
Continuous Recognition of Motion Based Gestures in Sign Language

Daniel Kelly, John Mc Donald, Charles Markham
Computer Science Department

National University of Ireland, Maynooth
dankelly@cs.nuim.ie

Abstract

We present a novel and robust system for recognizing two
handed motion based gestures performed within continuous
sequences of sign language. While recognition of valid sign
sequences is an important task in the overall goal of ma-
chine recognition of sign language, detection of movement
epenthesis is important in the task of continuous recogni-
tion of natural sign language. We propose a framework for
recognizing valid sign segments and identifying movement
epenthesis. Our system utilizes a single HMM threshold
model, per hand, to detect movement epenthesis. Further
to this, we develop a novel technique to utilize the threshold
model and dedicated gesture HMMs to recognize gestures
within continuous sign language sentences. Experiments
show that our system has a gesture detection ratio of 0.956
and a reliability measure of 0.932 when spotting 8 different
signs from 240 video clips.

1. Introduction

Sign language recognition systems are an ideal test en-

vironment for motion based gesture recognition algorithms

for human computer interfaces (HCI). In practice HCI

would involve composition of individual gestures just as

sign sentences are compositions of individual signs. One

of the main difficulties with recognizing motion based hand

gestures is that the hand(s) must move from the end point

of the previous gesture to the start point of the next gesture.

These inter gesture transition periods are called movement

epenthesis [9] and are not part of either of the gestures.

While the co-articulation effects that arise between signs

can hold useful information in a small number of signs,

movement epenthesis occur very frequently between con-

secutive signs, thus movement epenthesis should be dealt

with first [11]. An accurate gesture recognition system

should therefore be able to distinguish between valid sign

segments and movement epenthesis. This work describes

a framework for the recognition of spatiotemporal gestures

and identification of movement epenthesis.

1.1. Related Work

One proposed solution to movement epenthesis detection

is an explicit segmentation model were subsets, of features

from gesture data, are used as cues for valid gesture start

and end point detection [13, 8]. The limitation of this ex-

plicit segmentation model arises from the difficulty in creat-

ing general rules for sign boundary detection that could be

applied to all types of gestures [11].

An approach to dealing with continuous recognition

without explicit segmentation is to use Hidden Markov

Models (HMM) for implicit sentence segmentation. Starner

et al. [14] and Bauer and Kraiss [2] model each word or sub-

unit with a HMM and then train the HMMs with data col-

lected from full sentences. A downside to this is that train-

ing on full sentence data may result in a loss in valid sign

recognition accuracy due to the large variations in the ap-

pearance of all the possible movement epenthesis that could

occur between two signs.

Wang et al. [19] also use HMMs to recognize continuous

signs sequences with 92.8% accuracy, although signs were

assumed to end when no hand motion occurred. Assan et al.

[1] model the HMMs such that all transitions go through a

single state, while Gao et al. [4] create separate HMMs that

model the transitions between each unique pair of signs that

occur in sequence. Vogler at al. [18] also use an explicit

epenthesis modeling system where one HMM is trained for

every two valid combinations of signs.

While these works have had promising results in gesture

recognition and movement epenthesis detection, the train-

ing of such systems involves a large amount of extra data

collection, model training and recognition computation due

to the extra number of HMMs required to detect movement

epenthesis.

Few researchers have addressed the problem of move-

ment epenthesis without explicitly modeling these move-

ments. Yang et al [20] proposed an ASL recognition method

based on an enhanced Level Building algorithm and a Tri-

gram grammar model. Their method was based on a dy-

namic programming approach to spot signs without explicit

movement epenthesis models. The recognition rate was

1073

2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops
978-1-4244-4441-0/09/$25.00 ©2009 IEEE

83% with 39 signs, articulated in 25 different sentences.

Their work is based on a two step approach for the recog-

nition of continuous signs, where the first step recognizes

the possible signs in the sentence and the second applies a

grammar model to the possible signs. They report only the

results obtained after the second step which applies a tri-

gram grammar model to the signs. The sensitivity of the

system to the grammar model was shown in the experi-

ments where the recognition rate of the system decreased

from 83% to 68% when a the trigram model was replaced

by a bigram model. To extend a sign recognition system to

a more general gesture recognition framework for HCI, the

implementation of a grammar model may be unfeasible. In

this work we show that we can effectively perform the first

step of recognizing gestures from within sign sentences in-

dependent of any grammar rules.

