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Abstract

In this paper we present a novel gesture recognition sys-
tem for the interpretation of Irish Sign Language sequences
which incorporates manual and non-manual information.
We implement a set of independent Hidden Markov Model
networks to recognize hand gestures, head movements and
facial features into a single framework for interpreting Irish
Sign Language. This framework is not specific to any par-
ticular type of gesture and we demonstrate this by showing
that manual and non manual signals can be robustly spotted
and classified from with continuous sign sequences.

1. Introduction
In sign language, information is mainly conveyed

through hand gestures. These hand gestures can be classi-

fied into several categories such as conversational gestures,

controlling gestures, manipulative gestures and commu-

nicative gestures [32]. One of the main difficulties with rec-

ognizing a gesture within a continuous sequence of gestures

is that the hand(s) must move from the end point of the pre-

vious gesture to the start point of the next gesture. These in-

ter gesture transition periods are called movement epenthe-

sis [16] and are not part of either of the signs. As such,

an accurate recognition system must be able to distinguish

between valid sign segments and movement epenthesis. Ex-

tending isolated recognition to continuous signing requires

automatic detection of movement epenthesis segments so

that the recognition algorithm can be applied on the seg-

mented signs. A proposed solution to movement epenthesis

detection is an explicit segmentation model where subsets,

of features from gesture data, are used as cues for valid ges-

ture start and end point detection [21, 15]. The limitation of

this explicit segmentation model arises from the difficulty

in creating general rules for sign boundary detection that

could be applied to all types of gestures [19].
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The problems associated with explicit segmentation can

be overcome by implementing Hidden Markov Models

(HMMs) for implicit sentence segmentation. Starner et al.

[22] and Bauer and Kraiss [4] model each word or subunit

with a HMM and then train the HMMs with data collected

from full sentences. A downside to this is that training on

full sentence data may result in a loss in valid sign recogni-

tion accuracy due to the large variations in the appearance

of all the possible movement epenthesis that could occur

between two signs. Wang et al. [31] also use HMMs to

recognize continuous signs sequences with 92.8% accuracy,

although signs were assumed to end when no hand motion

occurred. Assan et al. [1] model the HMMs such that all

transitions go through a single state, while Gao et al. [8]

create separate HMMs that model the transitions between

each unique pair of signs that occur in sequence. Vogler

at al. [28] also use an explicit epenthesis modeling system

where one HMM is trained for every two valid combina-

tions of signs.

While these works have had promising results in gesture

recognition and movement epenthesis detection, the train-

ing of such systems involves a large amount of extra data

collection, model training and recognition computation due

to the extra number of HMMs required to detect movement

epenthesis. In this paper we build on the works of Kelly

et al. [13], using a HMM based gesture recognition frame-

work which accurately spots and classifies gestures within

a continuous sequence of sign language, as one of a num-

ber of pre trained gestures as well as calculating the likeli-

hood that the given gesture sequence is or is not a movement

epenthesis. Sign language is a multimodal form of com-

munication. It involves not only hand gestures (i.e., man-

ual signing) but also non-manual signals (NMS) conveyed

through facial expressions, head movements, body postures

and torso movements. Recognizing Sign Language com-

munication therefore requires simultaneous observation of

manual and non-manual signals and their precise synchro-

nization and signal integration. Thus understanding sign

language involves research in areas of face and facial ex-
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pression recognition tracking and human motion analysis

and gesture recognition.

Over the past number of years there has been a signif-

icant amount of research investigating each of these non-

manual signals attempting to quantify their individual im-

portance. Works such as [2, 24, 3] focused on the role of

head pose and body movement in sign language, where they

reported a strong correlation linking head tilts and forwards

movements to questions, or affirmations. The analysis of

facial expressions for the interpretation of sign language

has also received a significant amount of interest [10, 9].

Computer-based approaches which model facial movement

using Active Appearance Models (AAMs) have been pro-

posed [29, 30, 26]. Of particular interest are the works

of Grossman et al. on American Sign Language, where

they linked eyebrow movement and the degree of eye aper-

ture movement to emotions and questions [10]. They re-

ported that anger, wh-questions (who, where, what, when,

why, how) and quizzical questions exhibited lowered brows

and squinted eyes, while surprise and y/n questions showed

raised brows and widened eyes. The development of a sys-

tem combining manual and non-manual signals is a non-

trivial task [5]. This is demonstrated by the limited amount

of work dealing with the recognition of multimodal com-

munication channels in sign language. Ma et al. [18] used

Hidden Markov Models (HMMs) to model multimodal in-

formation in sign language but lip motion was the only non-

manual signal used. Their work was based on the assump-

tion that the information portrayed by the lip movement di-

rectly coincided with that of the manual signs. While this is

a valid assumption for mouthing, it cannot be generalized to

other non-manual signals as they often span multiple man-

ual signs and thus should be treated independently.

