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Abstract— We introduce the Imperial College London and
National University of Ireland Maynooth (ICL-NUIM) dataset
for the evaluation of visual odometry, 3D reconstruction and
SLAM algorithms that typically use RGB-D data. We present
a collection of handheld RGB-D camera sequences within
synthetically generated environments. RGB-D sequences with
perfect ground truth poses are provided as well as a ground
truth surface model that enables a method of quantitatively
evaluating the final map or surface reconstruction accuracy.
Care has been taken to simulate typically observed real-world
artefacts in the synthetic imagery by modelling sensor noise in
both RGB and depth data. While this dataset is useful for the
evaluation of visual odometry and SLAM trajectory estimation,
our main focus is on providing a method to benchmark the
surface reconstruction accuracy which to date has been missing
in the RGB-D community despite the plethora of ground truth
RGB-D datasets available.

I. INTRODUCTION

A key attribute of any reconstruction algorithm is the level
of detail it can recover from a set of data. Multi-view stereo
fusion of images has long been a research focus of the vision
community, and has recently become feasible in real-time for
reconstructing surfaces from monocular video [1], [2]. The
depths of points in the scene are optimised in an energy
minimisation framework fusing data from multiple images
using a lambertian surface assumption. However, the arrival
of commodity depth sensors has led to joint RGB-D fusion
approaches that offer increased robustness and accuracy in a
range of conditions. The use of active illumination means that
these RGB-D approaches are able to recover the 3D shape
of surfaces whose appearance properties do not necessarily
obey the assumptions commonly used in multi-view stereo
methods.

The increased computational processing power in com-
modity graphics processing units (GPUs) available today
has greatly proliferated the interest in real-time surface re-
construction. Systems like KinectFusion [3] and Kintinuous
[4] have demonstrated the capability to create dense surface
reconstructions by delegating the computational burden to
these high performance GPUs present in typical desktop
or laptop machines. Reconstructions obtained from these
systems qualitatively appear accurate, but there are currently
no published quantitative assessments of the accuracy of
the 3D surface reconstruction. This is largely due to the
inavailability of datasets with 3D surface ground truth.
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Fig. 1. The interior of our synthetic living room scene (color
removed to highlight geometry). The scene is composed of various
common objects e.g. vase, table, lamp, chairs, sofa etc.

In this paper we address this problem and provide a
synthetic dataset with both surface and trajectory ground
truth to fully quantify the accuracy of a given SLAM system
or 3D reconstruction system. We obtain realistic trajectories
for use in synthesized sequences by running the Kintinuous
system in a standard real world environment and taking the
estimated camera paths as ground truth trajectories. This
synthetic approach is inspired by the recent work of Handa et
al. [5] who used a similar synthetic approach to evaluate the
performance of different frame rates for photometric camera
tracking.

Ground truth dataset generation for the assessment of
camera pose tracking and object segmentation has been pre-
viously presented in many recent works including Tsukuba
[6], TUM RGB-D [7], [8], Sintel [9], KITTI [10] and the
NYU Dataset [11]. However, all of these datasets are mainly
aimed at trajectory estimation or pure two-view disparity
estimation. None has the combination of realistic RGB plus
depth data together with full 3D scene and trajectory ground
truth over room-sized trajectories which we present here.
Scene geometry ground truth for such trajectories suitable for
SLAM has not been available for real sensor data due to the
difficulty involved in its capture. In a laser scanner approach
for example, each point measurement has an error tolerance
and is not completely accurate, while occlusions encountered
when scanning a scene make full watertight 3D surface
models difficult to acquire. In addition to this, perfect time
synchronisation with motion capture setups is impossible to
achieve. We will show here that a carefully undertaken and
high quality synthetic approach instead can fill this gap and
serve a major role in enabling full comparison of RGB-D
SLAM and visual odometry algorithms. We provide not only
a number of realistic pre-rendered sequences, but also open
source access to the full pipeline for researchers to generate
their own novel test data as required.

