9 2
Locus 0.0625ng 0.125ng 0.25ng

log-n. Gauss Gamma log-n Gauss Gamma log-n. Gauss Gamma

CSF1PO 15.2 1.4 12.2 103 0.0 1.9 53.7 0.0 14.1
D2S1338 89.1 0.8 84.1 53.7 0.0 329 7.8 0.0 4.7
D3S1358 28.2 0.0 229 92.2 0.0 45.0 19.2 0.0 1.2
D5S818 39.1 90.8 79.0 4.0 82.8 25.2 42.0 1.9 43.8
D7S820 14 0.6 8.4 57.1 0.0 289 76.4 0.0 239
D8S1179 121 0.0 4.1 34.0 0.0 0.9 20.3 0.0 0.0
D13S317 5.7 0.0 0.0 41.1 2.6 48.3 58.2 4.6 86.5
D16S539 80.6 0.0 50.9 63.8 0.0 47.8 29.4 0.0 16.1
D18S51 30.8 0.0 75.7 83 0.0 03 4.2 0.0 5.0
D195433 6.1 0.0 22 1.3 1.7 5.6 45.6 0.0 17.7
D21S11 39.6 0.0 20.7 23 0.0 0.0 14.4 0.0 0.1
FGA 50.8 0.0 91.8 76.7 0.0 90.4 17.8 0.0 0.8
THO1 6.8 0.6 111 384 0.0 15.6 121 0.0 114
TPOX 40.8 21.0 46.5 422 43.6 60.4 38.1 22 31.1
VWA 6.6 0.0 0.2 51.1 3.6 75.4 54.6 1.2 54.6
# Rej. 0 13 2 0 10 2 0 12 2

0f 0.125 ng and 0.25 ng, the number of rejections for the DNA input
mass 0.0156 ng is increased. For the Identifiler Plus kit, the number
of rejections for the log-normal distribution class after Holm-
Bonferroni correction stays zero for the high DNA input masses of
0.0625 ng, 0.125 ng, and 0.25 ng. However, for the DNA input mass

Table 11

of 0.0313 ng the number of rejections is increased from one to two
and for the DNA input mass of 0.0078 ng from zero to two.
Reclassifying peaks in the N — 2 position as stutter rather than
noise eliminated to a high degree the increase of the parameter
estimates for the log-normal distribution. Although this result

PowerPlex 16 HS kit: p-values of the G-test in %. Cells with “~” indicate an insufficient number of samples. In the last row, the number of rejections after a Holm-Bonferroni
correction across the loci with significance level 5% is given. The Gaussian distribution class exhibits the most rejections. We have the fewest rejections for the log-normal
distribution class.

Locus 0.0078 ng 0.0156ng 0.0313ng 0.0625 ng 0.125ng 0.25ng
log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss gamma log-n. Gauss Gamma

