
ar
X

iv
:c

s/
06

09
01

2v
1

 [
cs

.C
C

]
 5

 S
ep

 2
00

6

Baire Categories on Small Complexity Classes and

Meager-Comeager Laws

Philippe Moser∗

Abstract

We introduce two resource-bounded Baire category notions on small complexity classes
such as P, QUASIPOLY, SUBEXP and PSPACE and on probabilistic classes such as BPP,
which differ on how the corresponding finite extension strategies are computed. We give
an alternative characterization of small sets via resource-bounded Banach-Mazur games.
As an application of the first notion, we show that for almost every language A (i.e. all
except a meager class) computable in subexponential time, PA = BPP

A. We also show
that almost all languages in PSPACE do not have small nonuniform complexity.

We then switch to the second Baire category notion (called locally-computable), and
show that the class SPARSE is meager in P. We show that in contrast to the resource-
bounded measure case, meager-comeager laws can be obtained for many standard com-
plexity classes, relative to locally-computable Baire category on BPP and PSPACE.

Another topic where locally-computable Baire categories differ from resource-bounded
measure is regarding weak-completeness: we show that there is no weak-completeness
notion in P based on locally-computable Baire categories, i.e. every P-weakly-complete
set is complete for P. We also prove that the class of complete sets for P under Turing-
logspace reductions is meager in P, if P is not equal to DSPACE(log n), and that the same
holds unconditionally for QUASIPOLY.

Finally we observe that locally-computable Baire categories are incomparable with
all existing resource-bounded measure notions on small complexity classes, which might
explain why those two settings seem to differ so fundamentally.

1 Introduction

Both resource-bounded Baire categories and resource-bounded measure were introduced by
Lutz in [Lut90, Lut92] for both complexity classes E and EXP. They provide a means of
investigating the sizes of various subsets of E and EXP, and give a notion of small sets, called
meager sets. Both resource-bounded measure and resource-bounded Baire category have been
successfully used to understand the structure of the exponential time classes E and EXP.

Similarly to resource-bounded measure [Lut90], Lutz’s formulation for Baire categories is
a general theory which holds for many standard deterministic complexity classes containing
E ranging from ESPACE to REC. Unfortunately Lutz’s formulation does not work on feasible
complexity classes contained in E like P; one reason for this is that the characteristic sequence
of a language is exponentially larger than the strings whose membership bits it is coding for.
Thus simply reading such a characteristic sequence is above the computational power of
P. Moreover Baire categories are defined via functions (called finite extension strategies)

∗Address: Email: mosersan@gmail.com

1

http://arxiv.org/abs/cs/0609012v1

extending characteristic sequences of languages, i.e. of the form h(w) = wu; thus computing
the image of such a function is also above the computational power of P. Whereas some
answers to this problem were proposed for the resource-bounded measure case [AS94, May94,
Str97, Mos06b], the question was still left open in the Baire category setting.

In this paper, we propose two Baire category notions on small complexity classes, like
P, QUASIPOLY, SUBEXP and PSPACE, which differ solely on how the corresponding finite
extension strategies are computed. The idea is that instead of computing the whole image of
some finite extension strategy h(w) = wu, we only require the extension u to be computable
in polynomial time.

Ideally, a measure notion in quantitative complexity should satisfy the three basic proper-
ties:

1. Every singleton set is small.

2. Enumerable infinite unions of small sets are small.

3. The whole class is not small.

These basic properties meet the essence of Lebesgue measure and ensure that no class is both
large and small. We show that both Baire category notions introduced in this paper satisfy
the three basic properties.

In the classical setting, Baire categories can be alternatively characterized by Banach-
Mazur games (see [Oxt80]), which are infinite two-player games, where each player alterna-
tively extends the string output by the other player. We show that Baire category notions
on small complexity classes can also be recharacterized in terms of Banach-Mazur games,
similarly to Baire categories on EXP [Lut90].

There is another limitation of Lutz’s formulation of Baire category [Lut90] (which also
occurs in resource-bounded measure [RS98, Mos06b]): it works well for deterministic classes,
but not for probabilistic ones. We remedy this situation by introducing a Baire category
notion on the class BPP.

As an application of the first notion, we answer a variant of a question raised in [AS94],
by showing that almost all (all except a meager class) languages computable in subexponen-
tial time, are hard enough to derandomize BPP, i.e. a polynomial time algorithm can use
almost any language L ∈ SUBEXP to derandomize every probabilistic polynomial time algo-
rithm, even if the probabilistic algorithm also has oracle access to L (whereas in [AS94], the
probabilistic algorithm has no access to L). We also investigate the nonuniform complexity
of languages in PSPACE, and show that almost all languages in PSPACE do not have small
nonuniform complexity. A preliminary version of the first Baire category notion introduced
in this paper was published in [Mos03].

Although the first Baire category notion introduced here has interesting applications,
the class of languages of subexponential density is not small relative to it. To overcome this,
Section 4 introduces a second, stronger, Baire category notion, called locally-computable. The
second notion is an adaptation of a previous improvement of Lutz’s [Lut90, Lut92] notion by
Fenner [Fen95], to the setting of small complexity classes. The idea in [Fen95] is to consider
finite extension strategies whose image is locally computable in a given time-bound instead of
globally computable, which yields a stronger Baire category notion on the class E. Similar to
Lutz’s [Lut90, Lut92] notion, the Baire category notion of [Fen95] only holds on deterministic
complexity classes above (and including) E. In Section 4 we extend Baire categories from

2

[Fen95], (called local categories) to small complexity classes like P, QUASIPOLY, SUBEXP,
PSPACE and BPP.

Informally speaking, a class is said to be meager if there is a computable finite extension
strategy that given the prefix of the characteristic sequence of any language in the class,
extends it to a string which is no longer a prefix of the characteristic sequence of the language.
In Section 3 the extension of the finite extension strategy is required to be polynomial time
computable. For locally computable finite extension strategies, we only require the extension
to be bit-wise polynomially computable, similarly to [Fen95]. This means that the output of
locally computable finite extension strategies can be of any finite size, which yields a stronger
resource-bounded Baire category notion than the one from Section 3: the class of languages
with subexponential density is meager, relative to this second Baire category notion.

Next we investigate meager-comeager laws in the Baire category setting. A well studied
topic in resource-bounded measure deals with understanding which subclasses of EXP satisfy
the zero-one law, i.e. classes that have either measure zero or one in EXP. Zero-one laws were
obtained for all three probabilistic classes BPP, RP and ZPP [Mel00, IM03]. These laws tell
us that either probabilistic algorithms are in some sense weak, or randomness is intractable.
Recently a small-or-large law for SPP was proved in [Hit04]. Although resource-bounded
measure notions were introduced on almost all small complexity classes [AS94, May94, Str97,
Mos06b], no zero-one law has been obtained for the measure notion on PSPACE, nor the
measure on BPP yet, i.e. we have no example of classes which have either measure zero
or one in PSPACE (nor in BPP). We show that for local Baire category on PSPACE things
are different: every standard class contained in PSPACE is either meager in PSPACE or
equal to PSPACE. The same holds for replacing PSPACE with BPP, yielding that either
derandomization is possible i.e. BPP = P, or P is small compared to BPP.