We demonstrate the usefulness of our dataset and proposed
testing methodology for both trajectory and scene reconstruc-
tion accuracy with a comparison of several camera motion
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estimation alternatives within the Kintinuous RGB-D dense
SLAM system.

All data, videos, documentation and scripts are available
online under the Creative Commons Attribution license (CC-
BY 3.0) at:
http://www.doc.ic.ac.uk/˜ahanda/VaFRIC/

iclnuim.html

II. PRELIMINARIES

In this section we focus on the mathematical minutiae
involved in the rest of the paper and other technical as-
sumptions used in the framework. Our synthetic framework is
largely inspired by Handa et al. [5] who used POVRay 1 and
synthetic trajectories to obtain ground truth depth maps and
color images. Their dataset used only a single office scene 2

for their experiments. In addition to presenting trajectory
only sequences in the same scene, we also make use of a
new dataset with 3D surface ground truth. Our perspective
camera model is the same as the one used by Handa et al.
with similar field of view (90 degrees) and image resolution
(640×480). The camera intrinsic calibration matrix K is
given by

K =

481.20 0 319.50
0 −480.0 239.50
0 0 1

 (1)

where the negative sign indicates that the Y-axis of the
POVRay coordinate system is flipped to the image Y-axis
due to POVRay using a left-handed coordinate system. All
raycast frames are free from lens distortion and have not had
any anti-aliasing applied. The provided ground truth camera
poses are in standard SE3 representation which we denote
by Ta b, read as the pose of b with respect to a.

III. DATASET

Our synthetic dataset consists of images obtained from
camera trajectories in raytraced 3D models in POVRay for
two different scenes, the living room and the office room.
While the office room has previously appeared in the work
of Handa et al. [5], we introduce the new living room scene
which unlike the office room scene, also has an associated 3D
polygonal model which allows evaluation of the accuracy of
the final reconstruction. The office room scene is a procedu-
rally generated raytraced scene and thus there is no available
polygonal model for surface reconstruction evaluation.

Figure 1 shows snapshots of the interior of the living
room from two different views. The living room model
is represented in the standard .obj file format with .exr
textures. Images corresponding to different camera poses
on a given trajectory are stored in typical RGB and D
frame pairs while the camera poses are represented in SE3

format. In the following section, we describe the procedure
to obtain physically realistic trajectories and render images
from different poses in a trajectory.

1http://www.povray.org/
2http://www.ignorancia.org/en/index.php?page=The_

office

Sequence Frames Length Avg. Trans Vel.
kt0 (lr) 1510 6.54m 0.126ms−1

kt1 (lr) 967 2.05m 0.063ms−1

kt2 (lr) 882 8.43m 0.282ms−1

kt3 (lr) 1242 11.32m 0.263ms−1

kt0 (or) 1510 6.54m 0.126ms−1

kt1 (or) 967 6.73m 0.206ms−1

kt2 (or) 882 9.02m 0.302ms−1

kt3 (or) 1242 7.83m 0.182ms−1

TABLE I
STATISTICS ON THE FOUR PRESENTED SEQUENCES FOR BOTH SCENES,

LIVING ROOM (LR) AND OFFICE ROOM (OR).

IV. TRAJECTORIES
We obtained source handheld trajectories by running

Kintinuous on data collected in a living room and subse-
quently used these estimated trajectories in the synthetic
scenes as ground truth to obtain images and depth maps for
each sequence. The trajectories are named kt0, kt1, kt2 and
kt3. The trajectory kt3 is particularly interesting due to the
presence of a small “loop closure” in the path taken. Table
I lists statistics on all four trajectories according to their
scaling for the two synthetic scenes. All data is recorded
at 30Hz.