D3S1358 24.0 39 223 437 416 68.6 16.3 00 103 70.2 00 37.1 26.3 00 113 04 0.0 0.1
THO1 31.2 9.2 342 53.3 0.0 3.5 - - - 76 143 170 26.9 01 177 7.6 0.0 29
D21511 0.3 0.2 3.2 0.6 1.8 127 42.0 00 217 0.9 0.0 0.0 19.1 0.0 0.0 0.2 0.0 0.0
D18S51 0.1 0.0 0.0 17.4 0.0 0.8 0.4 0.0 0.0 12.0 00 285 6.3 0.0 0.0 0.0 0.0 0.0
PentaE 264 0.0 8.6 54.2 1.5 533 523 6.7 61.1 46.0 1.0 330 10.6 0.0 0.7 4.1 0.0 0.0
D5S818 13.8 27.0 233 571 670 776 386 485 627 4.2 0.0 0.4 33.1 0.0 2.8 2.1 0.0 0.1
D13S317 - - - - - - 16.0 248 231 1.2 0.0 0.2 9.5 0.1 7.8 215 00 17.0
D7S820 35.5 74 278 - - - 326 501 463 04 0.0 0.0 20.3 0.0 7.8 343 05 364
D16S539 - - - 7.4 0.0 1.4 24.5 1.0 247 183 0.0 83 87.5 00 577 0.5 0.0 0.4
CSFIPO 192 243 308 248 166  28.1 50 136 9.9 27.2 05 16.2 20.5 0.0 1.4 68.7 00 203
PentaD 879 189 90.6 15.7 9.1 275 64.7 1.3 523 52 0.1 3.0 80.1 04 527 61.1 00 248
VWA 09 354 6.9 715 236 718 3.8 0.0 0.1 49.6 1.0 447 80.3 00 854 81.0 00 195
D8S1179 0.4 0.0 0.0 37.8 00 135 81.6 00 206 3.5 0.0 2.5 13.7 0.0 2.8 49.4 00 507
TPOX - - - 72 302 180 - - - - - - 7.9 0.0 52 12.1 0.0 6.0
FGA 12.2 0.0 14 04 0.0 0.0 1.1 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Rej. 3 5 2 0 5 1 0 6 3 0 13 5 1 15 3 4 15 7
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Fig. 7. Maximum-likelihood estimates ¥ and 7 from data with N — 2 stutter removed as a function of the DNA input mass for different loci. The locus and the dye colours of the
kits for that locus, where the first colour is for the Identifiler Plus kit and the second for the PowerPlex 16 HS kit, are given in the upper right corner of each subplot. For both
kits the parameters are almost constant over the given DNA input mass range. Colours reflect the fluorescent dye colour at that locus for that kit.
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Fig. 8. Identifiler Plus kit with N — 2 stutter removed: Normalised histogram of the non-zero quantised noise measurement values ((___]) and pseudo PDF of a quantised log-
normal distributed random variable (——), a quantised Gaussian distributed random variable (- - - -), and a quantised gamma distributed random variable (s« ) for a DNA
input mass of 0.25 ng. The parameters of the distributions are determined by the maximum-likelihood estimators. The log-normal distributions visually give the best fit.
Colours (top left: blue, top right: green, bottom left: red, bottom right: yellow) reflect the fluorescent dye colour at that locus.
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Fig. 9. PowerPlex 16 HS kit with N — 2 stutter removed: Normalised histogram of the non-zero quantised noise measurement values ((___]) and pseudo PDF of a quantised
log-normal distributed random variable (——), a quantised Gaussian distributed random variable (- - - -), and a quantised gamma distributed random variable (-+=----- ) fora
DNA input mass of 0.25 ng. The parameters of the distributions are determined by the maximum-likelihood estimators. The log-normal distributions visually give the best fit.
Colours (top left: green, top right: blue, bottom left: green, bottom right: yellow) reflect the fluorescent dye colour at that locus.

would advocate the explicit treatment of N — 2 stutter in noise
analysis, the results of the G-test suggest that this is only necessary
for DNA input masses larger than 0.047 ng.

4. Discussion

Based on the data from 643 profiles for the Identifiler Plus kit
and 303 profiles for the PowerPlex 16 kit, we perform statistical
tests for the suitability of the log-normal, Gaussian, and gamma
distribution classes to describe baseline noise. Overall, the log-
normal distribution class provides good statistical consistency
with the data and so can be employed to summarise succinctly
peak-height distributions through a small number of parameters.
The Gaussian distribution class, which is commonly used to
describe noise, gives the worst fit. This suggests replacing Gaussian
noise models, as employed, for example, in [17], with those based
on log-normal distributions in order to enhance the accuracy of
deductions in the analysis of mixtures.

We further observe a dependence of the noise distribution on
the locus, in particular if N — 2 stutter is not removed. Thus, a per-
dye colour description of noise seems to be inadequate and a per-
locus description is needed.

