
Efficient Localization For Robot Soccer Using
Pattern Matching

Thomas Whelan, Sonja Stüdli, John McDonald, and Richard H. Middleton?

Department of Computer Science, NUI Maynooth, Maynooth, Co. Kildare, Ireland
Hamilton Institute, NUI Maynooth, Maynooth, Co. Kildare, Ireland

thomas.j.whelan@nuim.ie,sonja.stuedli@nuim.ie,

johnmcd@cs.nuim.ie,richard.middleton@nuim.ie,

Abstract. One of the biggest challenges in the RoboCup Soccer Stan-
dard Platform League (SPL) is autonomously achieving and maintaining
an accurate estimate of a robot’s position and orientation on the field.
In other robotics applications many robust systems already exist for lo-
calization such as visual simultaneous localization and mapping (SLAM)
and LIDAR based SLAM. These approaches either require special hard-
ware or are very computationally expensive and are not suitable for the
Nao robot, the current robot of choice for the SPL. Therefore novel ap-
proaches to localization in the RoboCup SPL environment are required.
In this paper we present a new approach to localization in the SPL which
relies primarily on the information contained within white field markings
while being efficient enough to run in real time on board a Nao robot.

1 Introduction

In our earlier work [12] we gave some initial thoughts and results for an algorithm
based on Cox’s algorithm (a form of least squares error pattern matching) for
effective robot self localization based on field markings. As we continued to use
this algorithm, we became aware of a number of significant shortcomings in the
algorithm in the form proposed in [12] and in addition, were able to introduce a
number of additional features suggested in this previous work. The main aim of
this paper is to address some of the issues highlighted in our previous work and
describe our progress with some of the future work mentioned therein [12]. This
paper is also intended to function as a stand alone reference document for those
who wish to implement this approach to localization themselves.

Previous to any RoboCup competition a complete description of the RoboCup
SPL field is provided for competing teams [8]. As can be seen in Figure 1, this
is a wholely static environment with a large amount of concise visual informa-
tion including field lines, goal posts, penalty spots and the centre circle. During
soccer matches some dynamic elements do present themselves such other robots,

? This work was supported by Science Foundation Ireland, PI Grant no. 07/IN.1/I1838
and UREKA Site Grant no. 09/UR/I1524.

2 Thomas Whelan, Sonja Stüdli, John McDonald, Richard H. Middleton

referees and audience members beyond the pitch boundaries. A typical localiza-
tion system which may used in a RoboCup environment is described by Röfer
et al. in [9].

Some of the challenges associated with using white field markings in local-
ization include the development of robust vision algorithms for line detection
and line fitting, as well as techniques for identifying circular field markings and
penalty spot type features. Given the small field of view provided by the camera
on board the Nao robot, oftentimes only small segments of white field markings
are visible in any given image. This ultimately leads to the difficult problem of
uniquely identifying a certain field marking from a partial view. An immediate
issue with common solutions to this problem is the resultant spaghetti code -
large blocks of nested conditional statements tailored specifically to the RoboCup
pitch layout are required. The solution we present removes the need to design
ad-hoc line detection and identification systems by functioning generically on
any combination of simple geometric features.

Fig. 1. Standard Platform League Pitch Description [8].

2 Background

Our method for utilising field markings is a specialised extension of matching
detected ‘line points’ to a predefined map of line segments. This algorithm, in
the context of laser scanner based analysis, was first used by Cox in 1991 [1].
Cox treated the problem as least-squares linear regression with an analytical
solution, successfully demonstrating that this technique was both accurate and
practical. Lauer et al. described a similar algorithm in 2006 for robots in the
RoboCup Midsize League using points detected on white field markings instead
of laser points [5]. They also introduced a new error function with a numerical
gradient descent based solution. In 2010, Rath implemented an adaptation of
Lauer et al’s algorithm for use on the Nao robot in the SPL [7]. This adaptation
emulated most of the methods used by Lauer et al. but due to the hardware
constraints of the Nao some small changes were introduced.