Transforming trajectories from the source Kintinuous tra-
jectory coordinate frame to the POVRay coordinate frame is
done by applying the following rigid transformation:

Tpov cam = Tpov kintinuous ·Tkintinuous cam (2)

Tkintinuous cam denotes the pose obtained in the Kintinu-
ous coordinate frame which is mapped to POVRay coordi-
nate frame by applying the Tpov kintinuous transformation.
Tpov kintinuous is obtained by simply mapping the initial
pose to the POVRay pose from where the trajectory begins in
the synthetic scene. In particular, the raw source trajectories
output by Kintinuous were rotated and uniformly scaled to
achieve suitable trajectories within the virtual scenes.

A. Living Room
Figure 2 shows images taken at different camera poses

for different trajectories in the living room scene. Special
care was taken to simulate real-world lighting phenomena
commonly observed in real images e.g. specular reflections,
shadows and colour bleeding. It is also worth mentioning
that when doing pure photometric image registration these
artefacts are considered outliers but to ensure that images
look as photo-realistic as possible, it is important that they
are present in the images.

B. Office Scene
Images obtained at different camera poses for the office

room are shown in Figure 3. As previously mentioned the
office room is rendered procedurally and does not have
an explicit 3D model. Therefore, it is only suitable for
benchmarking camera trajectory estimation performance.

In the following section, we detail the process used to
alter the perfect raytraced images to simulate realistic sensor
noise.
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Fig. 2. Images of the living room scene taken at different camera poses. Different real-world lighting phenomena can be clearly observed
in the images e.g. reflections, shadows, light scattering, sunlight (from the window) and colour bleeding.

Fig. 3. Images of the office room scene taken at different camera poses. Various objects that are observed in a regular desktop room can
be found in the images.

V. NOISE MODELLING

We consider two different sources of noise in our experi-
ments: the noise occurring in the RGB image and the noise
present in the depth image.

A. Depth noise

Our depth noise model is inspired by [12] who use random
offsets to shift the pixel locations in the image and bilinearly
interpolate the ground truth depth values as a first step
towards simulating Microsoft Kinect sensor noise. These
random shifts cause the depth map to become noisy while
the bilinear interpolation ensures that the depth values among
neighbouring pixels are correlated. Depth values are then
converted to disparity and IID Gaussian noise is added
to each disparity value. Finally the disparity values are
quantised by rounding to the nearest integer and converted
back to depth measurements. The procedure 3 is summarised
by the following equation:

Ẑ(x, y) =
35130

b35130/Z(x+ nx, y + ny) +N (0, σ2
d) + 0.5c

(3)

3The number 35130 is obtained from the baseline of Kinect sensor by
[12] and the associated supplementary material.

where variables Z denotes the ground truth depth of a pixel,
nx and ny denote the random shifts in x and y drawn from a
Gaussian distribution (nx, ny) ∼ N (0, σ2

s ·I) and σd denotes
the standard deviation of noise in depth4. This model ensures
that pixels with small disparity values (i.e. far away pixels)
have low a SNR in depth and hence are noisier, while pixels
with large disparity values are only slightly affected by the
added noise.

Additionally, we perturb the vertices corresponding to
the depth values along their normals with Gaussian noise
(N (0, σ2

θ)) and project these vertices to obtain laterally
corrupted depth. The σθ is a bilinear function of the angle
that the normal at a point makes with the camera ray and the
depth. This has the effect of missing depth values on pixels
with very oblique normal angles to the camera viewpoint.
Figure 4 shows our synthetic ground truth depth maps with
simulated sensor noise. The quantisation in the depth values
is manifested in the form of depth bands that appear in the
images.

4We use σs = 1
2

and σd = 1
6

in our experiments.
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Fig. 4. Realistic depth maps according to the noise model
we chose for our experiments. A movie of the associated trajec-
tory can be found at http://www.youtube.com/watch?v=
JOKKYRoXnvg where the quantisation and noise along the normals
is more evident.