Table 1: Classes Satisfying a Small-Large Law

Zero-one Laws in for Resource-bounded Measure for Baire Category

E ZPP, RP, BPP [IM03, Mel00] ZPP, RP, BPP, NP [Fen95]

SUBEXP ZPP, RP, BPP [Mos06b] ZPP, RP, BPP, NP [Section 4.5]

PSPACE ? P, ZPP, RP, BPP, NP [Section 4.5]

BPP ? P, ZPP, RP [Section 4.5]

Another area where resource-bounded measure and Baire categories on small complexity
classes seem to differ is regarding weak-completeness. A language A in some class C is said
to be C-weakly-complete [Lut95] if its lower span, i.e. the class of sets reducible to A, does
not have C-measure zero. Lutz showed in [Lut95] the existence of E-weakly-complete sets
that are not E-complete. Similarly we can define a categorical weak completeness notion,
by calling a set loc-weakly-complete if its lower span is not loc-meager. Whereas it is not
known whether strictly P-weakly-complete sets (i.e sets that are P-weakly-complete but not P-
complete) exist in the resource-bounded measure setting, we show that strictly P-loc-weakly-
complete languages do not exist, i.e. every P-loc-weakly-complete language is also P-complete.

We also prove that the class of complete languages for P under Turing-logspace reductions
is loc-meager in P, if P is not equal to DSPACE(log n), and that the same holds unconditionally
for QUASIPOLY, contrasting with the lack of any such result in the resource-bounded measure
setting.

3

Finally we observe that locally-computable Baire categories on P are incomparable to the
resource-bounded measure notions on P from [Mos06b], in the sense that every set which is
random for P-computable martingales is meager for local categories on P; and that there are
generic sets for local categories on P which have P-measure zero. This shows that the size
notion derived from both P-measure and local categories on P differ fundamentally (the same
holds for QUASIPOLY, SUBEXP, . . . , E), which might explain why most of our applications
are not known to hold in the setting of resource-bounded measure on small complexity classes.

2 Preliminaries

For complexity classes we use the notation from [BDG95, BDG90, Pap94]. To give a general
theory on small complexity classes, we use the following formalism. A family of time bounds
is a set of functions ∆ ⊂ {t : N → N, t is computable }. The time bounds we shall consider

are poly = ∪k∈N O(nk), quasipoly = ∪k∈N O(nlogk n), quasipolylin = ∪k∈N O(nk log n) and

subexpǫ = ∪δ<ǫ O(2nδ
) (where 0 < ǫ < 1), and let

SMALL = {poly, quasipoly, quasipolylin, subexpǫ}.

For a family of time bounds ∆ ∈ SMALL, we define its corresponding (small) complexity
classes T(∆) = ∪t∈∆DTIME(t), S(∆) = ∪t∈∆DSPACE(t) and BP(∆) = ∪t∈∆BPTIME(t).
The (small) complexity classes we shall be interested in are P = T(poly), QUASIPOLY =
T(quasipoly), QUASIPOLYlin = T(quasipolylin), Eǫ = T(subexpǫ) (where 0 < ǫ < 1),
SUBEXP = ∩ǫ>0Eǫ, PSPACE = S(poly), and BPP = BP(poly).

Regarding QUASIPOLYlin and QUASIPOLY, notice that whereas it is easy to show that
the canonical complete language (i.e. whose strings are of the form a padding followed by an
index i and a string x, such that the ith machine accepts string x in at most t steps, where t
depends on the size of the padding) is complete for QUASIPOLYlin, it is not clear whether it
is complete for QUASIPOLY.

Let us fix some notations for strings and languages. A string is an element of {0, 1}n for
some integer n. For a string x, its length is denoted by |x|. s0, s1, s2 . . . denotes the standard
enumeration of the strings in {0, 1}∗ ordered by length and then lexicographically, where
s0 = λ denotes the empty string. Note that |w| = 2O(|s|w||). For a string si define its position
by pos(si) = i. If x, y are strings, we write x ≤ y if |x| < |y| or |x| = |y| and x precedes y in
lexicographical order. A sequence is an element of {0, 1}∞. If w is a string or a sequence and
1 ≤ i ≤ |w| then w[i] and w[si] denote the ith bit of w. Similarly w[i . . . j] and w[si . . . sj]
denote the ith through jth bits. dom(w) denotes the domain of w, where w is viewed as a
partial function.

For two string x, y, the concatenation of x and y is denoted xy. If x is a string and y is
a string or a sequence extending x i.e. y = xu, where u is a string or a sequence, we write
x ⊑ y. We write x ❁ y if x ⊑ y and x 6= y.

A language is a set of strings. A class is a set of languages. The cardinality of a language
L is denoted |L|. Let n be any integer. The set of strings of size n of language L is denoted
L=n. Similarly L≤n denotes the set of strings in L of size at most n. We identify a language
L with its characteristic function χL, where χL is the sequence such that χL[i] = 1 iff si ∈ L.
Thus a language can be seen as a sequence in {0, 1}∞.

Let A be any language. The lower span (resp. upper span) of A, denoted A≥p
m (resp.

A≤p
m) is the set of languages B such that B ≤p

m A (resp. A ≤p
m B).

4

For a, b ∈ N let a−̇b denote max(a − b, 0).

2.1 Pseudorandom Generators

The hardness of a generator is the size of the smallest circuit which can distinguish the output
of the generator from truly random bits. More precisely,

Definition 2.1 Let A be any language. The hardness HA(G) of a random generator G :
{0, 1}m −→ {0, 1}n, is defined as the minimal s such that there exists an n-input circuit C
with oracle gates to A, of size at most s, for which:

∣
∣
∣
∣

Pr
x∈{0,1}m

[C(G(x)) = 1] − Pr
y∈{0,1}n

[C(y) = 1]

∣
∣
∣
∣
≥

1

s
.

The A-oracle circuit complexity of a Boolean function f , denoted SIZEA(f) is defined as the
size of the smallest circuit with oracle to A computing f . It was discovered in [KvM99] that
the construction of pseudorandom generator from high circuit complexity Boolean functions
does relativize.

Theorem 2.1 (Klivans-Melkebeek) Let A be any language. There is a polynomial-time
computable function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, with the following properties. For every
ǫ > 0, there exists a, b ∈ N such that for any n ∈ N

F : {0, 1}na
× {0, 1}b log n → {0, 1}n,

and if r is the truth table of a (a log n)-variables Boolean function of A-oracle circuit com-
plexity at least nǫa, then the function Gr(s) = F (r, s) is a generator, mapping {0, 1}b log n into
{0, 1}n, which has hardness HA(Gr) > n.

2.2 Finite Extension Strategies

Whereas resource-bounded measure is defined via martingales, resource-bounded Baire cate-
gories require finite extension strategies. Here is a definition.

Definition 2.2 A function h : {0, 1}∗ → {0, 1}∗ is a finite extension strategy, or a construc-
tor, if for every string τ ∈ {0, 1}∗, τ ⊑ h(τ).

For simplicity we use the word strategy for finite extension strategy. We say a strategy h
avoids some language A (or language A avoids strategy h) if for every string τ ∈ {0, 1}∗ we
have

h(τ) 6⊑ χA .

We say a strategy h meets some language A if h does not avoid A.
We often consider indexed strategies. An indexed strategy is a function

h : N × {0, 1}∗ → {0, 1}∗

such that hi := h(i, ·) is a strategy for every i ∈ N. Let h be an indexed strategy. Consider
the following function ext. Let σ ∈ {0, 1}∗ and i, k ∈ N and let w be the unique string such
that hi(σ) = σw. Define

ext(hi(σ), k) =

{
w[k] if 1 ≤ k ≤ |w|
⊥ otherwise.

and
ext(hi(σ)) = w .