In this paper we propose an accessible approach towards

multi-modal human-computer interaction (HCI) for the in-

terpretation of Irish Sign Language (ISL) sequences. In

ISL, like most other sign languages, the key information

is conveyed using manual signs while non-manual signals

are used to convey grammatical structure, syntax and emo-

tional context, as such we process these two elements inde-

pendently. The goal of the work described in this paper is to

develop automatic methods of interpreting both manual and

non manual signals in order to extract all the information

expressed in sign language sentences. We extend the works

of Kelly et al. [13] where hand gestures are recognized from

continuous manual signals, and [11] which investigated the

role of head tilt in ISL, to incorporate facial features such as

the eyebrow movement into a multi-channel gesture recog-

nition system.

2. Feature Extraction
From the definition of a spatiotemporal gesture [23], we

must track the position and movement of the hands in or-

der to described a hand gesture sequence. We expand on

the work a of hand posture recognition system proposed

Kelly et al.[12] to build a computer vision based feature ex-

traction system for spatiotemporal gesture recognition. For

completeness, prior to discussing our framework for con-

tinuous spotting of multimodal gestures in sign language,

we briefly describe the feature tracking techniques imple-

mented. Tracking of the hands is performed by tracking

colored gloves using the Mean Shift algorithm [6]. Face

and eye positions are used as features for head movement

recognition and also used as hand gesture cues. Face and

eye detection is carried out using a cascade of boosted clas-

sifiers working with haar-like features proposed by Viola

and Jones [25]. A set of public domain classifiers [17],

for the face, left eye and right eye, are used in conjunc-

tion with the OpenCV implementation of the haar cascade

object detection algorithm. The features which we extract

from each image are shown in 1(a), from these we define the

following raw features: right hand position (RHx, RHy),
left hand position (LHx, LHy), face position (FCx, FCy),
face width (FW ), left eye position (LEx, LEy) and right

eye position (REx, REy).

2.1. Facial Feature Extraction

In this paper, we locate the facial features of inter-

est using Cootes’ implementation of Active Shape Models
(ASMs) [7]. In the context of facial feature localization,

ASMs can be viewed as statistical models of the shapes of

the face which deform iteratively to fit to new images. Since

the ASM is constrained by a statistical shape model, the

range of possible deformations is constrained by the vari-

ance which exists in the training set. As a consequence, the

accuracy of the ASM depends on the range of facial move-

ments included in the training set. For the experiments in-

cluded in this paper, our data set consisted of 3500 images in

total. From which 300 key frames representing the variance

in the data set were manually labeled with 46 points. Figure

1(b) shows the ASM which was trained on these image-

points pairs.

(a) (b) (c) (d)

Figure 1. (a) features extracted from the image (b) sample ASM

which was fitted to each image (c) sample of an un-occluded image

(d) example of an occluded image

During sign language communication, the face is fre-

quently occluded by the hands. Our approach to overcom-

ing this particular problem was to fit the ASM to the parts
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of the face that were visible, and use the previous points for

occluded parts of the face. This can be seen in Figure 1

where the position of the mouth from Figure 1(c) is used in

Figure 1(d) when the mouth is occluded. This is a valid ap-

proach as the hands move rapidly and rarely cover the same

portion of the face for multiple frames.

3. Hidden Markov Models
Hidden Markov Models (HMMs) are a type of statisti-

cal model and can model spatiotemporal information in a

natural way. HMMs have efficient algorithms for learn-

ing and recognition, such as the Baum-Welch algorithm

and Viterbi search algorithm [20]. A HMM is a collec-

tion of states connected by transitions. Each transition (or

time step) has a pair of probabilities: a transition proba-

bility (the probability of taking a particular transition to a

particular state) and an output probability (the probability

of emitting a particular output symbol from a given state).