We propose a HMM based gesture recognition frame-

work which accurately spots and classifies motion based

gestures, within a continuous sequence of sign language,

as one of a number of pre trained gestures as well as calcu-

lating the probability that the given gesture sequence is or

is not a movement epenthesis. The novelty of our work is

that the movement epenthesis detection is carried out by a

single parallel HMM, per hand, and requires no extra data

collection, training or grammar modeling.

2. Feature Extraction
The focus of this work is to develop a continuous gesture

spotter and classification technique, availing of features ex-

tracted from a video stream. For completeness, we briefly

describe the feature tracking techniques used, though we do

not consider it to be the novel part of our work. From the

definition of a spatiotemporal gesture [15], we must track

the position and movement of the hands in order to describe

a gesture sequence. We expand on the work a of hand pos-

ture recognition system proposed Kelly et al [5] to build a

feature extraction system for spatiotemporal gesture recog-

nition. Tracking of the hands is performed by tracking col-

ored gloves using the Mean Shift algorithm [3].

Figure 1. Extracted

Features from Image

Face and eye positions are also

used as gestures cues. Face and eye

detection is carried out using a cas-

cade of boosted classifiers working

with haar-like features proposed by

Viola and Jones [16]. A set of pub-

lic domain classifiers [10], for the

face, left eye and right eye, are used

in conjunction with the OpenCV

implementation of the haar cascade

object detection algorithm. We define the raw features ex-

tracted from each image as follows; right hand position

(RHx, RHy), left hand position (LHx, LHy), face po-

sition (FCx, FCy), face width (FW), left eye position

(LEx, LEy) and right eye position (REx, REy).

2.1. Feature Processing

A spatiotemporal gesture is defined by the hands’ posi-

tion and movement, where the position refers to the hands’

location relative to the body and movement traces out a tra-

jectory in space.

Using the raw features, extracted from the image using

the method described in Section 2, the observation vector

we use to model a gesture is comprised of a combination

of features calculated from the raw features. We carry out

performance evaluations on a number different feature com-

binations in order to find features which best classify spa-

tiotemporal features and movement epenthesis. These eval-

uations will be discussed in Section 5.

We define Ot as an observation vector made at time t,
where Ot = {o1, o2, ..., oM} and M is the dimension of the

feature vector. A particular gesture sequence is then defined

as Θ = {O1, O2, ..., OT }.
To calculate the probability of a specific observation Ot,

a probability density function of an M-dimensional multi-

variate gaussian is implemented (see Equation 1). Where μ
is the mean vector and Σ is the covariance matrix.

ℵ(Ot|μ,Σ) = (2π)−
N
2 |Σ|− 1

2 exp(− 1
2 (Ot−μ)T Σ−1(Ot−μ))

(1)

3. Hidden Markov Models

Hidden Markov Models (HMMs) are a type of statistical

model and can model spatiotemporal information in a nat-

ural way. HMMs have efficient algorithms for learning and

recognition, such as the Baum-Welch algorithm and Viterbi

search algorithm [12].

A HMM is a collection of states connected by transitions.

Each transition (or time step) has a pair of probabilities: a

transition probability (the probability of taking a particular

transition to a particular state) and an output probability (the

probability of emitting a particular output symbol from a

given state).

We use the compact notation λ = {A, B, π} to indicate

the complete parameter set of the model where A is a matrix

storing transitions probabilities and aij denotes the proba-

bility of making a transition between states si and sj . B is

a matrix storing output probabilities for each state and π is

a vector storing initial state probabilities.

HMMs can use either a set of discrete observation sym-

bols or they can be extended for continuous observations

signals. In this work we use continuous multidimen-

sional observation probabilities calculated from a multivari-

ate probability density function.

1074

3.1. HMM Threshold Model

Lee and Kim [7] proposed a HMM threshold model to

handle non-gesture patterns. The threshold model was im-

plemented to calculate the likelihood threshold of an input

pattern and provide a confirmation mechanism for provi-

sionally matched gesture patterns. We build on the work

carried out by Lee and Kim to create a framework for cal-

culating a probability distribution of a two hand input sign

using continuous multidimensional observations. The com-

puted probability distribution will include probability esti-

mates for each pre-trained sign as well as a probability esti-

mate that the input sign is a movement epenthesis.