5

3 Baire Category on Small Complexity Classes

For the rest of this paper, let ∆ ∈ SMALL be a family of bounds and let C = T(∆). be the
corresponding small time complexity class (for instance C = P). Note that most results in
this paper also hold for small space-bounded classes, i.e. of the form CS = S(∆) (for instance
CS = PSPACE).

To define resource bounded Baire categories on C, we consider strategies computed by
Turing machines which have random access to their inputs, i.e. on input τ , the machine can
query any bit of τ to its oracle. For such a random access Turing machine M running on
input τ , we denote this convention by M τ (·). Note that random access Turing machines can
compute the lengths of their input τ in O(log |τ |) steps (by checking τ [1], τ [2], τ [22], · · · , τ [2i]
until they go outside the string, followed by a binary search). We consider random access
Turing machines running in time t(|s|τ ||) (equivalently t(log |τ |) for some t ∈ ∆. Nevertheless,
for the time-bounded case, such machines cannot read their entire input (because time bounds
in ∆ are less than exponential).

The idea to define a Baire category notion on C, is to consider strategies whose extension
is computable in time t ∈ ∆, instead of requiring the whole output to be computable, which
would not be possible in time t ∈ ∆.

Definition 3.1 An indexed strategy h : N × {0, 1}∗ → {0, 1}∗ is ∆-computable if there is a
random access Turing machine M as before, such that for every τ ∈ {0, 1}∗ and every i ∈ N,

M τ (i) = ext(hi(τ)) (1)

where M runs in time t(log |τ | + |i|), for some t ∈ ∆. For the space bounded case, we also
require the output tape to be bounded, i.e. |ext(hi(τ))| ≤ t(log |τ | + |i|).

We say a class is small if there is an indexed strategy that avoids every language in the
class. More precisely,

Definition 3.2 A class X of languages is C-meager if there exists a ∆-computable indexed
strategy h, such that for every L ∈ X there exists an index i such that hi avoids L.

A class is called comeager if its complement is meager.
In order to formalize the second basic property we need to define enumerable infinite

unions precisely.

Definition 3.3 X =
⋃

i∈N
Xi is a C-union of C-meager sets, if there exists an indexed ∆-

computable strategy
h : N × N × {0, 1}∗ → {0, 1}∗

(i.e. for any i, j ∈ N, τ ∈ {0, 1}∗, h(τ, i, j) is computable in time t(log |τ |+ |i|+ |j|), for some
t ∈ ∆) such that for every i ∈ N, hi,· witnesses Xi’s meagerness.

Let us prove the three basic properties.

Theorem 3.1 For any language L in C, the singleton {L} is C-meager.

Proof. Let L ∈ C be any language. We describe a ∆-computable constructor h which avoids
{L}. Consider the following Turing machine M computing h. On input string σ, Mσ simply
outputs 1 − L(s|σ|+1). h is clearly ∆-computable, and h avoids {L}. ⊓⊔

The proof of the second basic property is easy.

6

Theorem 3.2 A C-union of C-meager sets is C-meager.

Proof. It is easy to see that a ∆-computable strategy

h : N × N × {0, 1}∗ → {0, 1}∗

can be transformed into a ∆-computable strategy

h′ : N × {0, 1}∗ → {0, 1}∗

using a pairing function to combine N × N into N. ⊓⊔
Let us prove the third basic property which says that the whole space C is not small.

The idea of the proof is given a strategy h, construct a language L that meets it, where L’s
characteristic sequences is divided into blocks of exponential size, where block i is used to
meet hi.

Theorem 3.3 C is not C-meager.

Proof. Let h be an indexed ∆-computable constructor and let M be a Turing machine
computing h, running in time t ∈ ∆. We construct a language L ∈ C which meets hi for every
i. The idea is to construct a language L with the following characteristic function,

χL = 0
︸︷︷︸

B0

ext(h1(B0))0 · · · 0
︸ ︷︷ ︸

B1

· · · ext(hi(B0B1 · · ·Bi−1))0 · · · 0
︸ ︷︷ ︸

Bi

(2)

where block Bi corresponds to all strings of size i, and block Bi contains

ext(hi(B0B1 · · ·Bi−1))

followed by a padding with 0’s. Bi is large enough to contain ext(hi(B0B1 · · ·Bi−1)) because
M runs in time t, therefore |ext(hi(B0B1 · · ·Bi−1))| ≤ t(log(|B0B1 · · ·Bi−1|)) < 2i because
t ∈ ∆ ∈ SMALL (for the space-bounded case, it follows from the requirement on the size of
the output tape, see Definition 3.1).

Let us construct Turing machine N deciding L, running in time t′ ∈ ∆. On input x, where
n = |x|,

1. Compute p where x is the pth word of length n.

2. For i = 1 to n simulate MB0B1···Bi−1(i). Answer M ’s queries with the previously stored
binary sequences B̄1, B̄2, B̄i−1 in the following way. Suppose that during its simulation
MB0B1···Bi−1(i) queries the kth bit of B0B1 · · ·Bi−1 to its oracle. To answer this query,
compute the position pk of sk among words of size |sk|. Look up whether the stored
binary sequence B̄lk contains a pkth bit bk. If this is the case answer M ’s query with
bk, else answer M ’s query with 0. Finally store the output of MB0B1···Bi−1(i) under B̄i.

3. If the stored binary sequence B̄n contains a pth bit then output this bit, else output 0
(x is in the padded zone of Bn).

Let us check that L is in C. The first and third step are clearly computable in time
O(t(n)). For the second step we have that for each of the n recursive steps there are at most
t(n) queries and each simulation of M once the queries are answered takes at most time t(n).
Thus L is computable in time t4, i.e. L ∈ C. Note that all B̄i’s have size at most t(n),
therefore it’s no problem to store them. ⊓⊔

7

Remark 3.1 Notice that as opposed to existing notion of resource-bounded measure on small
classes [AS94, Str97, Mos06b], this Baire category notion does not need dependency sets, i.e.
polynomial printable sets corresponding to the bits read in the input (whereas this restriction
is needed for locally-computable categories).

3.1 Resource-Bounded Banach-Mazur Games

We give an alternative characterization of small sets via resource-bounded Banach-Mazur
games, similarly to the classical case (see [Oxt80]) and the resource-bounded case [Lut90].
Informally speaking, a Banach-Mazur game, is a game between two strategies f and g, where
the game begins with the empty string λ. Then g ◦ f is applied successively on λ. Such a
game yields a unique infinite string, or equivalently a language, called the result of the play
between f and g. We say that g is a winning strategy for class X if it forces the result of
the game with any strategy f to be a language not in X. We show that the existence of a
winning strategy for X is equivalent to the meagerness of X. This equivalence result is useful
in practice, since it is often easier to find a winning strategy rather than a finite extension
strategy.

Definition 3.4

1. A play of a Banach-Mazur game is a pair (f, g) of strategies such that g strictly extends
every string, i.e. for every string τ ∈ {0, 1}∗, τ ❁ g(τ).

