Auto-tagging of Text Documents into XML

Shazia Akhtar!, Ronan G. Reillyz, and John Dunnion?

! Smart Media Institute, Department of Computer Science,
University College Dublin, Belfield, Dublin 4, Ireland
{Shazia.Akhtar,John.Dunnion}@ucd.ie
2 Department of Computer Science,

National University of Ireland Maynooth,
Maynooth, Co Kildare Ireland
Ronan.Reilly@may.ie

Abstract. In this paper we present a novel system which automatically converts
text documents into XML by extracting information from previously tagged XML
documents. The system uses the Self-Organizing Map (SOM) learning algorithm
to arrange tagged documents on a two-dimensional map such that nearby loca-
tions contain similar documents. It then employs the inductive learning algorithm
C5.0 to automatically extract and apply auto-tagging rules from the nearest SOM
neighbours of an untagged document. The system is designed to be adaptive, so
that once a document is tagged in XML, it learns from its errors in order to improve
accuracy. The automatically tagged documents can be categorized on the SOM,
further improving the map’s resolution. Various experiments were carried out on
our system, using documents from a number of different domains. The results
show that our approach performs well with impressive accuracy.

1 Introduction

The extraordinary growth of information resources has created vast and complex repos-
itories of data. Such large amounts of data require the development of new procedures
for storage and management. In addition, the need for efficient and effective search for
specific information in growing repositories of data also requires new paradigms for data
organization. The recent acceptance of XML as an emerging standard markup language
has provided a solution for effective management and retrieval of large and highly com-
plex data repositories. The idea behind XML markup (tagging) is to structure raw data,
including natural language texts, with descriptive element tags. XML is not a set of tags
itself: it provides a standard system for browsers and other applications to recognize the
datain atag. By using XML as a standard markup language, search engines can use XML
tags to exploit the logical structure of documents, which should improve search results,
avoid irrelevant searches and provide more precise information. However, despite the
benefits provided by XML, we still do not have large collections of XML documents.
Manual tagging of a collection of text documents into XML is impractical because of
the time, effort and expense required. For text documents to be efficiently and effectively
converted into XML, the process of tagging must be automated. Currently auto-tagging
is a significant challenge. Most systems that have been developed are limited to certain
domains and require considerable human intervention. In addressing the problem of auto-
tagging, we present a novel hybrid system that produces tagged document collections

V. Matousek and P. Mautner (Eds.): TSD 2003, LNAI 2807, pp. 20-26, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Auto-tagging of Text Documents into XML 21

by using two machine learning techniques, namely the Self-Organizing Map (SOM)
algorithm [1], [2] and the inductive learning algorithm C5.0 [3], [4]. The process of
auto-tagging is based on the previously tagged valid XML documents to be used as
training data by the system.(A valid XML document is one which is well-formed and
which has been validated against a DTD).

2 Overall Approach

The hybrid architecture of our system combines the SOM and C5.0 algorithms to produce
XML tagged documents.

The overall approach is shown in Fig. 1. Phase 1 of the hybrid system deals with
the formation of a map of tagged documents using the SOM algorithm. Once a map has
been formed, the system automatically extracts information from the SOM neighbours
of an untagged document in phase 2. This information is extracted in the form of rules by
using the inductive learning algorithm C5.0. These rules together with text segmentation
heuristics derived from the set of tagged documents are used to markup the untagged
text document into XML. These two phases of the system are currently implemented
independently but will eventually be linked together to form an integrated hybrid system.
Phase 2, which is the focus of this paper, is currently implemented as an independent
auto-tagging process and is described in Sect. 3.

Map of tagged documents

Joppuuy

v

Process of
autotagging

Tagged

[jD DD document
(p U0 7 1

v Amendment
U > in rules
Untagged ser
document
Phase 1 Phase 2

Fig. 1. Architecture of the hybrid system. Phase I deals with the formation of a Self-Organizing
Map. Phase 2 deals with the auto-tagging of text documents into XML by using the inductive
learning algorithm C5.0.

22 S. Akhtar, R.G. Reilly, and J. Dunnion

Collecting
Valid
XML Examples Deriving heuristics
documents for text

¢ . segmentation
Elements with
text nodes l Heuristics

Encoding
instances

Text
segmentation «

: |

Training examples

Untagged
document

l Segments of text DTD
Rule
Learner
Generating > Tagged
tagged document
documents
Rules
Rule Extraction Module Tagging Module

Fig. 2. The auto-tagging process.

3 The Auto-tagging Process

The auto-tagging process (Phase 2 of the hybrid system) is shown in Fig. 2. It has two
main modules, a rule extraction module and a tagging module.