In general, a HMM recognition system will choose a

model with the best likelihood as the recognized gesture if

the likelihood is higher than a predefined threshold. How-

ever, this simple likelihood threshold often does not work,

thus, Lee and Kim proposed a dynamic threshold model to

define the threshold of a given gesture sequence.

A property of the left-right HMM model implies that a

self transition of a state represents a particular segment of

a target gesture and the outgoing state transition represents

a sequential progression of the segments within a gesture

sequence. With this property in mind, an ergodic model,

with the states copied from all gesture models in the system,

can be constructed as shown in Figure 2(a) and 2(b). Figure

2(b) shows the threshold model as a simplified version of

the ergodic model where dotted lines denote null transitions

(i.e. no observations occur between transitions).

(a)

(b)

Figure 2. (a) Dedicated Gesture Models (b) Threshold Model

States are copied such that output observation probabil-

ities and self transition probabilities are kept the same, but

all outgoing transition probabilities are equally assigned as

aij = 1−aii

N−1
∀j, i �= j where N is the number of states

excluding the start and end states (The start and end states

produce no observations).

As each state represents a subpattern of a pre-trained ges-

ture, constructing the threshold model as an ergodic struc-

ture makes it match well with all patterns generated by com-

bining any of the gesture sub-patterns in any order. The

likelihood of the threshold model, given a valid gesture pat-

tern, would be smaller than that of the dedicated gesture

model because of the reduced outgoing transition probabil-

ities. However, the likelihood of the threshold model, given

an arbitrary combination of gesture sub-patterns, would be

higher than that of any of the gesture models, thus the

threshold model, denoted as λ, can be used as a movement

epenthesis likelihood measure.

4. System Overview

Our system initializes and trains a dedicated parallel

HMM [17] for each gesture to be recognized. Each par-

allel HMM consists of two separate HMMs that model the

right and left hand gesture respectively. A description of

the models observations, training and recognition process is

presented in the following sections.

4.1. Model Training

Each dedicated gesture model is trained on isolated signs

performed by a fluent signer. Before training a HMM using

the Baum-Welch algorithm, the model must first be initial-

ized. Initialization includes the computation of an initial

state transition matrix and calculation of each states’ emis-

sion variables μ and Σ. In order to initialize these com-

ponents of the HMM, an understanding of the gesture seg-

mentation, or state transitions, must be built. One approach

to achieving this would be to explicitly hand label differ-

ent subunits or gesture phonemes [19]. Part of the goal of

this work is to create a general data collection, training and

recognition system. Data collection consists of a record-

ing step and a labeling step. Labeling is an integral step

in creating valid sign data, thus we envisage that all data

will be labeled by fluent signers. Since movement and posi-

tion of the hands are two of the four building blocks of sign

language which Stokoe [15] identified, manually breaking

these building blocks into smaller subunits would be an un-

intuitive and time consuming step for fluent signers to seg-

ment in a consistent manner. With this in mind, a training

system was developed to initialize and train data with min-

imum human intervention where signs are labeled at a sign

level and not at a phoneme level.

We implement an automated HMM initialization and

training model in our system. We extend an iterative HMM

training model proposed by Kim at al [6] to develop a HMM

initialization and training model which includes an extra pa-

rameter selection layer. The parameter selection layer finds

the best combination of (S, R), where S is the total number

of states in the HMM and R is the reach of a state (i.e. in a

left-right model, the reach is the number of states that it is

1075

possible to transition to from the current state).

For a particular sign, we collect data from a num-

ber of video sequences of a fluent signer performing that

sign. This produces a set of observation sequences Δc =
{Θ1

c ,Θ
2
c , ...,Θ

K
c } where c is the index of the sign being

modeled and K is the total number of training examples.