2. The result R(f, g) of the play (f, g) is the unique element of {0, 1}∞ that extends (g ◦
f)i(λ) for every i ∈ N.

For a class of languages X and time bound families ∆I and ∆II , denote by G[X,∆I ,∆II]
the Banach-Mazur game with distinguished set X, where player i (i ∈ {I, II}) must choose
a strategy ∆i-computable. We say player II wins the play (f, g) if R(f, g) 6∈ X, otherwise
we say player I wins. We say player II has a winning strategy for the game G[X,∆I ,∆II],
if there exists a ∆II -computable strategy g such that for every ∆I -computable strategy f ,
player II wins (f, g). We denote by N

N the class of all functions mapping strings to strings.
The following result states that a class is C-meager iff there is a winning strategy for player

II. The idea of the proof is to construct a non-indexed strategy from an indexed one where
at step i, the smallest index that has not been met is used.

Theorem 3.4 Let X be any class of languages. The following are equivalent.

1. Player II has a winning strategy for G[X, NN,∆].

2. X is C-meager.

Proof. Suppose the first statement holds and let g be a ∆-computable wining strategy for
player II. Let M be a Turing machine computing g, in time t ∈ ∆. We define an indexed
∆-computable constructor h. For k ∈ N and σ ∈ {0, 1}∗, define

hk(σ) := g(σ′) where σ′ = σ0k−̇|σ| . (3)

h is ∆-computable because computing hk(σ) simply requires simulating Mσ′
, answering

M’s queries in dom(σ′)\dom(σ) by 0. We show that if language A meets hk for every k ∈ N,

8

then A 6∈ X. This implies that X is C-meager as witnessed by h. To do this we show that for
every α ❁ χA there is a string β such that,

α ⊑ β ⊑ g(β) ❁ χA . (4)

If this holds, then player I has a winning strategy yielding R(f, g) = A (unless A 6∈ X): for
a given α player I extends it to obtain the corresponding β, thus forcing player II to extend
to a prefix of χA. So let α be any prefix of χA, where |α| = k. Since A meets hk, there is a
string σ ❁ χA such that

σ′ ⊑ g(σ′) = hk(σ) ❁ χA (5)

where σ′ = σ0k−̇|σ|. Since |α| ≤ |σ′| and α, σ′ are prefixes of χA, we have α ⊑ σ′. Define β to
be σ′.

For the other direction, let X be C-meager as witnessed by h, i.e. for every A ∈ X there
exists i ∈ N such that hi avoids A. Let N be a Turing machine computing h, running in time
t ∈ ∆. We define a ∆-computable constructor g inducing a winning strategy for player II in
the game G[X, NN,∆]. We show that for any strategy f , R(f, g) meets hi for every i ∈ N,
which implies R(f, g) 6∈ X. Here is a description of a Turing machine M computing g. For a
string σ, Mσ does the following.

1. Compute n0 = min{t : t ≤ log |σ|, and (∀τ ⊑ σ such that |τ | ≤ log |σ|) ht(τ) 6⊑ σ}.

2. If no such n0 exists output 0.

3. If n0 exists (hn0 is the next strategy to be met), simulate Nσ(n0), denote N ’s answer
by ω. Output ω.

g is computable in time O(n2t(n)), i.e. ∆-computable. We show that R(f, g) meets every
hi for any strategy f . Suppose for a contradiction that this is not the case, i.e. there is a
strategy f such that R(f, g) does not meet h. Let m be the smallest index such that R(f, g)
does not meet hm. Since R(f, g) meets hm−1 there is a string τ such that

hm−1(τ) ❁ R(f, g) .

Since g strictly extends strings at every round, after at most 2O(|τ |) rounds, f outputs a string
σ long enough to enable step one (of M ’s description) to find out that

hm−1(τ) ⊑ σ ❁ R(f, g)

thus incrementing m − 1 to m. At this round we have

g(σ) = σ ext(hm(σ))

i.e.

hm ❁ R(f, g)

which is a contradiction. ⊓⊔

9

3.2 Application: Derandomization of BPP

It was shown in [AS94] that for every ǫ > 0, for all languages A ∈ Eǫ except a measure zero
class BPP is contained in PA, thus leaving open the question whether the result also holds if
the probabilistic algorithms also have access to A. We answer this question affirmatively in
the Baire category setting, i.e. we show that for every ǫ > 0, all languages A ∈ Eǫ except a
meager class satisfy PA = BPPA. The idea of the proof is to construct a strategy that given
a initial segment of a language, extends it by the characteristic sequence of a language with
high circuit complexity, by diagonalizing over all small circuits. The language can then be
plugged into a pseudorandom generator to obtain full derandomization.

Theorem 3.5 For every ǫ > 0, the set of languages A such that PA 6= BPPA is Eǫ -meager.

Proof. Let ǫ > 0 be small. Let 0 < δ < ǫ and let b > 0 be some integer to be determined
later. Consider the following strategy h, computed by the following Turing machine M . On
input σ, where n = log |σ|, M does the following. At start Z = ∅, and i = 1. M computes zi

in the following way. First if

s|σ|+i 6= 02b|u|
u

for any string u where |u| = log(n1/b), then let zi = 0, output zi, and compute zi+1; else
denote by ui the corresponding string u. Construct the set Ti of all truth tables of |ui|-input
Boolean circuits C with oracle gates for σ of size less than 2δ|ui|, such that

C(uj) = zj for every (uj , zj) ∈ Z .

Compute
Mi = MajorityC∈Ti

[C(ui)]

and let zi = 1 − Mi. Add (ui, zi) to Z. Output zi, and compute zi+1, unless ui = 1log(n1/b)

(i.e. ui is the last string of size log(n1/b)), in which case M stops.

There are 2n4δ/b
circuits to simulate, and simulating such a circuit takes time O(n4δ/b), by

answering its queries to σ with the input σ. Finally computing the majority Mi takes time
2O(n4δ/b). Thus the total running time is less than 2n2cδ/b

for some constant c, which is less

than 2nǫ′

(with ǫ′ < ǫ) for an appropriate choice of b.
Let A be any language and consider

F (A) := {u|02b|u|
u ∈ A}.

It is clear that F (A) ∈ EA. Consider HA
δ the set of languages L such that every n-input

circuits with oracle gates for A of size less than 2δn fails to compute L. We have

F (A) ∈ HA
δ implies PA = BPPA

by Theorem 2.1.
We show that h avoids every language A such that

F (A) 6∈ HA
δ .

So let A be any such language. There is a n-inputs circuit family {Cn}n>0, with oracle gates
for A, of size less than 2δn computing F (A). We have

C(ui) = 1 iff 02b|ui|ui ∈ A for every string ui such that (ui, zi) ∈ Z. (6)

10

(for simplicity we omit C’s index). Consider the set Dn of all circuits with log(n1/b)-inputs of

size at most nδ/b with oracles gates for A satisfying Equation 6. We have |Dn| ≤ 2n4δ/b
. By

construction, every zi such that (ui, zi) ∈ Z reduces the cardinal of Dn by a factor 2. Since
there are n1/b zi’s such that (ui, zi) ∈ Z, we have

Dn ≤ 2n4δ/b
· 2−n1/b

which is less than one because δ is small (smaller than 1/4). i.e. Dn = ∅. Therefore
h(σ) 6❁ χA. ⊓⊔

3.3 Almost every Language in PSPACE Does Not Have Small Nonuniform

Complexity

The following result shows that almost every language in PSPACE does not have small nonuni-
form complexity.