Efficient Localization For Robot Soccer Using Pattern Matching 3

2.1 Previous Work

In our previous paper we described a modified version of Cox’s original algo-
rithm dubbed the Modified Cox Algorithm (MCA) [12]. We presented a number
of modifications to the original algorithm including (i) the use of a Voronoi di-
agram to reduce computational load in determining the nearest field marking
to a given point; (ii) an extension of the basic algorithm to include all types
of field markings (line segments, circles and single points); (iii) distance based
outlier detection; and, (iv) weighted least-squares cost minimization. We also
detailed the integration of the MCA with an Unscented Kalman Filter. For the
sake of completeness the MCA which we described previously is listed in the
following section in its entirety, excluding the Kalman Filter integration. Our
new improved Kalman Filter integration is described in detail in Section 3.1.

2.2 Modified Cox Algorithm

This description is a combination of the original method described by both Cox
and Rath and the modifications we presented in our previous paper [1, 7, 12].
Given a set of detected points on white field markings in an image, the basic
process of the Modified Cox Algorithm involves 3 main steps;

2.2.1 Point transformation from image to world coordinates Trans-
formation from image coordinates to world coordinates is achieved using typical
back projection associated with the extrinsic and intrinsic camera parameters
(see for example Figure 2a). In this regard the camera location is based on the
geometry of the robot and the current joint sensor readings.

2.2.2 Selecting the closest field marking to each point Before this
step is carried out a Voronoi diagram for all white field markings must be pre-
calculated, see Figure 2 (a). This can be done once off during the start up of the
robot. Then, the closest white field marking to any point projected into world
coordinate space can be determined in O

(
1
)

time.

2.2.3 Finding a correction for the current pose In this final step, a
correction to the current robot pose, described by lt = (x, y, θ)> where x and y
describe the estimate of the robot’s global position and θ describes the estimated
orientation of the robot, is calculated. We wish to calculate b = (∆x,∆y,∆θ)>

such that a new estimate, l′t = lt+b, gives a pose which better matches observed
points to white field markings.

The aim of Cox’s original algorithm is to minimise the squared distances
associated with points on line segments (line points) to their nearest line segment.
To achieve this, the problem is linearised into a least-squares linear regression
problem and each line segment is treated as an infinite line with orthogonal unit
vector ui = (uix, uiy)> and offset ri such that ui · zi = ri holds for all arbitrary
line points zi on the line.

4 Thomas Whelan, Sonja Stüdli, John McDonald, Richard H. Middleton

(a) Error Calculation (b) Distance Minimised

Fig. 2. Example of the Modified Cox Algorithm.

Let the ith transformed line point be zi = (zix, ziy)> and the current position
of the robot be c = (ltx, lty)>. The transformation of each line point zi can be
described as:

t(b)(zi) =

(
cos∆θ − sin∆θ
sin∆θ cos∆θ

)
(zi − c) + c+

(
∆x
∆y

)
(1)

Cox suggests that the correction angle ∆θ should be sufficiently small such that
we can approximate the transformation to:

t(b)(zi) ≈
(

1 −∆θ
∆θ 1

)
(zi − c) + c+

(
∆x
∆y

)
(2)

Next, the squared distance of each line point zi can be found as:

d2i = (t(b)(zi)
>ui − ri)2 ≈ ((xi1, xi2, xi3)b− yi)2 (3)

Where: (
xi,1 xi,2 xi,3

)
=

(
uix uiy u>i

(
0 −1
1 0

)
(zi − c)

)
(4)

yi = ri − zixuix − ziyuiy (5)

Defining the absolute fixed world position of a penalty spot as si = (six, siy)>

and qi = (qix, qiy)> as a transformed penalty spot point we have:(
xi,1 xi,2 xi,3
xi+1,1 xi+1,2 xi+1,3

)
=

(
1 0
0 1

(
0 −1
1 0

)(
qi − c

))
(6)(

yi1
yi2

)
=

(
six − qix
siy − qiy

)
(7)

Assuming a centre of (0, 0) for the centre circle feature, given a radius of h and
a transformed centre circle point vi = (vix, viy)> we have:(

xi,1 xi,2 xi,3
)

=

(
vix
||vi||2

viy
||vi||2

v>i
||vi||2

(
0 −1
1 0

)
(vi − c)

)
(8)

yi = hi − vixuix − viyuiy (9)

Efficient Localization For Robot Soccer Using Pattern Matching 5

Since we expect smaller errors in the location of points close to the robot, we
define a diagonal weighting matrix, W , with diagonal elements given as:

Wii =
1

α2
i + η

, (10)

and where α is the relative distance to the point from the robot and η is some
small offset value.