The rule extraction module learns rules from a collection of tagged documents using
an inductive learning approach [5]. In this module, training examples are collected from
a set of valid XML documents. These documents should be from a specific domain and
their markup should be valid and comply with the rules of a single Document Type
Definition (DTD). An XML document can be represented as a tree-like structure with
a root element and other nested elements. Only elements having text are considered
appropriate for our auto-tagging process. Each training instance corresponds to a leaf
element containing text from the collection of tagged documents. The texts enclosed
between the start and end tags of all occurrences of each element are encoded using
a 6fixed-width feature vector. These encoded instances are used subsequently for learning
the rules. Thirty-one features, such as word count, character count, etc., are used to encode
the training instances. The system pre-classifies the encoded instances by the tag name
of the element. These pre-classified encoded instances are used by the system to learn
classifiers for the elements with that tag name. The learned classifiers are later used in the
process of auto-tagging. We have used the C5.0 learning algorithm to learn classifiers.
The advantages of this learning algorithm are that it is very fast, it is not sensitive to
missing features and it is incremental. C5.0 is best suited for our system because it is not
sensitive to missing features. Our system deals with documents from different domains,
so some of the features are not relevant to the documents of all domains. Sets of rules
are generated in a given domain from a collection of tagged documents and are used to
markup the untagged text documents from the same domain.

Auto-tagging of Text Documents into XML 23

The second module creates a tagged version of an untagged text document, which
should be from the same domain as the documents used for learning the rules. The
untagged document is segmented into pieces of text using a variety of heuristics. These
heuristics are derived from the set of training examples. By applying the rules of the
DTD, the rules extracted by using the C5.0 algorithm and the text segmentation heuristics,
the hierarchical structure of the document is obtained and a tagged version of the text
document is generated.

The tagged document produced by the system can be validated against the DTD
by using any XML parser. However XML processors can only validate the syntax of an
XML document. Since they cannot recognize the content of a document, a human expert
is required to evaluate the accuracy of the auto-tagging process.

4 Experiments and Evaluation

For our experiments, we have used collections of documents from a number of different
domains. These include letters from the MacGreevy Archive [6], [7], a database of
employee records, Shakespearean plays [8], poems from the Early American Digital
Archives [9] and scientific journal articles [10]. An example taken from A Midsummer
Night’s Dream automatically tagged by our system is shown in Fig. 3. The underlined
text, with the start and end tags of the element STAGEDIR, is not tagged by our system.
This represents an error made by our system.

All the documents sets used in our experiments except the scientific journal arti-
cles were tagged by applying the rules extracted by using the C5.0 algorithm, the text
segmentation heuristics and the rules of the appropriate DTD. For the scientific journal
articles we have used additional heuristics devised specifically for this domain. We hope
that these heuristics can be used effectively for articles from most journals. The tagged
journal articles used as training documents for our experiments were downloaded from
the World Wide Web [10] along with the DTD (article.dtd) devised for these articles.
From the same site, the HTML versions of articles were downloaded, converted to text
files and automatically tagged into XML by our system. The XML DTD used for these
tagged articles is complicated and requires the presence of another DTD (biblist.dtd)
devised for references and bibliographies. For the auto-tagging of articles, currently we
only consider those elements of DTD that descr ibe different sections of the article for
example, title, author name, author affiliation, headings, paragraphs, references, etc. We
have ignored the elements embedded in the text containing elements. These elements
include the elements representing formatting or physical representation of different sec-
tions of the articles, e.g. , <i> etc. Part of a scientific journal article automatically
tagged by our system is shown in Fig. 4. Again, our system failed to tag the underlined text
with start and end tag of fitle and orgName. Although the system makes some mistakes,
it still works reasonably well with our domain-specific heuristics and automatically tags
most of the sections of the journal articles.

We have used three performance measures to evaluate the performance of our system.
These measures are:

— The percentage of elements correctly tagged by the system
— The percentage of elements incorrectly tagged by the system
— The percentage of elements not tagged by the system

24 S. Akhtar, R.G. Reilly, and J. Dunnion

<SCENE>
<TITLE> SCENE I. Athens. The palace of THESEUS.
</TITLE>
<STAGEDIR> Enter THESEUS. HIPPOLYTA
PHILOSTRATE, and Attendanrs</STAGEDIR>
<SPEECH>
<SPEAKER>THESEUS</SPEAKER>
<LINE>Now, fair Hippolyta, our nuptial hour</LINE>
<LINE>Draws on a pace; four happy days bring in</LINE>