Theorem 3.6 Let For every c > 0, SIZE(nc) is PSPACE-meager.

Proof. Let c > 0. Consider the following strategy which on input σ with n = log |σ|, outputs
a string u of size 2nc+1 defined as follows. Let ui denote the ith bit of u, and let zui be the
string whose membership bit corresponds to ui, in the characteristic sequence starting with
σu. For n ≤ t denote by S(n, t, σ, u1 · · · ul) the set of n-inputs Boolean circuits of size t such
that C(zuj) = uj for every 1 ≤ j ≤ l. Let

ui = 1 − Majority{C(zui) : C ∈ S(|zui |, |zui |
c, σ, u1 · · · ui−1)}.

It is well known [Pap94] that

|S(n, t, σ, u1 · · · ut)| ≤ 2t log t

thus h is computable in DSPACE(nc+2) by constructing all corresponding circuits. h avoids
SIZE(nc), because there are less than 2nc+1

such circuits, and each bit ui of the extension u
diagonalizes against at least half such circuits. ⊓⊔

The proof of Theorem 3.3 shows that the class of all languages with subexponential den-
sity is not C-meager. In the next section, we improve the power of ∆-computable strategies
by considering locally computable strategies, which can avoid the class of languages of subex-
ponential density.

4 Locally Computable Categories on Small Complexity Classes

In order to allow random access Turing machines to compute the length of their inputs τ ,
without querying their oracles (due to the query set requirement that follows), we also provide
them with s|τ |. For such a Turing machine M running on input τ , we denote this convention
by M τ (s|τ |).

Similarly to [Fen95], we shall consider strategies whose extensions are bit-wise computable
in time t ∈ ∆. Such strategies are very strong since the extension can be of any finite size,
as long as it is locally computable. As it is usually the case with most notions of measure
defined in small complexity classes [AS94, Str97, Mos06b], to be able to show that the whole
class is not small, the power of the Turing machines computing the strategies needs to be

11

reduced, by requiring that all queries made to the input are contained in a t-printable set
(t ∈ ∆), called the query set (a set S is t-printable if there is a Turing machine M which on
input 1n outputs all strings in S=n in time t(n)).

Definition 4.1 An indexed strategy h : N × {0, 1}∗ → {0, 1}∗ is called ∆-loc-computable if
there exists a random access Turing machine M as before such that for every τ ∈ {0, 1}∗ and
every i, k ∈ N,

M τ (s|τ |, i, k) = ext(hi(τ), k)

where M runs in time t(log |τ |+ |i|+ |k|) for some t ∈ ∆, and there is a t-printable query set
G such that for every n, i, k ∈ N and for every i′, k′ ∈ N such that i′ ≤ i and k′ ≤ k and for
every input σ ∈ {0, 1}∗ such that log |σ| ≤ n, Mσ(s|σ|, i

′, k′) queries σ only on bits that are in
G(n, i, k), where G(n, i, k) is printable in time t(n + |i| + |k|).

A class of languages is called meager if there is an indexed strategy that avoids every
language in the class.

Definition 4.2 A class X of languages is C-loc-meager if there exists a ∆-loc-computable
indexed strategy h, such that for every L ∈ X there exists i ∈ N, such that hi avoids L.

The definition of enumerable infinite unions is similar to Definition 3.3.

4.1 The Three Basic Properties

Let us check that all three basic properties hold for locally-computable Baire categories.

Theorem 4.1 For any language L in C, the singleton {L} is C-loc-meager.

Proof. Follows from Theorem 3.1. ⊓⊔
The following result states that enumerable infinite unions of small sets are small.

Theorem 4.2 A C loc-union of C loc-meager sets is C loc-meager.

Proof. Similar to Theorem 3.2. ⊓⊔
Let us prove the third basic property. The proof idea is similar to that of Theorem 3.3, i.e.

given a strategy h we construct a language L that meets h, where L’s characteristic sequence
is divided into blocks where on the ith block, hi is met. The difference is that now we do
not know the size of the extension computed by hi, therefore we first show the existence of a
function that bounds the size of hi, which we use to determine the size of block i.

Theorem 4.3 C is not C loc-meager.

Proof. We need the following technical Lemma, that bounds the size of the extensions effi-
ciently.

Lemma 4.1 Let h be a ∆-loc-computable indexed strategy. Then there exists a function
f : N → N such that,

1. For every σ ∈ {0, 1}∗ such that |σ| ≤
∑i−1

j=0 f(j) we have |ext(hi(σ))| ≤ f(i),

2. f(0) = 1 and f(i) ≥ 2i for every i ∈ N,

12

and there exists a deterministic Turing machine which on input i, computes f(i) within
O(log(f(i))) steps.

Proof. Let h be any ∆-loc-computable indexed strategy and let N be a Turing machine
witnessing this fact. We construct a deterministic Turing machine M for f . At each step
of the computation, M increments a counter R. On input i, M computes f recursively as
follows: f(0) = 1. For i > 0 compute

B =

i−1∑

j=0

f(j) .

For every string σ of size at most B, simulate Nσ(sσ, i, k) for k = 1, 2, . . . until N outputs ⊥,
store the corresponding k under kσ. Compute

K := max
|σ|≤B

kσ.

Stop incrementing the counter R, compute 2R+K+i, and output this value.

For the running time of M on input i, observe that the last two steps (once the counter R
is stopped) take time O(R+K +i). Thus the total running time of M is at most O(R+K +i)
which is less than O(log(f(i))). This ends the proof of the Lemma.

Let us prove the Theorem. Let h be a ∆-loc-computable indexed constructor and let M
be a Turing machine computing h with query set GM . Let f be as in Lemma 4.1 and let Q
be a Turing machine computing f .

We construct a language L ∈ P which meets hi for every i. The idea is to construct a
language L with the following characteristic function,

χL = 0
︸︷︷︸

B0

ext(h1(B0))0 · · · 0
︸ ︷︷ ︸

B1

ext(h2(B0B1))0 · · · 0
︸ ︷︷ ︸

B2

· · · ext(hi(B0B1 · · ·Bi−1))0 · · · 0
︸ ︷︷ ︸

Bi

where block Bi has size f(i) and contains ext(hi(B0B1 · · ·Bi−1)) followed by a padding with
0’s. Bi is large enough to contain ext(hi(B0B1 · · ·Bi−1)) by definition of f .

Let us construct a Turing machine N deciding L. On input x, where n = |x|,

1. Compute pos(x).

2. Compute the index i(x), where the membership bit of x is in zone Bi(x), with the formula

i(x) = max
j≥0

[

j−1
∑

t=0

f(t) < pos(x) + 1]

in the following way. At the beginning S = 1, then for t = 1, 2, . . . compute f(t) by
simulating Q for |x|2 steps, and add the result to S, until either Q doesn’t halt, or
S ≥ pos(x) + 1. Let t0 denote the first t for which this happens, and let

i(x) = t0 − 1 .

13

3. Compute the position of x in Bi(x) with

rpos(x) = pos(x) − F (i(x) − 1)

where

F (j) =

j
∑

t=0

f(t) .

4. Compute the membership bit of x, where

bit(x) = ext(hi(x)(B0B1 · · ·Bi(x)−1), rpos(x)) .