We use the compact notation λ = {A, B, π} to indicate the

complete parameter set of the model where A is a matrix

storing transitions probabilities and aij denotes the proba-

bility of making a transition between states si and sj . B
is a matrix storing output probabilities for each state and

π is a vector storing initial state probabilities. HMMs can

use either a set of discrete observation symbols or they can

be extended for continuous observations signals. Lee and

Kim [14] proposed a single channel HMM threshold model

using discrete observations to recognize a set of distinct

gesture. We expand on their work by developing a mul-

tichannel HMM threshold model system using continuous

multidimensional observation vectors. This is an important

advancement as using continuous multidimensional obser-

vation vectors allows further expansion of our framework

into different feature vectors without the loss of information

through vector quantization which is required when using

discrete observations. To represent a gesture sequence such

that it can be modeled by a HMM, the gesture sequence

must be defined as a set of observations. An observation

Ot, is defined as an observation vector made at time t, where

Ot = {o1, o2, ..., oM} and M is the dimension of the obser-

vation vector. A particular gesture sequence is then defined

as Θ = {O1, O2, ..., OT }. To calculate the probability of a

specific observation Ot, we implement probability density

function of an M-dimensional multivariate gaussian.

3.1. HMM Threshold Model

Lee and Kim [14] proposed a single channel HMM

threshold model using discrete observations to recognize

a set of distinct gesture. We expand on the work of Lee

and Kim to develop a HMM threshold model system which

models continuous multidimensional sign language obser-

vations within a parallel HMM network to recognize two

hand signs and identify movement epenthesis. A specific

HMM, called a threshold model, is created to model move-

ment epenthesis by calculating the likelihood threshold of

an input gesture and provide a confirmation mechanism for

provisionally matched gesture patterns. We denote each

dedicated gesture HMM as λy . Each λy is used to calculate

the likelihood that the input gesture is belonging to gesture

class y. For a network of HMMs Λ = {λ1, λ2, ..., λY }, a

single threshold model λ is created. The threshold model λ
is used to calculate the likelihood threshold for each of the

dedicated gesture HMMs. It is not in the scope of this paper

to describe the threshold model in detail and readers should

consult the works of Lee and Kim [14] and Kelly et al.[13]

for a more detailed discussion on the HMM threshold model

technique.

4. HMM Threshold Model For Gesture Recog-
nition

We develop a HMM threshold model system which we

use to recognize hand gestures, head movement gestures

and eyebrow gestures from continuous image sequences

of sign language sentences being performed by a fluent

signer.We now briefly describe this system.

4.1. HMM Training

We implement and train a dedicated HMM for each ges-

ture to be recognized. We denote each dedicated HMM

as λy where y ∈ Y and Y is the set gesture labels.

Each HMM is trained using an automated HMM initializa-

tion and training technique, utilizing an iterative clustering,

Baum Welch and Viterbi realignment process, proposed by

Kelly et al.[13]. A HMM threshold model, λ is then created

using the network of trained HMMs λy (where y ∈ Y ).

The set of HMMs, to recognize the Y pre-trained gestures,

is then denoted as Λ = {λ1, λ2, ..., λI , λ}.

4.2. HMM Gesture Classification

Given an unknown sequence of gesture observations Θ,

the goal is to accurately classify the gesture as a non-gesture

or as one of the Y trained gestures. To classify the obser-

vations, the Viterbi algorithm is run on each model given

the unknown observation sequencesΘ, calculating the most

likely state paths through each model y. The likelihoods of

each state path, which we denote as P (Θ|λy), are also cal-

culated. The sequence of observations can then be classified

as y if the maximum likelihood PML(Θ|λy) ≥ Φy , where

the PML(Θ|λy) = max
y

P (Θ|λy), Φy = P (Θ|λ)Γy and Γy

is a constant scalar value used to tune the sensitivity of the

system movement epenthesis gestures.
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4.3. Parallel HMM Training

When recognizing two handed spatiotemporal gestures,

a parallel HMM is required to model the left and right hands

[27]. We implement a parallel HMM Threshold Model sys-

tem which initializes and trains a dedicated parallel HMM

denoted as λ
′
y = {λLy, λRy} where λLy and λRy are

HMMs which model the left and right hand gestures respec-

tively. The parallel HMMs are also trained using the same

automated HMM initialization and training technique, uti-

lizing an iterative clustering, Baum Welch and Viterbi re-

alignment process, proposed by Kelly et al.[13]. A weight-

ing of ωLy and ωRy , where ωLy + ωRy = 1, is applied to

the left hand HMM and right hand HMM respectively, to ac-

count for variations in information held in each of the hands

for a particular sign. A parallel HMM threshold model,

λ′ = {λL, λR} is then created using the network of trained

parallel HMMs λy (y ∈ Y ).