Often negatives, that is samples with no DNA included, are used
to study the properties of baseline noise. Our results indicate
that noise obtained from negatives is not representative of the
noise when the samples contain a significant amount of DNA. If
N — 2 stutter is not removed, the DNA input mass has an influence
on the noise distribution, especially for the PowerPlex 16 HS kit.
Thus, it is advisable to study noise and, consequently, for
laboratories that wish to employ an analytical threshold (AT) to
ensure a reasonable level of protection against the false detection
of noise, to infer the AT from data with a DNA input mass
comparable to the DNA input mass of the samples to be analysed.

Prior to the present study, the AT would typically be determined
by assuming the noise is generated from a Gaussian distribution.
We describe that process alongside an equally simple, equivalent
procedure based on modelling the noise as log-normally distrib-
uted. In advance, we note that for the same probabilistic level of
protection against noise, the log-normal AT, ATy, will typically be
larger than that suggested by the Gaussian AT.

Determination of the AT via the following approach has been
described in both the forensic and analytical chemistry literature
[6,18,29-32] based on a Gaussian noise assumption. One estimates
the mean p and standard deviation o of the non-zero noise
observations, circa 50 per profile in our data, picks a number of
standard deviations k, and sets

AT = u +ko.

Thus defined, the probability that a non-zero noise measurement
exceeds AT, and thus the level of protection against noise, does not
depend on w or o, but rather on k:

DPmeas = P(Norm(u, o) >AT) = % (1 — erf (%)), (6)

where erf is the error function, and Norm(u, o) denotes a Gaussian
random variable with mean p and variance o?. This exceedance
probability is tabulated in Table 9 for a range of values of k.

To identify an AT based on a log-normal noise model that gives
an identical level of protection, one estimates the mean v and
variance t of the natural-log (log base e) of the non-zero
measurements either directly or, for example, by the methods
described earlier in this paper that take the quantisation from the
GeneMapper ID-X v1.1.1 software into account. The appropriate
log-normal AT is then

ATy, = exp(v + k7).
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Identifiler Plus kit with N — 2 stutter removed: p-values of the G-test in %. In the last row, the number of rejections after a Holm-Bonferroni correction across the loci with
significance level 5% is given. The Gaussian distribution class exhibits the most rejections.

Locus 0.0078 ng 0.0156ng 0.0313ng 0.047 ng

log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma
CSF1PO 47.9 0.7 30.9 17.7 0.4 11.7 40.2 6.2 65.4 16.3 323 323
D2S1338 61.8 0.1 50.3 29.0 0.0 26.3 26.3 0.0 2.1 13.5 0.0 5.6
D3S1358 7.3 03 7.9 4.1 3.7 10.1 70.8 1.6 723 23 0.3 4.6
D5S818 0.3 9.9 2.7 9.3 3.1 9.6 10.0 105 14.7 0.6 5.7 1.9
D7S820 34.8 0.0 335 59.0 0.5 59.4 0.3 0.1 2.2 20.0 4.7 61.1
D8S1179 39.6 03 42.5 11.6 1.8 27.6 36.6 0.0 0.7 14.5 0.2 133
D13S317 51.6 25.2 68.3 214 329 421 0.5 3.9 1.9 27.8 0.0 6.7
D16S539 23.7 3.6 49.2 44.8 35 55.4 29.5 7.6 43.2 0.2 0.8 0.6
D18S51 34.2 0.0 38.2 17.2 0.2 58.5 0.2 0.6 3.6 229 41.9 81.0
D195433 7.7 58.8 48.5 10.6 4.5 25.9 0.0 14 0.2 10.1 43 23.6
D21S11 70.5 0.0 27.2 183 0.0 124 6.9 0.0 1.2 28.1 0.0 2.8
FGA 37.0 0.0 64.1 6.9 0.0 6.9 2.1 04 34.8 9.1 0.1 293
THO1 1.1 0.2 3.2 44 2.8 11.2 50.0 13 51.2 571 0.0 224
TPOX 0.2 1.8 0.6 22.8 12.7 234 16.4 33.7 27.9 5.5 33 4.9
vWA 223 68.2 58.5 0.6 10.8 4.6 0.6 50.8 10.0 5.8 0.2 4.8
# Rej. 2 9 0 0 5 0 3 5 1 1 8 0
Locus 0.0625 ng 0.125ng 0.25ng