Now we can calculate the weighted sum of squared distances for all points
zi, qi and vi:

EW (b) =

n∑
i=1

Wii((xi1, xi2, xi3)b− yi)2 = (Xb− Y)>W (Xb− Y) (11)

Where:

X =

x11 x12 x13...
...

...
xn1 xn2 xn3

 Y =

y1...
yn

 (12)

The correction b̂ that minimises EW (b) can then be (approximately) solved by:

b̂ = (X>WX + ζI)−1X>WY (13)

where ζ is a small positive constant to avoid singularity occuring in (13). Finally
a new pose is given by:

l′t = lt + b̂ (14)

The results of this process can be seen in Figure 2b.

3 Extensions & Modifications

The main short comings of our previous implementation were localization perfor-
mance and computational performance. We showed that the system was at most
on par with three other localization systems evaluated and not significantly bet-
ter by any measure [12]. Computational performance was also undesirably low
for use on the Nao system, considering that localization is just one of many com-
ponents that ideally must run at 30Hz during a soccer game. In this section we
describe the extensions and modifications we made to the original system that
aided in overcoming these issues.

3.1 Unscented Kalman Filter Integration

Initial tests with the algorithm described in [12] did not show good performance,
and the CPU requirements were excessive. For these reasons, the algorithm we
used in the RoboCup 2011 competition (including the technical challenge) un-
derwent a major redesign. This redesign reduced the number of sigma points

6 Thomas Whelan, Sonja Stüdli, John McDonald, Richard H. Middleton

used and the number of iterations in the local search, and also added some ex-
tra computations to give a better estimate of the errors in the predictions from
Cox’s algorithm. The algorithm used is described below.

1. Generation of a set of sigma points:
The sigma points were calculated in a similar way to those of [3, 11]. We
have nx = 3 state variables in the filter. In our case we selected the primary
weight as w0 = 1√

2
, and the remaining weights are selected as:

w` =

√
1− w2

0

2nx
; ` = 1, ...2nx. (15)

We denote the current state estimate by xk|k−1 and the `th column of the
square root of the covariance matrix as (pk|k−1)(`). The sigma points, X`,
are then calculated as:

X` =

 xk|k−1 : ` = 0
xk|k−1 + sσ(pk|k−1)(`) : ` = 1...nx
xk|k−1 − sσ(pk|k−1)(`) : ` = nx + 1...nx

(16)

where the scale factor for the sigma points is given by sσ =
√

nx

1−w2
0
.

2. Use each sigma point as an initial value for the Modified Cox
Algorithm:
The Modified Cox Algorithm (MCA) described in Section 2.2 can be thought
of as a local search for a good fit between the observed points and the known
field markings. We use the sigma points in (16) as initial values for the MCA
and perform a single step correction for each. The result of this update is a
new estimate, X̂`, of a possible robot location, together with the weighted
sum of residual errors, J` =

∑
iWiie

2
i (X̂`), and a covariance of the estimate,

varX̂`, computed as described below in (21).

3. Discard points with excessive error, or other problems:
The result of a single correction to one of the sigma points may not give a
good fit to the data. This may be because a single iteration is insufficient
to be close to convergence. It may also occur due to being close to a local
minimum. We therefore select a threshold, J̄ , and ignore any results where
the residual errors are too large, namely, J` > J̄ . Other checks used are to
test if the MCA has enough valid points to process and that the resultant
estimated robot position is not too far off the pitch. Note that in the follow-
ing equations, discarding a point is equivalent to setting the corresponding
weight to zero.

4. Adjust sigma point weights according to the residual errors and
renormalize:
Given the initial set of weights, w`, we first adjust these according to the
residual errors:

w̃` := w`/J`. (17)

Efficient Localization For Robot Soccer Using Pattern Matching 7

We then renormalize the adjusted weights as follows:

ŵ` := w̃`/
∑
k

w̃k (18)

5. Check for sufficient valid estimates:
For the algorithm to generate a valid measurement, we require that a suffi-
cient number of sigma points had valid MCA results (in our case, this was
set to 3), otherwise the entire set is ignored.