4.4. Parallel HMM Gesture Classification

To classify the parallel observations Θ
′
= {ΘL,ΘR},

the Viterbi algorithm is run on each model given the un-

known observation sequences ΘL and ΘR, calculating the

most likely state paths through each model y. The likeli-

hoods of each state path, which we denote as P (ΘL|λLy)
and P (ΘL|λRy), are also calculated. We calculate the

overall likelihoods of a dedicated gesture and a movement

epenthesis with the equations defined in Equations 1 and 2.

P (Θ
′ |λ′

y) = P (ΘL|λLy)ωLy + P (ΘR|λRy)ωRy (1)

Φ
′
y =

P (ΘL|λL)ΓLy + P (ΘR|λR)ΓRy

2
(2)

Where ΓLy and ΓRy are constant scalar values used to

tune the sensitivity of the system to movement epenthesis.

The sequence of observations can then be classified as y if

PML(Θ
′ |λ′

y) ≥ Φ
′
y , where PML(Θ

′ |λ′
y) is the maximum

likelihood defined as max
y

P (Θ
′ |λ′

y).

4.5. Manual Sign Feature Processing

A spatiotemporal gesture is defined by the hands’ posi-

tion and movement, where the position refers to the hands’

location relative to the body and movement traces out a

trajectory in space. Kelly et al.[13] perform a number of

experiments on isolated spatiotemporal gestures and move-

ment epenthesis to find the best performing feature vec-

tor. Results showed that the best performing feature vec-

tor was a five dimensional vector describing the position

of the hand relative to the eyes (RPx, RPy), the direc-

tion the hand was moving (Vx, Vy) and the distance be-

tween the two hands (DH). For manual signs, we de-

fine Ot as the observation vector made at time t, where

Figure 2. Example of subject performing a raised brow gestures

(left) and a lowered brow gesture (right). a and b represent the

angles φL and φR respectively

Ot = {RPx, RPy, Vx, Vy, DH}. A particular hand sign se-

quence is then defined as Θ = {O1, O2, ..., OT }.

4.6. Head Movement Feature Processing

In a separate work, Kelly et al.[11] also perform experi-

ments on isolated head movement gestures to find the best

performing feature vector. The experiments showed that the

best feature vector, with an AUC of 0.936, was a two dimen-

sional vector, (V H
x , V H

y ), describing the directional move-

ment of the head in the x and y directions. To calculate

the directional vector of the head the mid point between the

eyes was used to calculated the direction the head moved

from frame to frame. A sliding window was used to aver-

age the directional vector and the experiments showed that

a window size of 12 frames achieved the best results.

4.7. Eyebrow Movement Feature Processing

Research on American Sign Language conducted by

Grossman et al. [10] has linked eyebrow gestures to certain

affective states and questions. Anger, wh-questions (who,

where, what, when, why, how) and quizzical questions ex-

hibited lowered brows and squinted eyes, while surprise and

y/n questions showed raised brows and widened eyes. In

this paper we focus on identifying these lowered brow ges-

tures and raised brow gestures.

To test the discriminative performance of different fea-

ture vectors, we recorded a set of videos where each of the

two eyebrow gestures occurred a total of 20 times. A flu-

ent ISL signer performed the these gestures within different

sign language sentences. The start and end points of the ges-

tures were then labeled and isolated observation sequences

Θτ
i were extracted. An additional set of 20 other brow ges-

ture sequences, outside of the training set, were also labeled

in the video sequences to test the performance of the system

when identifying negative gestures.

We use the HMM classification techniques, described

in Section 4.2, to classify eyebrow observation sequences.

To evaluate the performance of different features, we per-

formed a ROC analysis on the models generated from the

different feature combinations and calculated the area un-

der the curve (AUC) for each feature vector model. Table

1 shows the AUC measurement of different features which

were evaluated during our experiments. We used a sliding

window to average different features and in our experiments

we evaluated the best performing window size for each fea-

ture vector. Although we evaluated each feature vector with
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a range of different window sizes, we report the best per-

forming window sizes for each feature vector in Table 1.