B. RGB noise

We follow a similar RGB noise model to [5] to modify the
ground truth images with noise statistics one would obtain
from a real camera. A Camera Response Function (CRF)
is obtained by taking sample images of a static scene for
different exposure times. The CRF essentially encodes the
function that maps the irradiance on the camera to the digital
n-bit brightness value observed in the image. This allows
analytical modelling of the noise levels for all pixels in order
to compute some noise parameters. These noise parameters
are then used to add synthetic noise to the ground truth
images. We assume a linear CRF, which is most common
as found by Handa et al. [10].

VI. EVALUATION

A. Characterisation of experiments

We categorise our experiments in two different settings:
experiments assuming perfect data with no noise and exper-
iments assuming real world data with noise both in depth as
well as RGB. To evaluate the accuracy of 3D reconstructions,
we use the open source software CloudCompare 5 to align
the ground truth .obj model with the reconstructed model
produced by Kintinuous to compute reconstruction statistics.

B. Error metrics

We quantify the accuracy of surface reconstruction
by using the “cloud/mesh” distance metric provided by
CloudCompare. The process involves firstly coarsely
aligning the reconstruction with the source model by manu-
ally selecting point correspondences. From here, the mesh
model is densely sampled to create a point cloud model
which the reconstruction is finely aligned to using ICP.
Finally, for each vertex in the reconstruction, the closest tri-
angle in the model is located and the perpendicular distance
between the vertex and closest triangle is recorded. Five stan-
dard statistics are computed over the distances for all vertices
in the reconstruction: Mean, Median, Std., Min and Max.
We provide a tutorial on executing this process at http:
//www.youtube.com/watch?v=X9gDAElt8HQ.

5http://www.danielgm.net/cc/

Fig. 5. Reconstructions of the living room produced by Kintinuous
with ICP for kt1 and kt2.

Error (m) kt0 (DVO) kt0 kt1 kt2 kt3
Mean 0.0662 0.0612 0.0034 0.0037 0.0085
Median 0.0593 0.0368 0.0026 0.0030 0.0063
Std. 0.0504 0.0821 0.0033 0.0034 0.0072
Min 0.0000 0.0000 0.0000 0.0000 0.0000
Max 0.3655 0.5456 0.0461 0.0508 0.1562

TABLE II
RECONSTRUCTION STATISTICS AS OBTAINED FROM

CLOUDCOMPARE FOR THE LIVING ROOM SEQUENCES WITH NO

NOISE. USING ICP ODOMETRY EXCEPT WHERE NOTED FOR KT0.

Our trajectory estimation statistics are inspired by [7],
[8] who use absolute trajectory error (ATE) to quantify the
accuracy of an entire trajectory. We evaluate 5 different
odometers; (i) DVO [13] which performs full frame align-
ment between pairs of RGB-D frames making use of a robust
cost function to improve robustness to outliers; (ii) FOVIS
[14] which uses FAST feature correspondences between pairs
of RGB-D frames to resolve camera motion, relying on
traditional sparse corner type features in the image; (iii)
RGB-D [15] which again performs full frame alignment
between pairs of RGB-D images, with a less robust cost
function than that of [13]; (iv) ICP as used in KinectFusion
and Kintinuous [3], [4] which uses only geometric infor-
mation in camera pose estimation with the notable feature
of matching full new depth frames to the existing dense
volumetric model of the scene contained within a truncated
signed distance function (TSDF) and (v) ICP+RGB-D [16]
which is a combination of the aforementioned ICP and RGB-
D odometers in a weighted optimisation. Henceforth when
discussing trajectory estimation error we refer to the root-
mean-square-error metric (RMSE) introducted by Sturm et
al. [7], [8].