6. Recombine Sigma Points into a single combined estimate:

X =
∑
`

ŵ`X̂` (19)

var(X) =
∑
`

ŵ`

[
(X̂` −X)(X̂` −X)T + varX̂`

]
(20)

7. Use the combined estimate as a linear Covariance Intersection KF
Measurement Update:
The combined estimate, (19), is a linear function (in fact the identity) times
the localization state variables. It is therefore straightforward to use lin-
ear Kalman Filter covariance intersection updates (e.g. [10, 4]) to perform a
measurement update. This update includes standard features such as outlier
detection and kidnapped robot detection.

3.2 Modified Cox Algorithm

A number of additions and alterations have been made to the MCA. These have
been divided into two categories: (i) Algorithmic Enhancements, concerned with
the information used and produced by the algorithm; and, (ii) Computational
Optimisations, concerned with the way in which the algorithm processes input
and produces an output.

3.2.1 Algorithmic Enhancements

Super-Weighted Posts - The goal posts are one of the key sets of landmarks on
the SPL pitch. They are generally quite easy to identify and are the most signifi-
cant cue for localization. Having previously ignored any goal post information in
the MCA optimisation, we now include goal posts in the form of super-weighted
single points, akin to penalty spot type features.

Being color coded, the posts on the SPL field are inherently less ambiguous
than points on white field markings. In line with this, post points are weighted
30 times higher than white field marking points in the optimisation but not in
the error calculation in order to avoid inconsistencies in error values between
frames including posts and those not. When both posts of a single color goal
are visible a robot’s position and orientation can be accurately determined using

8 Thomas Whelan, Sonja Stüdli, John McDonald, Richard H. Middleton

(a) Before MCA (b) After Without Posts (c) After With Posts

Fig. 3. Example of Post Point Inclusion in MCA.

simple triangulation. In this scenario, both post points are matched to the known
fixed positions of the posts in the world model for the MCA algorithm. More
often than not however, only one post is visible due to optical occlusion by other
robots. When this occurs the single visible post is ambiguous. Given that the
MCA is a local search to begin with, an ambiguous post is matched to the fixed
position of the nearest post in the world model when the perceived post point
is transformed into world coordinates.

An example is shown in Figure 3 of the kind of effect this feature has on the
algorithm. In situations where the robot is mislocalized badly or a poor measure-
ment to a post is perceived, there is concern for ambiguous posts being matched
incorrectly and furthering corruption of the localization estimate. Typically in
this scenario the system is more reliant on the Kalman Filter discussed in Sec-
tion 3.1, which would normally have a high uncertainty when mislocalized and
as such will have a large spread of sigma points and be more likely to throw out
badly matched MCA updates.

Calculation of MCA Variance - In order to improve the integration of MCA up-
dates in the Kalman Filter the variance of the calculated correction is recorded,
for each sigma point. This is especially useful in scenarios where only points on
co-linear field markings are detected. The variance of the translation and rota-
tion is derived from the diagonal from the inverted component P of the final
correction calculation listed as (13) in Section 2.2.3:

P = (X>WX + ζI)−1σ2
n (21)

The noise variance measurement is taken as σ2
n = 0.01.

3.2.2 Computational Optimisations

Point Sampling - Given that the MCA is highly dependent on matrix methods,
a large amount of attention was given to these methods when optimising the
technique for computational performance. Notably, for two matrices of dimen-
sions m×p and p×n the run time complexity of standard matrix multiplication

Efficient Localization For Robot Soccer Using Pattern Matching 9

is O
(
mnp

)
. The only input of varying size to the MCA is the number of points

on white field markings. Owing to the complexity of the multiplication method
it was observed that the execution time scaled badly. As a result, the number of
white field marking points used in the MCA is capped at 30. If there are more
points than this detected in an image 30 points are selected at random for use
in the optimisation. The same 30 points are used for all 7 sigma points.

Matrix Operation Optimisation - As mentioned in Section 2.2.3, a diagonal ma-
trix W is used to weight the optimisation. Rather than using näıve standard
matrix multiplication in the evaluation of equations which involve the diago-
nal matrix W a more efficient multiplication method is used. This alternative
method skips the summation step of standard matrix multiplication, which when
used on a diagonal matrix would result in many redundant sums of zero. For two
matrices (one diagonal) of dimensions m× p and p× n this alternative method
runs in O

(
mn
)

time as opposed to O
(
mnp

)
.