To initialize λc, the HMM which will model the sign in-

dexed by c, we first choose a random gesture sequence Θr
c

from Δc and calculate S − 1 indices of Θr
c which best seg-

ment the gesture into S sub-gestures. The S − 1 indices

are calculated by performing principal component analysis

on the gesture sequence, performing a k-means clustering

technique on the principal components and finally finding

the S − 1 indices which best divide the data into their cor-

responding k-means clusters.

The gesture data is then broken into the S subsets and

the mean vector μ and the covariance matrix Σ is calculated

for each state. The Baum-Welch algorithm[12] is then ap-

plied to λc using all training data Δc. After training, the

Viterbi algorithm[12] is run on Θr
c to produce most proba-

ble state sequence. The initial S sub-gestures are then re-

aligned to match the Viterbi path. This re-estimation and

realignment process is continued until the likelihood, pro-

duced by the Baum-Welch algorithm, converges. The over-

all process is repeated for different combinations of (S, R)
to find the combination which produces the highest likeli-

hood from the Baum-Welch re-estimation. Figure 4.1 gives

an overview of the iterative training and parameter selection

procedure.

Figure 3. HMM Initialization and Training Procedure

It is desirable to weight λLc and λRc, the left hand HMM

and right hand HMM respectively, due to variations in infor-

mation held in each of the hands for a particular sign. The

weighting applied in our system is based on a variance mea-

sure of the observation sequences. Using data from all ob-

servation sequences Θk
Lc and Θk

Rc, where 1 ≤ k ≤ K, K is

the total number of training examples and ΘLc and ΘRc are

the left and right hand observations respectively. The vari-

ance of the left and right hand observations are calculated

by calculating the variance of each observation dimension

σ2
Lc[i] and σ2

Rc[i], where 0 ≤ i ≤ D and D is the dimension

of the observation vectors. The left HMM weight, ωLc, and

right HMM weight, ωRc, are then calculated as using Equa-

tions 2 and 3.

ωLc =
D∑

i=0

σ2
Lc[i]

(σ2
Lc[i] + σ2

Rc[i])×D
(2)

ωRc =
D∑

i=0

σ2
Rc[i]

(σ2
Lc[i] + σ2

Rc[i])×D
(3)

4.2. Sign Recognition

Given an unknown sequence of sign observations ΘL

and ΘR, the goal is to accurately classify the sign as either

a movement epenthesis or as one of the C trained signs.

To classify the observations, the Viterbi algorithm is run on

each model given the unknown observation sequences ΘL

andΘR, calculating the most likely state paths through each

model c. The likelihoods of each state path, which we de-

note as P (Θ|λLc) and P (Θ|λRc), are also calculated.

We calculate the overall likelihoods of a dedicated ges-

ture and a movement epenthesis with the equations defined

in Equations 4 and 5.

P (Θ|λc) = P (ΘL|λLc)ωLc + P (ΘR|λRc)ωRc (4)

Ψc =
P (ΘL|λL)ΓLc + P (ΘR|λR)ΓRc

2
(5)

Where ΓLc and ΓRc are constant scalar values used to

tune the sensitivity of the system to movement epenthesis.

The sequence of observations can then be classified as c
if P (Θ|λc) ≥ Ψc evaluates to be true.

5. Isolated Experiments
We perform a set of experiments on isolated gestures to

evaluate the best performing feature vector and evaluate the

HMM threshold model system when compared to a stan-

dard HMM model system. To evaluate the performance of

our recognition framework, a set of eight different signs, as

performed by a fluent signer, were recorded and manually

labeled. The set of eight test signs were not selected to be

visually distinct but to represent a suitable cross section of

the spatiotemporal signs that can occur in sign language.

A visual example of a signer performing each of the eight

signs is shown in Figure 4.

A set of observation sequences Δc were extracted from

the video sequence (where 1 ≤ c ≤ C) and divided into

a training set, Δτ
c , and a test set, Δζ

c . For the experiments

1076

Figure 4. Example of the eight different signs the system was

tested on (a) Newspaper, (b) A lot, (c) Bike, (d) Clean, (e) Paint,

(f) Plate, (g) Lost, (h) Gone

we report in this paper, a set of 5 training signs and a set

of 5 test signs were recorded for each sign. Each dedicated

gesture model λc was then trained on Δτ
c using our train-

ing procedure described in Section 4.1. The threshold mod-

els were then created using the trained gesture models. An

additional set of observations ΔE , which represent a col-

lection of movement epenthesis, were also extracted from

the video sequences to test the performance of the thresh-

old model. For each valid sign, we recorded 10 movement

epenthesis that occurred before and after the valid sign in

different sign language sentences. An additional set of 20

random movement epenthesis were also recorded, resulting

in a test set of 100 samples to evaluate the system on.