C. Noiseless Scenario

1) Living Room: We run the Kintinuous pipeline on per-
fectly synthesized images for all four trajectories. A volume
size of 4.5m was used in all experiments with a TSDF
truncation distance of 0.045m. Sample reconstructions of the
living room scene are shown in Figure 5. Table II shows all
statistics for the reconstructions using the odometer with the
best ATE score, with the exception of kt0 where the best
(DVO) and second best (ICP) are listed.

Trajectory kt2 obtains the best mean trajectory error while
the worst error statistics are obtained for kt0 where there are
parts of the trajectory when the camera is looking at a planar
lightly textured region of the scene. Interestingly although the
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Odometer Error (m) kt0 kt1 kt2 kt3

DVO

RMSE 0.1138 0.1055 0.1073 0.1879
Mean 0.0929 0.0875 0.1034 0.1622
Median 0.0750 0.0678 0.1031 0.1485
Std. 0.0657 0.0589 0.0286 0.0947
Min 0.0040 0.0039 0.0463 0.0328
Max 0.3091 0.2035 0.1669 0.4217

FOVIS

RMSE 1.9312 2.6679 2.5613 2.1551
Mean 1.8224 2.5653 2.5051 1.7472
Median 1.6400 2.4828 2.5938 1.4537
Std. 0.6389 0.7328 0.5334 1.2615
Min 0.7482 0.4178 1.0820 0.2167
Max 3.2882 4.2334 3.2587 5.6442

RGB-D

RMSE 0.4558 0.6288 0.1609 1.0294
Mean 0.3771 0.5372 0.1339 0.9653
Median 0.2986 0.4165 0.1018 1.0120
Std. 0.2559 0.3269 0.0891 0.3575
Min 0.0635 0.0513 0.0441 0.2758
Max 1.1423 1.2194 0.4090 1.6445

ICP

RMSE 0.1188 0.0023 0.0015 0.0200
Mean 0.1045 0.0019 0.0014 0.0165
Median 0.0753 0.0016 0.0013 0.0124
Std. 0.0566 0.0012 0.0006 0.0004
Min 0.0534 0.0005 0.0004 0.0055
Max 0.2299 0.0048 0.0039 0.0172

ICP+RGB-D

RMSE 0.4365 0.0096 0.2151 0.6975
Mean 0.3961 0.0086 0.2111 0.6687
Median 0.3149 0.0078 0.2029 0.6307
Std. 0.1833 0.0042 0.0415 0.1982
Min 0.0423 0.0020 0.0868 0.3375
Max 1.0187 0.0237 0.2973 1.0540

TABLE III
ABSOLUTE TRAJECTORY ERROR (ATE) FOR TRAJECTORIES ON THE

LIVING ROOM SEQUENCES ASSUMING NO NOISE.

DVO method achieves a lower ATE on kt0, the reconstruction
accuracy is lower than that achieved by ICP, which scored
second best on the ATE. This is explained in how the ICP
method performs frame-to-model tracking, where DVO does
not. This also highlights how a better trajectory score does
not imply a better reconstruction, even when both make use
of a TSDF for volumetric fusion. If explicit frame-to-model
tracking was also being employed by the DVO algorithm we
would expect the surface reconstruction accuracy to improve
as it would no longer be simply forward-feeding data into
the TSDF. The heat maps shown in Figure 6 highlight the
areas where the reconstructions are least accurate.

The Absolute Trajectory Error (ATE) statistics are listed
in Table III where DVO narrowly beats ICP for trajectory
kt0 where otherwise ICP maintains the best performance for
all the other trajectories. FOVIS performs the worst for all
different trajectories suggesting that the four other methods
which all use dense full frame alignment are superior on
this kind of data. In general, photometric methods appear
to perform quite poorly, as observable in the ATE plots in
Figure 8, though their necessity and merit is shown by the
performance of DVO on kt0 where even on perfect data the
geometry only reliant ICP breaks down.