Another concern when optimising matrix operations is matrix chain multi-
plication. When presented with a sequence of matrices we wish to determine
the most efficient way to multiply these matrices together, given that the paren-
thesization of matrix multiplication changes only the number of operations and
not the result. Evaluating (13) in Section 2.2.3 in standard left to right order
involves roughly 6000 operations when 30 points are used. Solving the matrix
chain multiplication problem on this equation results in a decrease of the number
of operations to approximately 3900. This represents a performance increase of
35%. The order of multiplication was determined using a dynamic programming
approach [2]. The resulting parenthesization of (13) is:

b̂ = ((X>(WX)) + ζI)−1(X>(WY)) (22)

One final optimisation involves the precalculation of point weights. Rather than
recalculating the weights for each sigma point, the weights of all points are
calculated before hand as they do not change between sigma points. Overall
a performance increase of 60% was recorded per sigma point with the MCA,
derived from an execution time reduction of 1ms to 0.4ms per point.

In the table below execution time differences are shown for each of the de-
scribed computational optimisations. The time given represents the increase in
execution time of the entire MCA if that feature isn’t implemented in the com-
putation.

Optimisation Time Saved (ms)
Reduction from 13 to 7 sigma points 6.1

Maximum of 30 line points 3.1
Diagonal Multiplication 1.2

Chain Multiplication 1.0
Weight Precalculation 0.1

10 Thomas Whelan, Sonja Stüdli, John McDonald, Richard H. Middleton

3.3 White Field Marking Point Filtering

One concern highlighted by Rath was the issue of false positive points detected
on white features on the RoboCup pitch [7]. This was less of a concern for Lauer
et al. due to the fact that the robots used in the Midsize League do not contain
white features. The Nao robot, used in the SPL, is almost entirely white and as
a result false positive white field marking points are prevalent when color reliant
detection algorithms are used.

Fig. 4. Result of a Horizontal First Difference Operation Around a Point.

In order to combat this we have implemented a filter based on edge detection
principles that reliably removes false positives. When a set of points are detected
in an image a local edge check is performed either horizontally or vertically de-
pending on which scan orientation a point was detected with. As can be seen in
Figure 4 there should exist a very obvious single maximum in a simple gradient
estimate on both sides of a point. Inspecting both sides of a point for this max-
imum is a trivial process. A threshold can then also be applied to accept points
with a large gradient.

Calculation of the gradient estimate is carried out using Intel MMX SIMD in-
structions in order to maintain good computational performance. The estimated
gradient value for a given pixel (i, j) in the raw YUV image F is calculated using
only the Y component as |Fy(i, j)−Fy(i+ 1, j)| for horizontally detected points
and similarly as |Fy(i, j)−Fy(i, j+1)| for vertically detected points. These values
can be calculated for 7 pixels in one go by using the technique described below.

3.3.1 MMX Gradient Estimation A two pass technique is required to
calculate the full first difference for a set of pixels using this method. The 64-
bit MMX register is divided up into 8 unsigned integers each with a range of
[0 - 255]. Given that the Y component of each pixel also has a range of [0 -
255] we are unable to use the MMX registers in a signed format. Thus, using
the horizontal direction as an example, we calculate Fy(i, j) − Fy(i + 1, j) and
Fy(i + 1, j) − Fy(i, j) separately using saturated arithmetic (clipping at 0 and
255) and sum the result together.

Efficient Localization For Robot Soccer Using Pattern Matching 11

When processing points on white field markings however, the expected gra-
dient direction is known and as a result we can skip first difference calculation
in one direction.

Fig. 5. Sample Y Component Values at Point Surrounding

1. Populate an MMX register with the Y component values of the pixels around
the edge of the detected point (at most 8). The pixels shown in Figure 5
would translate to an MMX register as:

140 142 144 160 235 240 240 240

2. Depending on the expected gradient direction, based either on horizontal
or vertical orientation and whether inspecting the edge going from green to
white or vice-versa, shift a copy of the register left or right by 8 bits. In the
example case, we shift right:

0 140 142 144 160 235 240 240

3. Using saturated MMX arithmetic, subtract the shifted register from the
original, yielding the first difference for 7 pixels (we ignore the end value):

140 142 144 160 235 240 240 240
- 0 140 142 144 160 235 240 240
= - 2 2 16 75 5 0 0

The result of this calculation can then be inspected for a single maximum (with
leniency) above a preset threshold. The MMX implementation described above
was measured to be 2.6 times faster than a standard C++ implementation of the
same process. Figure 6 shows an example of the results of this process. Occasion-
ally good points are filtered out, particularly those that appear on features which
are small in the image. Loss of such distant points is only a minor inconvenience
due to the fact that they are weighted quite lightly in the MCA optimisation.