If bit(x) =⊥, then output 0 (x is in the padded zone of Bi(x)), otherwise output bit(x).

Let us check that L is in C. The first step is clearly computable in time polynomial in
n. For the second step notice that if f(t) < pos(x), Q must halt within O(log(pos(x))) steps,
which is less than |x|2 since pos(x) = 2O(|x|). Thus the second step computes i(x) correctly.
Moreover since f increases at least exponentially, only a polynomial number of terms need
to be summed in the second and third step. Since f is at least exponentially increasing, the
sums in step two and three can be done in polynomial time. Finally the last step requires
simulating

MB0B1···Bi(x)−1(sF (i(x)−1), i(x), rpos(x)) .

By the hypothesis on h, M ’s queries are all in

GM (|sF (i(x)−1)|, i(x), rpos(x))

which is contained in
GM (|sF (i(x)−1)|, i(x),pos(x))

which has size t(|x|) for some t ∈ ∆. For such a query q, i.e. suppose M queries the qth bit
of its input, simply run step one to four above with x replaced by q. By definition of GM at
most t(|x|) recursive steps need to be performed. ⊓⊔

4.2 Resource-bounded Banach-Mazur Games

Similarly to Section 3.1 we give an alternative characterization of small sets via resource-
bounded Banach-Mazur games. The proof is an extension of a similar proof in [Fen95].

Theorem 4.4 Let X be any class of languages. The following are equivalent.

1. Player II has a winning strategy for G[X, NN,∆-loc].

2. X is C loc-meager.

Proof. We need the following technical Lemma, that gives an efficient bound on the size of
the extensions.

Lemma 4.2 Let h be a ∆-loc-computable indexed constructor. Then there exists a function
f : N → N such that for every m ∈ N, t ≤ m and for every string τ of size at most m,
|ht(τ)| ≤ f(m), and there exists a deterministic Turing machine which on input m, computes
f(m) within O(f(m)) steps.

14

Let us prove the lemma. Let h be a ∆-loc-computable strategy, and let N be a Turing
machine witnessing this fact. We construct a deterministic Turing machine computing f . At
each step of the computation, M increments a counter R. On input m ∈ N, compute

K = max
|τ |≤m,t≤m

{|ht(τ)|}

by simulating N on all appropriate strings. Stop incrementing the counter R, compute K +R
and output the result. Thus M ’s total running time is less than O(R + K) which is in
O(f(m)). This ends the proof of the Lemma. ⊓⊔

For the proof of the Theorem, suppose the first statement holds and let g be a wining
∆-loc-computable strategy for player II. Let M be a Turing machine computing g. We define
an indexed ∆-loc-computable constructor h by constructing a machine N for h; let i ∈ N and
σ ∈ {0, 1}∗,

hi(σ) := g(σ′) where σ′ = σ0i−̇|σ|.

h is ∆-loc-computable because computing hi(σ) simply requires to simulate Mσ′
(s|σ′|) an-

swering M’s queries in dom(σ′)\dom(σ) by 0. Thus N ’s query set satisfies

GN (|s|σ||, i, k) ⊆ GM (|s|σ′||, k)

which has size t(log |σ| + |i| + |k|) for some t ∈ ∆, because |σ′| ≤ |σ| + i.
We show that if language A meets hk for every k ∈ N, then A 6∈ X. This implies that X

is C loc-meager as witnessed by h. To do this we show that for every α ❁ χA there is a string
β such that,

α ⊑ β ⊑ g(β) ❁ χA.

If this holds, then player I has a winning strategy yielding R(f, g) = A: for a given α player
I extends it to obtain the corresponding β, thus forcing player II to extend to a prefix of χA.
So let α be any prefix of χA, where k = |α|. Since A meets hk, there is a string σ ❁ χA such
that

σ′ ⊑ g(σ′) = hk(σ) ❁ χA

where σ′ = σk−̇|σ|. Since |α| ≤ |σ′| and α, σ′ are prefixes of χA, we have α ⊑ σ′. Define β to
be σ′.

For the other direction, let X be C loc-meager as witnessed by h, i.e. for every A ∈ X
there exists i ∈ N such that hi avoids A. Let N be a Turing machine computing h. Let
f : N → N be as in Lemma 4.2, and let Q be a deterministic Turing machine computing f .
We define a ∆-loc-computable constructor g inducing a winning strategy for player II in the
game G[X, NN,∆-loc]. We show that for any strategy s, R(s, g) meets hi for every i ∈ N,
which implies R(s, g) 6∈ X. Here is a description of a Turing machine M computing g. For a
string σ with n = log |σ| , Mσ(s|σ|, k) does the following.

1. Compute
B = max

m≥1
[f(m) ≤ n]

in the following way. For t = 1, 2, . . . compute f(t) by simulating Q for n2 steps, and
denote the result by bt, until either Q doesn’t halt, or bt > n. Let t0 denote the first t
for which this happens, then define B = bt0−1.

2. Compute n0 = min{t : t ≤ B, and (∀τ ⊑ σ such that |τ | ≤ B) ht(τ) 6⊑ σ}.

15

3. If no such n0 exists output 0 if k = 1, and output ⊥ if k > 1.

4. If n0 exists, then if k = 1 output 0, otherwise simulate Nσ0(s|σ|+1, n0, k − 1) answering
N ’s queries in dom(σ0)\dom(σ) with 0, and output the result of the simulation.

Let us check that g is ∆-loc-computable. For the first step, we have that whenever
f(m) ≤ n, Q halts within O(n) steps. Since Q is simulated n2 steps, B is computed correctly,
in polynomial time. For the second step, the B3 simulations of N can be done in time u ∈ ∆.
Moreover every ht(τ) computed during the second step has size at most B, thus only the first
n bits of the input σ need to be read. This together with the fourth step guarantees that the
query set for M is given by

GM (|s|σ||, k) = {1, 2, . . . n} ∪ GN (|s|σ|+1|, n, k − 1)

which has size u′(log |σ|), for some u′ ∈ ∆.
We show that R(s, g) meets every hi for any strategy s. Indeed suppose this is not the

case, i.e. there is a strategy s such that R(s, g) does not meet h. Let n0 be the smallest index
such that R(s, g) does not meet hn0 . Since R(s, g) meets hn0−1 there is a string τ such that

hn0−1(τ) ❁ R(s, g) .

Since g strictly extends strings at every round, after a certain number of rounds, s outputs a
string σ long enough to enable step two (of M ’s description) to find out that

hn0−1(τ) ⊑ σ

thus incrementing n0 − 1 to n0. At this round we have

g(σ) = σ0 ext(hn0(σ0))

i.e.
hn0 ❁ R(s, g)

which is a contradiction. ⊓⊔

4.3 Local Categories on BPP

In this section we introduce local categories on the probabilistic class BPP. To this end we
need the following probabilistic strategies.

Definition 4.3 An indexed strategy h : N×{0, 1}∗ → {0, 1}∗ is called BPP-loc-computable if
there is a probabilistic random access Turing machine (as defined in Definition 3.1) M such
that for every τ ∈ {0, 1}∗ and every i, k, n ∈ N,

Pr[M τ (s|τ |, i, k, n) = ext(hi(τ), k)] ≥ 1 − 2−n

where the probability is taken over the internal coin tosses of M , M runs in time polynomial
in log |τ |+ |i|+ |k|+n, and there is a poly printable query set G such that for every m, i, k ∈ N

and for every i′, k′ ∈ N (such that i′ ≤ i and k′ ≤ k), and for every input σ ∈ {0, 1}∗ (such that
log |σ| ≤ m), Mσ(s|σ|, i, k, n) queries σ only on bits that are in G(m, i, k); where G(m, i, k) is
printable in time polynomial in m + |i| + |k|.