log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma

CSF1PO 12.6 0.9 8.0 6.1 0.1 3.7 28.2 4.6 58.2
D2S1338 62.3 105 88.0 56.9 0.9 779 15.9 0.3 28.1
D3S1358 29.6 19.0 64.5 225 0.0 7.6 0.9 0.0 1.6
D5S818 45.0 80.5 74.2 15.1 87.4 51.5 471 35.7 71.6
D75820 1.2 0.1 3.6 53.9 0.3 429 26.3 0.6 27.6
D8S1179 8.0 0.0 2.5 46.1 0.0 11.0 86.7 0.0 12.7
D13S317 8.3 0.0 0.0 46.9 4.0 45.5 219 3.7 40.2
D16S539 83.6 0.0 443 375 1.9 43.8 50.9 0.5 40.1
D18S51 235 0.1 74.9 6.3 0.0 0.3 2.3 0.0 8.0
D195433 33 0.0 1.2 1.8 1.8 6.0 18.7 0.0 5.1
D21S11 445 0.0 329 25.1 0.0 0.8 60.3 0.0 6.9
FGA 58.3 0.0 92.2 48.1 0.0 85.5 28.7 0.0 3.9
THO1 7.4 1.9 154 35.1 0.0 12.4 63.7 0.0 45.7
TPOX 26.9 10.6 29.2 44.7 26.4 53.5 9.3 1.9 11.2
VWA 11.3 0.0 0.7 423 2.6 64.1 15.3 49 21.1
# Rej. 0 9 1 0 8 1 0 10 0

Thus defined, for any given k (integer or otherwise), the probability
that a log-normal noise measurement exceeds ATy, is the same as

in the Gaussian model as the following holds

P(exp(Norm(v, 7)) > AT,)

Table 13

1
2

= P(Norm(v, 7) > v + kT)

(-en(5)

PowerPlex 16 HS kit with N — 2 stutter removed: p-values of the G-test in %. Cells with “~

the same value as in Eq. (6). Thus replacing AT by AT}, one obtains
the same level of protection as in the originally assumed Gaussian

model, but with the log-normal nature of the noise taken into
account.
The primary quantitative difference between the two noise
models is that large noise values are more likely with the log-
normal model. Thus, while for a given k the resulting AT and AT,

”

indicate an insufficient number of samples. In the last row, the number of rejections

after a Holm-Bonferroni correction across the loci with significance level 5% is given. The Gaussian distribution class exhibits the most rejections. We have the fewest
rejections for the log-normal distribution class.

Locus 0.0078 ng 0.0156ng 0.0313ng 0.0625 ng 0.125ng 0.25ng
log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma log-n. Gauss Gamma