4 Tests & Results

The performance of the newly modified MCA based localization system was
evaluated in 3 different tests along with 3 other localization systems. The three
tests were:

12 Thomas Whelan, Sonja Stüdli, John McDonald, Richard H. Middleton

(a) Color Classified Image (b) Points Before Filtering (c) Points After Filtering

Fig. 6. Example of Detected Points With / Without Edge Filtering.

(a) Target Ready Positions (b) Ball Placement Points

Fig. 7. Test Scenario Set-Ups. Initial Position and Orientation Drawn in White.

1. Ready Positions. As shown in Figure 7 (a). For this test, the robot is placed in
the initial position and commanded to walk to each of the positions marked
in black as soon as a correct estimate of the initial position is reported by
the localization system. This test was repeated 3 times for each position and
once on each side of the field, bringing the total number of runs to 18.

2. Open Goal Shots. As shown in Figure 7 (b). In this test the robot is placed
in the initial position and commanded to take shots on an open goal, again
only when an accurate estimate of the initial position is reported. The ball is
first positioned at the location labeled ‘1’. After each attempted shot on the
goal the ball is placed at the next position in the labeled sequence. This test
was carried out once on each side of the field giving a total of 10 attempted
shots.

3. Goalless Open Goal Shots. This test is identical to the previous test except
both color goals are removed from the field before the robot begins. Initially
all goal posts are on the field to allow the robot acquire an estimate of its
initial position. Once the robot acquires the correct initial position all goal

Efficient Localization For Robot Soccer Using Pattern Matching 13

posts are removed. As before this test was carried out once on each side of
the field giving a total of 10 attempted shots.

The localization systems compared are as follows:

– Kalman Filter + MCA: The new localization system presented in this
paper including MCA updates, post updates, line and corner updates.

– Particle Filter + White Field Marking Points: An experimental im-
plementation developed for testing purposes. A basic Particle Filter using
100 particles using post updates, line updates, corner updates and a new
experimental update that uses certain functions of the MCA. This update
involves steps 1 and 2 in Section 2.2 followed by evaluation of the error mag-
nitude of the projected points. The optimisation in step 3 is not carried out.
Instead, the error before the optimisation is used to weight particles.

– Particle Filter + Lines: A basic Particle Filter using 100 particles, post
updates, line updates and corner updates.

– Kalman Filter + Lines: The same Unscented Kalman Filter used with
the MCA in this paper using only post updates, line updates and corner
updates.

4.1 Localization Performance

Fig. 8. Localization System Test Results.

Figure 8 shows the results of all 3 tests. For the Ready Position test, the per-
centage of times the robot successfully reached the target position is given. For
each Ready Position test, the robot’s final resting position and orientation was
manually recorded. The robot was deemed unsuccessful if it either left the field
or halted with a position which was greater than 30cm from the target location

14 Thomas Whelan, Sonja Stüdli, John McDonald, Richard H. Middleton

or an orientation which was greater than 15 degrees from the target orientation.
In some cases the robot would never halt completely and oscillated around some
final location, however there was no penalty for this behaviour if the position
was correct.

In the goal shot tests the success criteria was a lot simpler. The percentage
represents the number of times the robot successfully kicked the ball towards
the goal with an accurate position estimate. Kick line up issues were accounted
for by monitoring the robot’s position estimate throughout the tests. Successful
goals where the robot’s estimate was incorrect were not counted.

4.2 Computational Performance

The execution time of all four localization systems was monitored throughout
the 3 tests. It should be noted that a small amount of debugging functions were
enabled during the testing of all 4 systems and as a result execution times without
any debugging functions may in fact be slightly lower. The execution time of
the PF + Points algorithm is significantly longer than the 3 other algorithms
tested because although it lacks the optimisation in the full MCA, it requires
the repeated projection of all line points for each of the 100 particles.