The classification of a gesture is based on a comparison

of a weighted threshold model likelihood with the weight

denoted as Γc. In our ROC analysis of the system, we vary

the weight, Γc, over the range 0 ≤ Γc ≤ 1 and then create a

confusion matrix for each of the weights. This procedure is

carried out for both the left hand weights, ΓLc, and the right

hand weights, ΓRc. To evaluate the performance of differ-

ent features, we performed a ROC analysis on the models

generated from the different feature combinations and cal-

culated the area under the curve (AUC) for each feature vec-

tor model as shown in Table 1.

It can be seen from the AUC measurements shown in

Table 1 that the best performing feature, with an AUC of

0.949, was the feature, F7 = {RPx, RPy, Vx, Vy, DH},
which describes the position of the hands relative to the

eyes, the direction of the movement of the hand and the dis-

tance between the two hands. To evaluate the performance

of the threshold model, when applied to multi dimensional

sign language observations, we compare the performance

of our system to a modified version of our system with no

threshold model. The modified version of the system uses

the same dedicated HMMs but the sequence of observations

is classified as c only if the gesture likelihood is greater than

a predefined static threshold. A ROC analysis of the modi-

fied systems classifications showed that the best performing

Table 1. AUC Measurements for Different Feature Combinations
Features ROC

AUC
F1 - Hand Direction (Vx, Vy) 0.8614

F2 - Hand Direction (Vx, Vy)+
Distance Between Hands (DH) 0.698

F3 - Hand Direction (Vx, Vy)+
Distance Between Eyes and Hand (DE) 0.7391

F4 - Hand Positions Relative

to Eyes (RPx, RPy) 0.789

F5 - Hand Positions Relative

to Eyes (RPx, RPy) +

Distance Between hands (DH) 0.936

F6 - Hand Positions Relative

to Eyes (RPx, RPy) +

Hand Direction (Vx, Vy) 0.807

F7 - Hand Positions Relative
to Eyes (RPx, RPy) +

Hand Direction (Vx, Vy) +
Distance Between hands (DH) 0.949

feature was also the feature F7. The AUC of the ROC graph

produced by this feature was 0.897. From the experiments

we have carried out, the performance of the system with

the threshold model was 5.2% better than that of the system

without the threshold model.

6. Continuous Recognition

Thus far we have described a framework for classifying

a given observation sequence as one of a number of pre

trained gestures or as a movement epenthesis. We perform

experiments to show the robustness of this framework for

recognizing isolated gestures with a ROC area under the

curve measurement of 0.949. We will now describe our

system for spotting and classifying spatiotemporal gestures

within continuous sequences of natural sign language.

The first step in our spotting algorithm is gesture end

point detection. To detect a gesture end point in a continu-

ous stream of gesture observations Θ = {O1, O2, ..., OT },
we calculate the model likelihoods of observation sequence

θ = {OT−L, OT−L−1, ..., OT } where θ is a subset of Θ
and L defines the length of the observation subset used. In

the work we report we set L to the average length of the

observation sequences used to train the system.

A candidate gesture, κ, with end point, κe = T , is

flagged when ∃c : P (Θ|λc) ≥ Ψc. Figure 5 illustrates the

likelihood time evolution of the gesture model ”Lost” when

given an observation sequence where the signer performs

the ”Lost” sign. It can be seen from Figure 5 that a number

of candidate end points occur between T = 16 and T = 21.

For each candidate end point we calculate a correspond-

ing start point κs. Different candidate start points are eval-

1077

Figure 5. Likelihood evolution of ”Lost” gesture model and asso-

ciated threshold model

uated using the measurement shown in Equation 6 where

Φc(Θ) is normalized metric (between 0 and 1) which mea-

sures the strength of gesture c given observations Θ.