The experiments show that the best performing feature vec-

tor was the vector (φLR, DΔ). The value φLR is computed

by calculating the average angle betweenφL and φR shown

in Figure 4.7.

Table 1. AUC Measurements for Different Feature Combinations
Features W † AUC

F1 - Eye Brow Angle φLR

+ Distance Between Eye D 4 0.911

F2 - Change Eye Brow Angle φΔ
LR

+ Change Distance Between Eye DΔ 2 0.723

F3 - Eye Brow Angle φLR

+ Change Distance Between Eye DΔ 2 0.948
F4 - Change Eye Brow Angle φΔ

LR

+ Distance Between Eye D 2 0.812

F5 - Distance Bottom Brow

To Bottom Eye Aperture DBE

+ Change Distance Between Eye DΔ 6 0.933

F6 - Distance Bottom Brow

To Bottom Eye Aperture DBE

+ Distance Between Eye D 6 0.903

F7 - Eye Squint Size (DES)

+Change Distance Between Eye DΔ 6 0.776

† - Window Size

5. Continuous Recognition
In order to spot and classify manual signs, head move-

ment gestures and eyebrow gestures we must extract four

observation channels from the video streams. The four ob-

servation channels correspond to the left hand observations

ΘL, the right hand observations ΘR, the head movement

observationsΘH and eyebrow observationsΘB . The obser-

vationsΘL andΘR are combined into a parallel observation

sequence Θ
′

which will be processed by the set of parallel

HMMs. Since manual and non-manual signals are indepen-

dent, the recognition of Θ, ΘH and ΘB will be processed

independently and will be combined after the independent

spotting and recognition of gestures within each of the three

independent channels.

5.1. Continuous Manual Sign Recognition

We will now describe our system for spotting and classi-

fying manual signs within a continuous sequence of parallel

observations, Θ
′
, extracted from natural sign language sen-

tences. The first step in our spotting algorithm is gesture end

point detection. To detect a gesture end point in a continu-

ous stream of gesture observations Θ
′
= {O′

1, O
′
2, ..., O

′
T },

we calculate the model likelihoods of observation sequence

θ
′
= {O′

T−F , O
′
T−F−1, ..., O

′
T } where θ

′
is a subset of Θ

′

and F defines the length of the observation (no. of frames)

subset used. In this paper we set F to the average length of

the observation sequences used to train the system.

A candidate hand gesture, κ, with end point, κe = T , is

flagged when ∃y : P (Θ′ |λ′
y) ≥ Ψ

′
y .

Φy(Θ
′
) = P (Θ

′ |λ′
y)

P (Θ′ |λ′
y)+Ψ′

y

(3)

For each candidate end point we calculate a corre-

sponding start point κs. Different candidate start points

are evaluated using the measurement shown in Equation

3 where Φy(Θ
′
) is normalized metric (between 0 and 1)

which measures the strength of gesture y given observations

Θ
′
. To find a candidate start point, the metric Φy(Θ

′
sκe

)
is calculated over different values of s, where Θ

′
sκe

=
{O′

s, O
′
s+1, ..., O

′
κe
} and (κe − F 2) ≤ s < κe. The can-

didate gesture start point κs, is then found using Equation

4.

κs = argmax
s

Φy(Θ
′
sκe

) (4)

The start and end point detection algorithm may flag can-

didate gestures which overlap and for this reason we expand

on our continuous sign recognition algorithm with a can-

didate selection algorithm. The purpose of the candidate

selection algorithm is to remove overlapping candidate ges-

tures such that the single most likely gesture is the remain-

ing gesture for a particular time frame.

The first step in the candidate selection algorithm is to

cluster overlapping gestures, with the same gesture classi-

fication, together. Each of these candidate gestures, within

the cluster, have an associated metric κp = Φy(Θ
′
κsκe

). We

remove all but one candidate gesture from this cluster leav-

ing the candidate gesture, κB , with the highest κp value.

We repeat this step for each cluster to produce a set of can-

didate gestures Υ = {κB1, κB2, ..., κBK}, where K is the

total number of clusters created from grouping overlapping

gestures, with the same gesture classification, together. The

second step in the candidate selection algorithm is an iter-

ative selection step to remove the least probable candidate

gestures as shown in Algorithm 1.