16

Remark 4.1 By using standard Chernoff bound arguments it is easy to show that Definition
4.3 is robust, i.e. the error probability can range from 1

2 + 1
p(n) to 1−2−q(n) for any polynomials

p, q, without enlarging or reducing the class of strategies defined this way.

Similarly to the deterministic case, a class X is called meager if there is a single proba-
bilistic strategy that avoids X.

Definition 4.4 A class of languages X is BPP-loc-meager if there exists a BPP-loc-computable
indexed strategy h, such that for every L ∈ X there exists i ∈ N, such that hi avoids L.

The definition of enumerable infinite unions is similar to Definition 3.3.
Let us prove that all three basic properties hold for locally-computable Baire categories

on BPP.

Theorem 4.5 For any language L in BPP, {L} is BPP-loc-meager.

Proof. The proof is similar to Theorem 4.1 except that the constructor h is computed with
error probability smaller than 2−n. ⊓⊔

The second basic property is easy to show.

Theorem 4.6 A BPP-loc-union of BPP-loc-meager sets is BPP-loc-meager.

Proof. Similar to Theorem 3.2. ⊓⊔
Let us prove the third basic property.

Theorem 4.7 BPP is not BPP-loc-meager.

Proof.
The proof is similar to Theorem 4.3 except for the second step of N ’s computation, where

every simulation of M is performed with error probability smaller than 2−n. Since there are
n distinct simulations of M , the total error probability is smaller than n2−n, which ensures
that L is in BPP. ⊓⊔

4.4 SPARSE is Meager in P

It was shown in Section 3 that the class of languages with subexponential density is not
meager for the first category notion in this paper (the language in the proof of Theorem 3.3
has subexponential density). Here we prove that local computable strategies are stronger
than the strategies of Section 3, by showing that the class SPARSE (and also the class of
languages of subexponential density) is P-loc-meager. The idea of the proof is to extend any
prefix of a language with enough ones to make sure it is not sparse.

Theorem 4.8 SPARSE is P-loc-meager.

Proof. Let L be any sparse language. Then there exists a polynomial p such that

|L ∩ {0, 1}n| ≤ p(n) for every n ≥ 1.

Consider the following strategy h, which on input σ ∈ {0, 1}∗ pads σ with |σ| 1’s. Since
L is sparse, h avoids L. We construct a random access Turing machine M for h; on input
σ ∈ {0, 1}∗ and j ∈ N, Mσ(s|σ|, j) outputs 1 if 1 ≤ j ≤ |σ| and ⊥ otherwise. Since M doesn’t
query its oracle, h is P-loc-computable which ends the proof. ⊓⊔

17

4.5 Meager-Comeager Laws

The following meager-comeager laws in PSPACE and BPP contrast with the resource-bounded
measure case, where many of those all or nothing laws are not known to hold.

Theorem 4.9 Let X ∈ {ZPP,RP,BPP,NP}. Then either X is C-loc-meager or X = C.

Proof. We need the following lemma, whose proof is an extension of a similar result in [Fen95].

Lemma 4.3 Let X be a Σ0
2 class, such that there exists a language A in C, such that for

every finite variant A′ of A, A′ 6∈ X. Then X is C loc-meager.

Let us show the lemma. The idea of the proof is to extend any prefix of a language according
to language A until until we know we have avoided X.

By hypothesis there exists a polynomial oracle Turing machine M , such that

X = {L|∃x∀y : ML(x, y) = 0} .

Consider the following C loc-computable strategy g where ext(g(σ), k)), with n = log |σ|, is
computed as follows.

1. Simulate ML(x, y) for every x < log n and y < log k, where

χL = σA(s|σ|+1)A(s|σ|+2) · · ·

2. If for every x < log n there exists y < log k such that ML(x, y) 6= 0 output ⊥, else
output A(s|σ|+k).

Let us show that g is a strategy. Suppose for a contradiction that g extends σ infinitely.
Then the result is a finite variant of A, hence not in C. Therefore there exists k ∈ N, such
that

(∀x < |s|σ||)(∃y < log k)ML(x, y) 6= 0

where L = g(σ). Hence g should not have extended σ more than k bits, which is a contradic-
tion.

g is ∆-loc-computable since there are log n · log k simulations to perform and since the
queries to A can be computed in t steps (t ∈ ∆). The query set Gg(n, k) has size t(n + |k|)
for some t ∈ ∆, therefore g is ∆-loc-computable.

Let us show that g avoids X. Denote by L the result of the game between g and some
strategy f , where player II plays according to g. Let z be any string. On the first turn for
player II where the state of the game is of length at least 22z+1

, player II extends ensuring
that

(∀x < z + 1)(∃y < log k)ML(x, y) 6= 0 .

Thus
ML(z, y) 6= 0

which implies L 6∈ X.
This ends the proof of the lemma. We have the following consequences.

Corollary 4.1 Let X be a Σ0
2 class closed under finite variants. Then X is C-loc-meager iff

C 6⊆ X.

18

Which ends the proof of the theorem.
Similarly meager-comeager laws in BPP can be proved.

Theorem 4.10 Let X ∈ {P,ZPP,RP}. Then either X is BPP-loc-meager or X = BPP.

Proof. It is easy to check that Lemma 4.3 also holds in BPP. ⊓⊔

4.6 Weak Completeness

The concept of weak completeness was introduced in [Lut95]. A set A is called C-weakly-
complete if its lower span (the class of sets reducible to A) does not have C-measure zero. Lutz
showed in [Lut95] the existence of EXP-weakly-complete sets that are not EXP-complete. Sim-
ilarly we can define a categorical weak completeness notion, by calling a set A C-loc-weakly-
complete if its lower span is not C-loc-meager. We show that there is no P-loc-weakly-complete
incomplete language, i.e. P-loc-weakly-completeness is equivalent to P-completeness.

Theorem 4.11 P-loc-weakly-completeness is equivalent to P-completeness, under Turing logspace
reductions.

Proof. Let A ∈ P be any language. It is easy to check that the lower span A≥log
T is a Σ0

2 class

and is closed under finite variants. Thus by Corollary 4.1 we have A≥log
T is not P-loc-meager

iff A is ≤log
T -hard for P. ⊓⊔

Another consequence of Corollary 4.1 is the meagerness of the class of complete sets for
P, under the assumption P is not equal to DSPACE(log n).

Theorem 4.12 If P is not equal to DSPACE(log n), then the class of ≤log
T -P-complete sets is

P-loc-meager.

Proof. Let A be a ≤log
T -P-complete set. Consider A≤log

T the upper span of A. It is easy to check

that A≤log
T verifies the hypothesis of Corollary 4.1. By our assumption, A cannot reduce to a

set in DSPACE(log n), so P 6⊆ A≤log
T , hence A≤log

T is P-loc-meager. Since every ≤log
T -P-complete

language is in A≤log
T , this ends the proof. ⊓⊔

Note that the same result holds unconditionally for locally-computable categories on
QUASIPOLYlin.