2) Office Room: As previously discussed, the office room
scene is only suitable for trajectory estimation experiments.
Although there is no surface ground truth to judge the ac-
curacy of reconstruction, Figure 7 shows the reconstructions

Odometer Error (m) kt0 kt1 kt2 kt3

DVO

RMSE 0.3977 0.4461 0.3271 0.2066
Mean 0.3507 0.3993 0.2986 0.1880
Median 0.3744 0.3795 0.2607 0.1632
Std. 0.1875 0.1989 0.1335 0.0855
Min 0.0231 0.1156 0.0936 0.0350
Max 0.6883 0.9707 0.5475 0.3840

FOVIS

RMSE 3.3962 1.0309 1.7696 1.9822
Mean 3.2087 0.9455 1.5408 1.8482
Median 2.7582 0.9366 1.2945 1.7277
Std. 1.1130 0.4109 0.8704 0.7164
Min 1.3133 0.1856 0.5911 0.5636
Max 6.0739 2.2207 5.9525 3.5404

RGB-D

RMSE 0.2701 0.6173 0.2664 0.4750
Mean 0.2534 0.5271 0.2275 0.3593
Median 0.2717 0.4744 0.1804 0.2390
Std. 0.0935 0.3214 0.1387 0.3108
Min 0.0634 0.0616 0.1235 0.0506
Max 0.4620 1.5493 0.7902 1.5557

ICP

RMSE 0.0029 0.0385 0.0016 0.0021
Mean 0.0026 0.0341 0.0015 0.0019
Median 0.0026 0.0360 0.0015 0.0017
Std. 0.0012 0.0179 0.0006 0.0010
Min 0.0001 0.0021 0.0001 0.0002
Max 0.0100 0.0862 0.0055 0.0043

ICP+RGB-D

RMSE 0.2248 0.4558 0.6367 0.0535
Mean 0.2120 0.4238 0.5691 0.0399
Median 0.1812 0.4150 0.4963 0.0257
Std. 0.0748 0.1677 0.2854 0.0356
Min 0.0508 0.0650 0.2465 0.0023
Max 0.3529 0.8325 1.6939 0.1301

TABLE IV
ABSOLUTE TRAJECTORY ERROR (ATE) FOR TRAJECTORIES ON THE

OFFICE ROOM SEQUENCES ASSUMING NO NOISE.

Fig. 7. Reconstructions produced by Kintinuous with ICP for office
scenes kt1 and kt2.

of two of the trajectories. Our trajectory estimation statistics
for all five odometers are presented in Table IV. We again
observe that ICP performs the best among all evaluated
odometers, though with a notably higher error on kt1 than the
other sequences, again due to the camera facing an area of the
scene with low geometric texture. Once again the superiority
of dense full frame alignment methods over sparse features
is shown in the poor performance of FOVIS versus all
other methods. However like on the living room dataset,
the performance of the photometric-based odometers is quite
poor, perhaps suggesting that some of the assumptions made
by these methods are not holding on this kind of data. ATE
plots are shown in Figure 8.

D. Real-World Simulation

Our real world data simulation sees a degradation in the
quality of image as well as depth with both being affected
by specifically modelled noise. We perform the same set of
experiments on this noisy data and describe in detail below
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(a) kt0 (DVO) (b) kt0 (c) kt1 (d) kt2 (e) kt3

Fig. 6. Heat maps for the reconstructions obtained for all four trajectories on the living room dataset. Colour coding is relative to the
error obtained. All using ICP odometry except where noted for kt0. Note the roughness of the DVO reconstruction on kt0 compared to
the ICP reconstruction, even though DVO scored a better ATE.