Input: Set of Candidate Gestures Υ
Output: Set of Recognized Gestures

Sort(Υ) by In Order of Increasing κB
P

for i ≤ K do
if ∃j ∈ J = {i+ 1, i+
2, ...,K}, such that Υ[j] overlaps with Υ[i]
then

Remove Υ[i] from Υ;

end
end

Algorithm 1: Second Step of Candidate Selection Algo-

rithm
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5.2. Continuous Non Manual Signal Recognition

The spotting and classifying of single channel observa-

tions sequences ΘH and ΘB is then conducted using the

methods described in Section 5.1 above, however to keep

the notation consistent with the techniques described in Sec-

tion 4.2, the notation Θ
′
, λ

′
c and Ψ

′
c should be substituted

with Θ, λi and Ψi respectively.

6. Continuous Recognition Experiments

We perform a set of experiments to evaluate our manual

and non-manual signal recognition framework. We test our

framework on a set of eight different manual signs, a set

of three different head movement gestures and a set of two

eyebrow gestures.

The set of gestures were not selected to be visually dis-

tinct but to represent a suitable cross section of the manual

signs and head movement gestures that can occur in sign

language. Figure 3 illustrates an example of a signer per-

forming each of the eight manual signs, and Figure 6 illus-

trates an example of a signer performing each of the three

different head movement gestures. Figure 4.7 illustrates the

eyebrow gestures.

Figure 3. Example of the eight different signs the system was

tested on:(Left to Right) Newspaper, A lot, Bike, Clean, Paint,

Plate, Lost, Gone

We recorded a total of 160 additional video clips of full

unsegmented sign language sentences being performed by

a fluent signer to test the performance of our continuous

recognition framework. Each video clip contained at least

one of the eight chosen manual signs. The three head move-

ment gestures occurred a total of 30 times within the 160

videos while the two eye brow gestures occurred a total

of 35 times. Videos were recorded at 25 frames per sec-

ond with an average length of 5 seconds. Observation se-

quences ΘL, ΘR, ΘH and ΘB were extracted from each

video clip and our continuous recognition framework, de-

scribed in Section 5, was used to process the observation

sequences to spot gestures within the multiple observation

channels.

Figure 4. Example of the three different head movement gestures

the system was tested on (a) Right Movement (b) Left Movement

(c) Left Forward Movement

In the gesture spotting and classification task, there are

three types of errors: an insertion error occurs when the

spotter reports a nonexistent gesture, a deletion error occurs

when the spotter fails to detect a gesture, and a substitution
error occurs when the spotter falsely classifies a gesture.

From these error measures we define two performance met-

rics shown in Equation 5, where CS is the number of cor-

rectly spotted gestures, IG is the number of input gestures

and IE is the number of insertion errors.

DetectionRatio =
CS

IG
Reliability =

CS

IG+ IE
(5)

Table 2 shows the performance of our system when spot-

ting and classifying signs within continuous sequences of

video. The experiment shows an overall detection rate of

95.1% and an overall reliability of 93.4% when indepen-

dently spotting and classifying manual and non-manual ges-

tures in continuous sign language sentences.

Table 2. Continuous Spotter and Classifier Performance
Gesture C D I S Det Rel ES EE

Gone 20 0 0 0 1.0 1.0 ±2.5 ±8.4

Alot 20 0 0 0 1.0 1.0 ±1.5 ±1.6

Lost 20 0 0 0 1.0 1.0 ±1.5 ±3.5

Plate 19 0 1 0 0.95 0.90 ±8.1 ±12.2

Bike 20 0 0 0 1.0 1.0 ±12.1 ±12.0

Paint 20 0 0 0 1.0 1.0 ±26.1 ±20.7

Paper 16 0 1 3 0.8 0.76 ±5.9 ±1.6

Clean 18 0 1 1 0.9 0.85 ±4.8 ±5.2

Head Left 11 0 1 0 0.91 0.84 ±10.1 ±7.7

Head Right 10 0 0 0 1.0 1.0 ±4.0 ±4.3

Head Left Forward 8 0 0 1 0.88 0.88 ±12.9 ± 6.5

EyeBrowDown 18 0 0 2 0.9 0.9 ±19.2 ±15.3

EyeBrowUp 15 0 0 0 1.0 1.0 ±17.1 ±24.9

Total 215 0 4 7 0.951 0.934 ±9.6 ±9.5
C-#Correct Gestures, D-#Deletion Errors, I-#Insertion Errors