Φc(Θ) = P (Θ|λc)
P (Θ|λc)+Ψc

(6)

To find a candidate start point, the metric Φc(Θsκe)
is calculated over different values of s, where Θsκe

=
{Os, Os+1, ..., Oκe

} and (κe − L2) ≤ s < κe. The can-

didate gesture start point κs, is then found using Equation

7.

κs = argmax
s

Φc(Θsκe
) (7)

The start and end point detection algorithm may flag can-

didate gestures which overlap and for this reason we ex-

pand on our continuous sign recognition algorithm with a

candidate selection algorithm. The purpose of the candi-

date selection algorithm is to remove overlapping candidate

gestures such that the single most likely gesture is the only

remaining gesture for a particular time frame.

We will use a sample sign language sentence ”I Lost

Book” to illustrate our candidate selection algorithm in

the context of our gesture and threshold likelihood eval-

uation, where the system was trained on the following 8

signs; ”Paper”, ”Alot”, ”Bike”, ”Clean”, ”Paint”, ”Plate”,

”Lost” and ”Gone”. Figure 6 illustrates the difference be-

tween the gesture model likelihood P (Θ|λc) and its cor-

responding threshold Ψc, where positive values indicates

P (Θ|λc) ≥ Ψc. We illustrate only 4 gesture model like-

lihoods as all other gesture model likelihoods never exceed

their corresponding threshold.

Figure 6. Gesture And Corresponding Threshold Model Likeli-

hood Difference

The first step in the candidate selection algorithm is to

cluster overlapping gestures, with the same gesture classifi-

cation, together. Each of these candidate gestures, within

the cluster, have an associated metric κp = Φc(Θκsκe
).

We remove all but one candidate gesture from this cluster

leaving only the candidate gesture, κB , with the highest κp

value. We repeat this step for each cluster to produce a set of

candidate gestures Υ = {κB1, κB2, ..., κBK}, where K is

the total number of clusters created from grouping overlap-

ping gestures, with the same gesture classification, together.

Figure 7 shows the time segments and Φ metrics of each

candidate gesture after the first candidate selection step.

Figure 7. Candidate Gestures, Υ, after first candidate selection step

The second step in the candidate selection algorithm is

an iterative selection step to remove the least probable can-

didate gestures as shown in Algorithm 1.

Input: Set of Candidate Gestures Υ
Output: Set of Recognized Gestures

Sort(Υ) by In Order of Increasing κB
P

for i ≤ K do
if ∃j ∈ J = {i+ 1, i+
2, ...,K}, such that Υ[j] overlaps with Υ[i]
then

Remove Υ[i] from Υ;

end
end

Algorithm 1: Second Step of Candidate Selection Algo-

rithm

Figure 8 shows the time segments and Φ metrics of the

recognized gestures after the second candidate selection

step where the sign ”Lost” is correctly recognized.

Figure 8. Recognized Gestures, Υ, after final candidate selection

step

7. Continuous Experiments
To evaluate the performance of our recognition frame-

work, we use the same set of eight signs used in the iso-

lated experiments in Section 5. A total of 240 video clips

(30 videos per sign) of sign language sentences being per-

formed by a fluent signer were recorded. Each video clip

contained at least one of the eight chosen signs and was

recorded at 25 frames per second with an average length of

7 seconds. In order to robustly evaluate the performance

1078

of our system, each of the 240 different sign language sen-

tences, used to test and train the system, was performed in

a mixture of different styles. The variations in the style

of signs performed are similar to the types of variations

that can occur in sign language in real world situations and

thus testing our system on these signs gives a good indi-

cation of how our system will perform in real world sce-

narios. Although we have not currently performed exper-

iments on multiple signers, the types of style variations in

our data does represent some of the variations which oc-

curs between the styles of different signers. An example

of the sign variations introduced to our data is as follows:

the sign ”A lot” was performed within the sentence ”My

children eat A LOT of sweets” and different variations of

this sentence were performed in the following ways; differ-

ent question styles (yes/no questions, different ”wh” ques-

tions) and different emotional styles (a state of surprise,

wonder, anger, shock and joy). The start and end points

of the eight different gestures, within the full sign language

sentences, were then labeled by a certified sign language

interpreter. According to the labels in the full sentences,

isolated observation sequences Δc were extracted from the

video sequences (where 1 ≤ c ≤ C) to form a training

set, Δτ
c . For the experiments we report in this paper, a set

of 10 training signs were used for each sign. Each dedi-

cated gesture model λc was then trained on Δτ
c using the

automated training procedure described in Section 4.1. The

threshold models were then created using states from the

trained gesture models. The remaining 160 video clips, that

were not part of the training procedure, were used to eval-

uate the performance of our continuous sign spotting and

classification techniques. Observation sequences were ex-

tracted from each video clip and our continuous recognition

algorithm, described in Section 6, processed the observation

sequences to spot and classify signs within the videos.