D3S1358 299 113 324 46 303 123 1.9 8.4 4.8 443 00 147 30.0 0.1 18.2 2.6 0.0 0.0
THO1 - - - 12.9 0.0 0.5 - - - 0.7 1.8 13 321 27 320 271 0.0 9.6
D21S11 0.1 1.2 3.0 0.4 1.8 9.4 29.0 1.7 496 2.4 0.0 0.0 51.1 0.0 4.9 0.3 0.0 0.0
D18S51 0.0 0.0 0.0 64.7 00 102 2.2 0.0 0.1 10.6 06 342 35.1 1.3 848 0.2 0.0 0.0
Penta E 8.2 0.0 1.6 38.0 1.1 385 16.1 35 230 29.9 04 152 58.8 02 309 20.5 0.0 52
D5S818 3.7 3.7 5.2 327 534 457 140 343 2438 1.7 0.0 0.2 329 176 320 1.0 0.1 1.2
D13S317 - - - - - - 109 207 154 - - - - - - 12.9 0.0 6.1
D75820 - - - - - - - - - - - - 243 6.7 404 7.8 0.3 7.6
D16S539 - - - - - - - - - - - - - - - 0.5 0.0 0.0
CSF1PO 8.5 56 103 30.9 88 236 47 126 8.7 246 369 363 4.0 0.0 0.1 25.8 06 228
PentaD 133 181 256 12.6 9.0 182 86.8 12.8 843 4.7 0.1 2.5 80.4 02 439 383 00 123
VWA 08 241 4.5 569 173 644 40.9 1.5 227 21 134 6.5 39.6 80 737 61.9 00 236
D8S1179 2.0 0.0 13 41.9 00 186 75.0 00 239 0.9 0.0 0.7 418 00 129 11.0 03 197
TPOX - - - - - - - - - - - - - - - - - -
FGA 55 0.0 0.5 0.1 0.0 0.0 5.0 0.0 0.0 22 0.0 0.1 7.9 0.0 1.1 4.1 0.0 0.0
# Rej. 2 4 2 2 4 2 0 3 2 0 8 3 0 7 1 2 14 5
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Fig. 10. Identifiler Plus kit: analytical threshold using the log-normal noise model (AT;,) and the Gaussian noise model (AT) as a function of k and the corresponding level of
protection, described by ppeas. The left ordinate of each subplot is for ATy, and AT, whereas the right ordinate is for pmeas.
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Fig. 11. PowerPlex 16 HS kit: analytical threshold using the log-normal noise model (AT);,) and the Gaussian noise model (AT) as a function of k and the corresponding level of
protection, described by pmeas. The left ordinate of each subplot is for ATy, and AT, whereas the right ordinate is for pmeas.
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provide the same level of probabilistic protection against noise,
the thresholds themselves behave differently as a function of
k. The AT based on the Gaussian noise model depends linearly
on k, but the AT based on the log-normal noise model depends
exponentially on k. As a result, in order to obtain a higher level of
protection against noise, substantially larger ATs are truly
required than one would deduce from the ill-fitting Gaussian
noise model.

That feature is illustrated in Figs. 10 and 11, which show both
the usual AT and ATy, for a range of values of k. As k increases, to
provide protection against the log-normally distributed noise,
which was found to be appropriate for this data, the AT, grows
substantially larger than the AT determined by the traditional
procedure.

For CSF1PO, D5S818, and TPOX, moving to the more accurate
log-normal noise model results in a modest increase in the AT. For
D3S1358, however, it results in a significant increase. Furthermore,
Figs. 10 and 11 also illustrate the impact of the N — 2 stutter
position being classified as noise on AT and ATj,. This argues,
perhaps, in favour of continuous interpretation methods that
explicitly include noise and stutter artefacts over methods that
attempt to filter it.

Regarding the choice of k, under either model, k = 3 leads to a
probability of pmpess=0.0013 that a single non-zero noise
measurement value is larger than the AT. This may be considered
tolerable, but given that each profile contains circa 50 non-zero
noise measurements, it would suggest that over 6% of profiles
would be expected to exhibit at least one noise measurement value
that is larger than the AT (see the final column in Table 9).

Alternatively, one may set a level of protection such that less
than 1% (or another pre-defined percentage) of profiles contain
at least one noise measurement value that exceeds the AT. In this
instance, assuming each profile contains roughly 50 non-zero noise
measurement values, the AT under either model would be
determined by adding k = 4 standard deviations to the mean. In
this case, circa 1 of 631 profiles (probability 10-2#°!) would exhibit
noise that is larger than the AT.