Living Room

Office Room

Living Room
+ Noise

Office Room
+ Noise

(a) kt0 (b) kt1 (c) kt2 (d) kt3

Fig. 8. Estimated trajectories from the best of each five evaluated odometers compared against ground truth trajectories (as highlighted
in bold in Tables III, IV, V and VI).

our interpretation of the results.
1) Living Room: With the addition of sensor noise in

all image channels, overall surface reconstruction error in-
creases. ICP remains the best for all four sequences, with
mean vertex-to-model error, listed in Table VII, increasing
on all but kt0, where the error actually decreased. This can
be explained by essentially random chance induced by noise
as to whether or not the ICP pose estimate “slips” while
the camera is facing a particular part of the scene where
only a wall and very thin plant is visible. Reconstruction
heat map renderings are shown in Figure 9. In terms of
trajectory estimation, ICP remains the strongest on kt1,
kt2 and kt3 while overtaking DVO on kt0 for the same
reasons listed previously, with the error increasing on all

trajectories with ICP except kt0, see Table V. There is a
significant increase in error for ICP on the kt3 sequence,
again induced by geometrically poor viewpoints made worse
by noisy depth measurements. Interestingly the error for
a number of photometric methods on various sequences
including FOVIS decreases, implying that noise is somewhat
useful for photometric-based methods. ATE plots are shown
in Figure 8.

2) Office Room: As listed in Table VI, we see a more
significant change in trajectory estimation performance. On
all sequences the ICP error increases by varying degrees,
either due to noise or issues associated with a reliance on
geometry alone for pose estimation. And once again we see
the performance of photometric-based methods increase, so
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(a) kt0 (b) kt1 (c) kt2 (d) kt3

Fig. 9. Heat maps for the reconstructions obtained for all four trajectories with simulated noise on the living room dataset. Colour
coding is relative to the error obtained. All using ICP odometry. Significant sparsely distributed surface outliers caused by noisy depth
measurements cause the kt0, kt1 and kt2 heatmaps to appear mostly blue.

Odometer Error (m) kt0 kt1 kt2 kt3

DVO

RMSE 0.2911 0.1246 0.4733 0.5436
Mean 0.2588 0.1189 0.4399 0.5127
Median 0.2461 0.1116 0.4299 0.4516
Std. 0.1332 0.0373 0.1749 0.1810
Min 0.0118 0.0514 0.1370 0.2669
Max 0.6340 0.1999 0.8342 0.9516

FOVIS

RMSE 2.0512 1.8676 1.4945 1.4742
Mean 1.7323 1.6520 1.4067 1.2589
Median 1.3307 1.7810 1.3514 1.1069
Std. 1.0985 0.8712 0.5040 0.7671
Min 0.2357 0.3332 0.2695 0.2258
Max 6.4476 3.0389 2.7725 4.1914

RGB-D

RMSE 0.3603 0.5951 0.2931 0.8524
Mean 0.3226 0.5083 0.2578 0.8159
Median 0.3158 0.4411 0.1967 0.8174
Std. 0.1604 0.3094 0.1394 0.2468
Min 0.0419 0.1011 0.0459 0.1474
Max 0.7435 1.1708 0.5150 1.3271

ICP

RMSE 0.0724 0.0054 0.0104 0.3554
Mean 0.0690 0.0049 0.0097 0.3279
Median 0.0587 0.0045 0.0104 0.2927
Std. 0.0220 0.0024 0.0037 0.1371
Min 0.0054 0.0006 0.0035 0.1205
Max 0.1628 0.0113 0.0153 0.7691

ICP+RGB-D

RMSE 0.3936 0.0214 0.1289 0.8640
Mean 0.3575 0.0189 0.1225 0.8364
Median 0.2792 0.0161 0.1317 0.8158
Std. 0.1645 0.0101 0.0405 0.2167
Min 0.0589 0.0035 0.0395 0.2404
Max 0.8730 0.0477 0.1862 1.2739

TABLE V
ABSOLUTE TRAJECTORY ERROR (ATE) FOR TRAJECTORIES ON THE

LIVING ROOM SEQUENCES WITH SIMULATED NOISE.

much so that DVO outperforms ICP on kt1 while ICP+RGB-
D performs best on kt3. These results highlight how much
more robust photometric-based methods are to noisy sensor
readings. ATE plots are shown in Figure 8.