Theorem 4.13 The class of ≤log
T -QUASIPOLYlin-complete sets is QUASIPOLYlin-loc-meager.

Proof. The proof is similar to Theorem 4.12.

4.7 Measure vs Baire Categories

Although Lemma 4.3 shows that locally computable strategies are extremely strong, the fol-
lowing easy observation shows that the size notion yielded from resource-bounded measure
is incomparable with the one derived from Baire category. This might explain why many
locally computable Baire category results on small complexity classes (meager-comeager laws
in PSPACE and BPP, equivalence between P-loc-weak-completeness and P-completeness, con-
ditional smallness of the class of P-complete languages) are not known to hold in the resource-
bounded measure setting on small complexity classes.

19

We use the measure notion on P of [Mos06b]. We shall give a brief description of it. A
martingale is a function d : {0, 1}∗ → R+ such that, for every w ∈ {0, 1}∗,

2d(w) = d(w0) + d(w1).

A martingale d succeeds on language L if

lim sup
n→∞

(L[1 . . . n]) = ∞.

Informally speaking, a set has P-measure zero if there exists a martingale d computable in
polynomial time that succeeds on every language in the class. For full details we refer the
reader to [Mos06b]. A language R is P-random if every polynomial time martingale does not
succeed on R. A language G is P-loc-generic if every P-loc-computable strategy does not
avoid G.

The following result shows that P-measure and P-loc-categories are incomparable. The
idea of the proof is that for any P-random language it is impossible that the language contains
no strings of size n for infinitely many lengths n; such a language can then easily be avoided
by a locally-computable strategy. The other direction is due to the existence of P-loc-generic
languages containing significantly more zeroes that ones in the limit, which makes it possible
for a martingale to succeed on them.

Theorem 4.14

1. Every P-random set is P-loc-meager.

2. There exist P-loc-generic sets which have P- measure zero.

Proof. Let R be P-random, then
∀∞n : L=n

n 6= ∅

(where L=n
n denotes the n first strings of size n) otherwise consider the following P-computable

martingale d which divides its initial capital into shares cn = 1/n2, and uses capital cn to bet
on strings of size n, by betting all the capital that the first n strings of size n have membership
bit 0. Whenever this bet is correct for strings of size n, d wins 2n/n2. Since

∃∞n : L=n
n 6= ∅

d’s capital grows unbounded on R, which contradicts R’s P-randomness. Consider the fol-
lowing P-loc-computable strategy h. By hypothesis there exists a constant k such that

∀n > k : L=n
n 6= ∅ .

Therefore strategy h defined by

ext(h(σ)) = 02|σ|+22k

avoids R, i.e. {R} is P-loc-meager.
For the second part consider the following language G. Let Mi be an (non-effective)

enumeration of all Turing machines computing P-loc-computable strategies. Consider the
following characteristic sequence of G .

χG = 1
︸︷︷︸

B0

ext(h1(B0))
︸ ︷︷ ︸

B1

0 · · · 0
︸ ︷︷ ︸

B2

ext(h2(B0B1B2))
︸ ︷︷ ︸

B3

0 · · · 0
︸ ︷︷ ︸

B4

· · ·

20

where block B2i contains 5 · |B0B1 · · ·B2i−1| 0’s. By construction G is P-loc-generic because
it meets every P-loc-computable strategy. Consider the same P-computable martingale d as
above. By construction of G, the zones padded with 0’s are large enough to guarantee that

∃∞n : G=n
n = ∅ .

Therefore d’s capital grows unbounded on G which ends the proof. ⊓⊔

5 Conclusion

We have introduced two Baire category notions on small deterministic and probabilistic
classes, and given applications of both notions in derandomization, circuit complexity, meager-
comeager laws and weak-completeness, some of which are not known to hold with respect to
measure in small complexity classes. We then observed that categories and measure on small
classes are incomparable, which might explain these differences between the two settings.

Acknowledgments
We thank the anonymous referees for their useful comments.

References

[AS94] E. Allender and M. Strauss. Measure on small complexity classes, with application
for BPP. Proc. of the 35th Ann. IEEE Symp. on Found. of Comp. Sci., pages
807–818, 1994.

[BDG90] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity II. EATCS Mono-
graphs on Theoretical Computer Science Volume 22, Springer Verlag, 1990.

[BDG95] J. L. Balcazar, J. Diaz, and J. Gabarro. Structural Complexity I. EATCS Mono-
graphs on Theoretical Computer Science Volume 11, Springer Verlag, 1995.

[Fen95] S. A. Fenner. Resource-bounded Baire category : a stronger approach. Proceedings
of the Tenth Annual IEEE Conference on Structure in Complexity Theory, pages
182–192, 1995.

[Hit04] John M. Hitchcock. The size of SPP. Theoretical Computer Science, 320:495–503,
2004.

[IM03] R. Impagliazzo and P. Moser. A zero-one law for RP. Proceedings of the 18th
Conference on Computational Complexity, pages 48–52, 2003.

[KvM99] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial hierarchy collapses. Proceedings of the 31st Annual
ACM Symposium on Theory of Computing, pages 659–667, 1999.

[Lut90] J.H. Lutz. Category and measure in complexity classes. SIAM Journal on Com-
puting, 19:1100–1131, 1990.

[Lut92] J.H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer
and System Science, 44:220–258, 1992.

21

[Lut95] J.H. Lutz. Weakly hard problems. SIAM Journal on Computing, 24:1170–1189,
1995.

[May94] Elvira Mayordomo. Measuring in PSPACE. Proceedings of the 7th International
Meeting of Young Computer Scientists (IMYCS’92). Gordon-Breach Topics in
Computer Science 6, 136:93–100, 1994.

[Mel00] D. Melkebeek. The zero-one law holds for BPP. Theoretical Computer Science,
244(1-2):283–288, 2000.

[Mos03] P. Moser. Baire’s categories on small complexity classes. 14th Int. Symp. Funda-
mentals of Computation Theory, pages 333–342, 2003.

[Mos06a] P. Moser. Lp computable functions and Fourier series. submitted, 2006.

[Mos06b] P. Moser. Martingales family and dimension in P. Logical Approaches to Com-
putational Barriers, Second Conference on Computability in Europe, CiE 2006,
Swansea, UK, pages 388–397, 2006.

[Oxt80] J. C. Oxtoby. Computational complexity. Springer-Verlag, Berlin, second edition,
1980.

[Pap94] C. Papadimitriou. Computational complexity. Addisson-Wesley, 1994.

[RS98] K. Regan and D. Sivakumar. Probabilistic martingales and BPTIME classes. In
Proc. 13th Annual IEEE Conference on Computational Complexity, pages 186–200,
1998.

[Str97] M. Strauss. Measure on P- strength of the notion. Inform. and Comp., 136:1:1–23,
1997.

22

	Introduction
	Preliminaries
	Pseudorandom Generators
	Finite Extension Strategies

	Baire Category on Small Complexity Classes
	Resource-Bounded Banach-Mazur Games
	Application: Derandomization of BPP
	Almost every Language in PSPACE Does Not Have Small Nonuniform Complexity

	Locally Computable Categories on Small Complexity Classes
	The Three Basic Properties
	Resource-bounded Banach-Mazur Games
	Local Categories on BPP
	SPARSE is Meager in P
	Meager-Comeager Laws
	Weak Completeness
	Measure vs Baire Categories

	Conclusion