In any case, it is to be noted that the relationship between the
number of standard deviations from the mean at which the AT is
set and the probability that a profile exhibits a noise measurement
value that exceeds the AT is sensitive, as depicted in Table 9. For
this reason, utilising an arbitrarily chosen large k such as 10 is not
recommended. Note that, even at k = 7, the probability of observing
a profile with noise which is larger than AT is roughly 1071° (1 in
10 billion), which may be excessively conservative and result in
high non-detection rates [5].
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Appendix A. Binning for the G-test of independence

In this section we provide a description of the procedure that
was used to bin the data for the G-test of independence. The data
are binned so that the observed frequency in each bin is larger
than or equal to 5, simultaneously for all loci =1, ..., L. Let N} =

("ﬁv"rz’-“’”ﬁw‘) denote the collection of all non-zero noise
10 IV

measurement values for locus [, and let

1 VT

F’E(x) - VT Zh"fiéﬂ
i=1

be the empirical distribution for locus I. We construct the bins
iteratively. Let xo = 0. Assume that we already have determined xy,
then xi+; is the smallest natural number such that

WTIFF (Xiesr +1/2) = Fi (i +1/2)) 2 5 (7)

foralll=1,..., L The construction ends if there is no such number.
Let xx denote the last number found by this procedure. Then the K
bins are given by (xo+1/2, x;+1/2], (x1+1/2, x2+1/2], ...,
(xk_1+1/2, c0).

Appendix B. G-test of independence

The G-test of independence is shortly described here for
completeness. Assume that the contingency table has L rows and K

columns, and let N} = (ni,n5,.. ., nl*wﬂ) denote the collection of
SRR W

all non-zero noise measurement values for locus I. Then the test
statistic is given by

L K 0
G= ZZZOH(IH <£> s
1=1 k=1 Clk

where oy = |{i = 1,...,|N]| : nj;is in bink}| is the observed fre-
quency in row [ and column k, i.e., the number of non-zero noise
measurement values from locus | whose height falls in bin k, and

(1 0mk) (K O1n)
E;anl erf:l Omn

is, under the null hypothesis, the maximum-likelihood estimate of
the expected number of observations in row [ and column k.

The p-value is computed from a chi-squared distribution x3
with d = (L — 1)(K — 1) degrees of freedom, according to

e =

p—value=1- X(2L,1)(K71)(G)'

Appendix C. Holm-Bonferroni correction

Let M denote the number of hypotheses in the compound test.
We order the p-values in increasing order. Let pq, ..., py be the
ordered p-values and Hy, .. ., Hy be the corresponding hypotheses.
For a given significance level o = 0.05, let k be the minimal index
such that py > a/(M+1 — k). If k=1 then we reject none of the
hypotheses. If no such k exists, then we reject all of the hypotheses.
Otherwise, we reject the hypotheses Hy, .. ., H,_; and do not reject
Hy, ..., Hu.

Appendix D. Goodness of fit G-test

In order to apply the G-test, we bin the positive real numbers so
that the observed frequency in each bin is larger than or equal to
5. We use the same binning procedure that was used in Section 3.2,
and which is described in Appendix A, with the difference that
here, we only have one empirical distribution. Let (x;, Xi], (X,
%], ..., (xg,00) be the bins that are produced by this procedure,
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where K denotes the number of bins. For notational convenience,
we set Xy = .

Let F; ; be the distribution of a log-normal distributed random
variable as given in (2) and F‘UJ,f the distribution of a quantised log-
normal distributed random variable as given in (3), where the
parameters ¥ and 7 are the maximum-likelihood estimates.
Further, let F£ be the empirical distribution of the non-zero
quantised noise measurement values, as defined in (5). Then, the
G-test statistic is given by

K ok
G=2)» on(-—=),
kz:; « <tk>

where o, = |V |(FE(%,) — FE(x,)) denotes the observed frequency
and = |NI(F) (%) — FLo(x0)) = INTI(F55(%) — Fpz(x,))  the
expected number of observations in the k-th bin under the null
hypothesis. The last equality is due to the fact that our bins are of
the form (k — 1/2, 1+ 1/2], k,le N, k <, which is compatible with
the quantisation operator (1). The p-value is computed from a chi-
squared distribution x3 with d=K—3 degrees of freedom,
reduced from K — 1 to K — 3, as we have estimated two parameters
from the data [33,34], according to

p—value =1— x2 ;(G).
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