VII. CONCLUSIONS

In this paper we have presented a new benchmark aimed
at RGB-D visual odometry, 3D reconstruction and SLAM
systems that not only provides ground truth camera pose
information for every frame but also provides a means of
quantitatively evaluating the quality of the final map or
surface reconstruction produced. Further, we have evaluated
a number of existing visual odometry methods within the
Kintinuous pipeline and shown through experimentation that
a good trajectory estimate, which previous to this paper

Odometer Error (m) kt0 kt1 kt2 kt3

DVO

RMSE 0.3350 0.3778 0.3593 0.2338
Mean 0.3018 0.3229 0.3075 0.2247
Median 0.2735 0.2697 0.2058 0.2250
Std. 0.1454 0.1962 0.1858 0.0647
Min 0.0656 0.1045 0.0652 0.0591
Max 0.6667 0.9203 0.6813 0.3287

FOVIS

RMSE 3.2956 1.3006 0.8661 1.5954
Mean 3.0079 1.0859 0.8084 1.5403
Median 2.8995 1.0391 0.7954 1.4895
Std. 1.3466 0.7157 0.3107 0.4158
Min 0.8151 0.0645 0.1674 0.5766
Max 5.1697 3.2913 2.1270 2.2927

RGB-D

RMSE 0.1710 0.5366 0.2289 0.2298
Mean 0.1562 0.4931 0.2106 0.2055
Median 0.1376 0.5230 0.1971 0.1740
Std. 0.0695 0.2117 0.0894 0.1029
Min 0.0434 0.1015 0.0787 0.0722
Max 0.3444 0.9700 0.4930 0.6628

ICP

RMSE 0.0216 0.9691 0.0109 0.9323
Mean 0.0204 0.9062 0.0105 0.8443
Median 0.0190 0.8420 0.0099 0.9285
Std. 0.0073 0.3437 0.0029 0.3953
Min 0.0022 0.2548 0.0041 0.1532
Max 0.0491 1.9055 0.0257 1.7119

ICP+RGB-D

RMSE 0.2495 0.4395 0.4750 0.0838
Mean 0.2354 0.4079 0.3466 0.0760
Median 0.2037 0.4052 0.2817 0.0562
Std. 0.0827 0.1637 0.3249 0.0353
Min 0.0430 0.0515 0.0870 0.0306
Max 0.3987 0.8007 1.5913 0.1400

TABLE VI
ABSOLUTE TRAJECTORY ERROR (ATE) FOR TRAJECTORIES ON THE

OFFICE ROOM SEQUENCES WITH SIMULATED NOISE.

was the only viable benchmark measure, is not indicative
of a good surface reconstruction. We additionally presented
a simple synthetic noise model to simulate RGB-D data
and provide a more realistic set of synthesized data, which
demonstrated how existing photometric methods are more
robust to sensor noise. Limitations include a lack of motion
blur and rolling shutter simulation, however by providing
the clean no noise raytraced data we wish to leave the
door open to users of the benchmark to apply their own
noise models to the data if they wish to simulate particular
sensors more closely, where future models may well model
the sensor under study more accurately. In future work we
aim to generate new larger scenes and also include object
annotations for each dataset, enabling ground truth bench-
marking of machine learning driven scene understanding and
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Error (m) kt0 kt1 kt2 kt3
Mean 0.0114 0.0080 0.0085 0.1503
Median 0.0084 0.0048 0.0071 0.0124
Std. 0.0171 0.0286 0.0136 0.2745
Min 0.0000 0.0000 0.0000 0.0000
Max 1.0377 1.0911 1.0798 1.0499

TABLE VII
RECONSTRUCTION RESULTS FOR LIVING ROOM SEQUENCES WITH

SIMULATED NOISE. ALL USING ICP ODOMETRY.

segmentation algorithms.
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