Algorithm KF + MCA PF + Points PF + Lines KF + Lines
Avg Time (ms) 6 10 4 3
Max Time (ms) 7.7 20 5 3

5 Conclusion

In this paper we have described a number of modifications and extensions to our
original MCA implementation. Many aspects of the system have been looked at
to address some of the issues and future work discussed in our previous paper.
The results include: (i) revised and more computationally efficient Kalman Filter
integration; (ii) usage of post information in the MCA to improve localization
performance; (iii) MCA variance calculation to improve Kalman Filter interac-
tion; (iv) point sampling for improved computational performance; (v) matrix
method and chain multiplication optimisation for computational performance;
and, (vi) efficient field marking point filtering for reduced false positive points.

Computational performance was previously a significant issue with the sys-
tem but is clearly no longer a concern. The localization performance achieved
with the enhancements listed above is superior to the previous version of the
MCA and all other localization systems tested. As a testament to the system’s
high performance it was successfully demonstrated as the core part of RoboEire-
ann’s Open Challenge demonstration at RoboCup 2011, “Localisation without
goal posts”. The demonstration was voted 1st place out of 20 other presentations.

5.1 Future Work

Extensions to the proposed algorithm are needed to better deal with cases where
the robot gets lost. This may occur due to a range of circumstances such as:

Efficient Localization For Robot Soccer Using Pattern Matching 15

(i) when the robot falls over; (ii) when the robot’s locomotion is restricted,
particularly when it is attempting to perform a rapid turn, but is blocked from
being able to execute the turn; (iii) when the robot is moved by the game referees
(for example in relation to either a local game stuck; or if the robot is penalized).

At present, the overall algorithm is slow to respond to these ‘kidnapped
robot’ type situations, and further algorithm development is needed in this area.
Multiple model Kalman filtering [6]; the ability to perform a larger number
of MCA updates (with a larger number of sigma points) and the ability to
perform multiple iterations of the local search may all improve the re-localization
performance significantly. However, at least on the current hardware and with
the current versions of the algorithm, speed improvements are crucial to permit
these features.

References

1. I. Cox. Blanche - An experiment in guidance and navigation of an autonomous
robot vehicle. Robotics and Automation, IEEE Transactions on, 7(2):193 –204,
April 1991.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Section 15.2: Matrix-
chain multiplication. In Introduction to Algorithms, Second Edition, pages 331–339.
MIT Press and McGraw-Hill, 2001.

3. S. Julier and J. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings
of the IEEE, 92(3):401 – 422, Mar. 2004.

4. S. Julier and J. Uhlmann. Using covariance intersection for SLAM. Robotics and
Autonomous Systems, 55(1):3–20, 2007.

5. M. Lauer, S. Lange, and M. Riedmiller. Calculating the Perfect Match: An Efficient
and Accurate Approach for Robot Self-localization. In RoboCup 2005: Robot Soccer
World Cup IX, volume 4020, pages 142–153. Springer Berlin / Heidelberg, 2006.

6. M. Quinlan and R. Middleton. Multiple Model Kalman Filters: A Localization
Technique for RoboCup Soccer. In RoboCup 2009: Robot Soccer World Cup XIII,
volume 5949 of Lecture Notes in Computer Science, pages 276–287. Springer Berlin,
2010.

7. C. Rath. Self-localization of a biped robot in the RoboCup domain, Master’s
Thesis. Institute for Software Technology, Graz University of Technology, 2010.

8. RoboCup Technical Committee. RoboCup Standard Platform League (Nao) Rule
Book. http://www.tzi.de/spl/pub/Website/Downloads/Rules2011.pdf.

9. T. Röfer, T. Laue, and D. Thomas. Particle-filter-based self-localization using
landmarks and directed lines. In RoboCup 2005: Robot Soccer World Cup IX,
volume 4020 of Lecture Notes in Computer Science, pages 608–615. Springer, 2006.

10. S. Stüdli. Kalman Filtering approach for Localisation in RobotSoccer, Master’s
Thesis. Hamilton Institute, NUI Maynooth & Institute for Control, Swiss Federal
Institute of Technology (ETH), Zurich, 2011.

11. R. Van Der Merwe and E. Wan. The square-root unscented Kalman filter for state
and parameter-estimation. In IEEE International Conference on Acoustics Speech
and Signal Processing, volume 6, pages 3461–3464. Citeseer, 2001.

12. T. Whelan, S. Stüdli, J. McDonald, and R. H. Middleton. Line Point Registration:
A Technique For Enhancing Robot Localization in a Soccer Environment. In Proc.
RoboCup Symposium, July 2011.