S-#Substitution Errors, Det-#Detection Ratio, Rel-#Reliability

ES-#Absolute Error Start Point, ES-#Absolute Error End Point

We also evaluate the performance of the start and end

point detection relative to ground truth data labeled by a

human sign language translator. Table 2 also shows the av-

erage absolute difference between the spotters start and end

points and the human interpreters start and end points for

signs that were correctly spotted and classified. The average

start point error was 9.6 frames and the average end point er-

ror was 9.5 frames. From this experiment we can conclude
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that our spotter is capable of detecting start points, within an

average of 384 milliseconds of a human interpreter, and end

points, within an average of 380 milliseconds of a human

interpreter.

Figure 5. Multimodal gesture labeling comparison of a human in-

terpreter vs. our recognition system (Dotted Arrows Represent

Hand Labeled Gestures while solid arrows represent labels gener-

ated by our system)

Figure 6 shows the gestures spotted by our system in

three different sentences. Figure 6(a) and Figure 6(b) show

gestures spotted from two sentences where the signer per-

forms the words ”CAR PETROL ALL GONE” in both sen-

tences. In the first sentence the signer is asking a ques-

tion ”CAR PETROL ALL GONE HOW?”, but in the sec-

ond sentence the signer is asking a yes/no question ”CAR

PETROL ALL GONE?”. The manual signs for both these

sentences are the same but the difference can only be rec-

ognized from the head movement and eyebrow gestures. It

can be seen that our system spots an eyebrow down ges-

ture coinciding with a left head movement followed by right

head movement. This indicates that the signer is asking a

”wh” question. In the second sentence our system spots a

eyebrow down gesture at the beginning of the sentence fol-

lowed by a head forward movement, indicating the signer is

asking a yes/no question. Figure 6(c) shows gestures from a

sentence ”WHO BIKE BROKE?”, where our system spots

an eyebrow down gesture coinciding with a left head move-

ment. Similar to the gestures in Figure 6(a), the eyebrow

down gesture coinciding with a head movement gesture in-

dicates a ”wh” question. Also from Figure 6 (a), it was

observed that an eyebrow up gesture occurred at the start of

the sequence. This is an interesting observation as the eye-

brow up gesture is linked to the start of a new sentence or

sequence.

7. Conclusion
In this paper we have discussed current methods of con-

tinuous sign recognition, identifying that in general the

drawbacks of these methods were that they imposed unnatu-

ral constraints on the signer, such as pauses between words,

or required explicit training of models to handle movement

epenthesis. Building on the techniques of Kelly et al., our

technique is capable of recognizing gestures from within

unconstrained sign language sequences. Our system re-

quires that a set of dedicated gesture models be trained, and

as a result of this training a single threshold model can be

created to identify movement epenthesis without explicitly

training the model on movement epenthesis samples. We

have also discussed the importance of non-manual signals

in sign language. We have highlighted there are currently

a limited number of works which incorporate both manual

and non-manual signals into a single framework for contin-

uous automatic sign language recognition. The main contri-

bution of this work, is that we have presented an accessible

approach towards multimodal human-computer interaction

(HCI) for the interpretation of Irish Sign Language (ISL)

sequences. The gesture recognition framework we pro-

pose is not specific to any particular type of gesture and we

demonstrate this by showing that manual and non manual

signals can be robustly spotted and classified from within

continuous sign sequences. By incorporating non-manual

signals such as eyebrow gestures and head movement ges-

tures into our framework, we have shown that our technique

provides the necessary foundations for differentiating be-

tween different types of questions, and also recognizing the

start of sign language sentences. Also unlike current works,

each manual and non-manual signal is processed indepen-

dently within our multimodal framework. Experiments con-

ducted demonstrate that our system achieved a detection ra-

tio of 0.951 and a reliability measure of 0.934. Experiments

also showed that our gesture spotting system successfully

flagged gesture start points and end points within±384 mil-

liseconds and ±380 milliseconds respectively when com-

pared to a human interpreter. Through these experiments we

have proved the robustness of our system when recognizing

a number of different manual and non-manual signals. Fu-

ture work will entail, extending upon the results presented

here to recognize a larger set of sign language phrases and

to incorporate further non-manual signals and hand pose in-

formation into our framework.
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