<LINE>Another moon: but, O, me thinks, how
slow</LINE>
<LINE>This old moon wanes! she lingers my
desires,</LINE>
<LINE>Like to a step-dame or a dowager</LINE>
<LINE>Long withering out a young man revenue. </LINE>
</SPEECH>
<SPEECH>
<SPEAKER>HIPPOLYTA</SPEAKER>
<LINE>Four days will quickly steep themselves in night;
</LINE>
<LINE>Four nights will quickly dream away the time;
</LINE>
<LINE>And then the moon, like to a silver bow</LINE>
<LINE>New-bent in heaven, shall behold the night</LINE>
<LINE>Of our solemnities</LINE>
</SPEECH>

Fig. 3. Part of a scene taken from A Midsummer Night’s Dream automatically tagged by our
system.

When describing the accuracy of our system, we use the first of these measures, i.e.
the percentage of the tagged elements correctly determined by the system. Evaluation of
the performance of our system for letters (from the MacGreevy Archive) demonstrates
that it achieves an accuracy of 96%. For the Shakespearean plays, our system achieves
92% accuracy and for the poems taken from the Early American Digital Archives, it
achieves 96% accuracy. For the scientific journal articles, the accur tagging process is
97%.

Conclusions

This paper describes a novel system which automatically tags the text documents into
XML. The system uses the Self-Organizing Map (SOM) algorithm and the inductive
learning algorithm C5.0 for the process of auto-tagging. The performance of our system
has been evaluated in experiments with different datasets and the results indicate that
our approach is promising. The functionality of our system makes it a useful tool for
producing large tagged collections of documents.

Auto-tagging of Text Documents into XML 25

<?xml version="1.0"?>
<IDOCTYPE article SYSTEM article.dtd">
<article>
<front>
<docCiteAs> MRS Internet J. Nitride Semicond.
Res.3, 14.</docCiteAs>
<cpyrt> 1999 The Materials Research Society</cpyrt>
<title>Surface Morphology of MBE-grown GaN on GaAs(001)
as Function ofthe N/Ga-ratio</title>
<Authors>
<auth><pn>0. Zsebök</pn></auth>
<auth> <pn>J.V. Thordson</pn></auth>
<auth><pn>T.G. Andersson</pn></auth>
<aft>
<orgName>Chalmers University of Technology
</orgName>
</aff>
</authors>
<history><date>Tuesday, June 23, 1998</date></history>
<history><date>Monday, August 24, 1998</date></history>
<abstract>
<p>Molecular beam epitaxy growth utilising an RF-plasma
nitrogen source was used to study surface reconstruction and surface
morphology of GaN on GaAs (001) at 580 °C. While both the
nitrogen flow and plasma excitation power were constant, the grown
layers were characterised as a function of Ga-flux. In the initial growth
stage a (3x3) surface reconstruction was observed. This surface

Fig. 4. Part of a scientific journal article automatically tagged by our system.

Acknowledgements

The support of the Informatics Research Initiative of Enterprise Ireland is gratefully
acknowledged. The work was funded under grant PRP/00/INF/06.

References

1. Kohonen, T.: Exploration of very large databases by self-organizing maps. In Proceedings
of ICNN’97, International Conference on Neural Networks. PL1-PL6. IEEE Service Center:
Piscataway, NJ (1997a)

2. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Science (1997b)

3. Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kauffmann, Los Altos, CA
(1993)

26

wn

10.

S. Akhtar, R.G. Reilly, and J. Dunnion

Quinlan, J. R.: Data Mining Tools See5 and C5.0,
[http://www.rulequest.com/see5-info.html] (2002)

Mitchell, T. M.: Machine Learning. McGraw-Hill, New York, NY (1997)
Schreibman, S.: The MacGreevy Archive.

[http://www.ucd.ie/ cosei/archive.html] (1998)

Schreibman, S.: The MacGreevy Archive.
[http://jafferson.villiage.Virginia.edu/-macgreevy] (2000)

. Bosak, J.: The Plays of Shakespeare in XML.

[http://www.oasis-open.org/cover/bosakShakespeare200.html]
(1999)

Schreibman, S.: Early American Digital Archives, Hosted by Maryland Institute of Technol-
ogy [http://www.mith.umd.edu] (2003)

Hellman, E., Ephron, D., Poindexter, M.: Openly Informatics Inc.
[http://www.openly.com/efirst] (1999-2000)

	1 Introduction
	2 Overall Approach
	3 The Auto-tagging Process
	4 Experiments and Evaluation
	Conclusions
	References