In the gesture spotting and classification task, there are

three types of errors: The insertion error occurs when the

spotter reports a nonexistent gesture, the deletion error oc-

curs when the spotter fails to detect a gesture, and the substi-

tution error occurs when the spotter falsely classifies a ges-

ture. From these error measures we define two performance

metrics there are two performance metrics used which we

define in Equation 8, where CS is the number of correctly

spotted gestures, IG is the number of input gestures and IE
is the number of insertion errors.

DetectionRatio =
CS

IG
Reliability =

CS

IG+ IE
(8)

Table 2 shows the performance of our system when spot-

ting and classifying signs within continuous sequences of

video. The experiment shows an overall detection rate of

95.6% and an overall reliability of 93.2%. We perform a

secondary experiment to evaluate the performance of the

start and end point detection relative to a human sign lan-

guage translator. Table 2 shows the average absolute dif-

ference between the spotters start and end points and the

human interpreters start and end points for signs that were

correctly spotted and classified. The overall start point er-

ror was only 7.8 frames and the overall end point error was

only 8.15 frames. From this experiment we can conclude

that our spotter is capable of detecting start points, within

an average of 312 milliseconds of a human interpreter, and

end points, within an average of 326 milliseconds of a hu-

man interpreter.

Table 2. Continuous Spotter and Classifier Performance
Sign #Correct #D† #I‡ #S†† Det∗ Rel′ Start Error End Error

Gone 20 0 0 0 1.0 1.0 2.5 8.4

Alot 20 0 0 0 1.0 1.0 1.5 1.6

Lost 20 0 0 0 1.0 1.0 1.5 3.5

Plate 19 0 1 0 0.95 0.90 8.1 12.2

Bike 20 0 0 0 1.0 1.0 12.1 12.0

Paint 20 0 0 0 1.0 1.0 26.1 20.7

Paper 16 0 1 3 0.8 0.76 5.9 1.6

Clean 18 0 1 1 0.9 0.85 4.8 5.2

Total 153 0 3 4 0.956 0.932 7.8 8.15
† Number of Deletion Errors, ‡Number of Insertion Errors
††Number of Substitution Errors, ∗Detection Ratio, ′Reliability

The system described in this work was developed as a ro-

bust software application that can be used on any standard

Microsoft Windows based PC. The vision feature extraction

component of the system was built using C++ and utilizes

functions within OpenCV library. The gesture recognition

engine was developed using C#. Supplementary material is

provided in the form of a video to demonstrate the software

application being used to recognize some continuous signs.

The system we have proposed runs at near realtime speeds.

Timing evaluations, which were performed during our ex-

periments, showed that performing a full classification of

a video clip took, on average, 1.32 times the length of the

video (i.e. for a 7 second video clip, it would take our sys-

tem 9.24 seconds to do a full classification of the signs in

the video).

8. Conclusion
In this paper we have discussed current methods of con-

tinuous gesture recognition. The downside of these meth-

ods is that unnatural constraints are put on the signer, such

as pauses between words, or the explicit training of models

to handle movement epenthesis must be carried out. The

method we have proposed in this work requires only that

the dedicated gesture models be trained, and as a result of

this training a single epenthesis model can be created.

The novelty of this system is that we have expanded on

the work of Lee and Kim [7] to develop a HMM threshold

model system which models continuous multidimensional

gesture observations within a parallel HMM network to rec-

ognize two hand gesture and identify movement epenthe-

1079

sis. Further to this, we have also developed a robust frame-

work to utilize the results of our HMM threshold model

system to spot and classify signs within continuous natu-

ral sign language sentences. A ROC analysis of the isolated

gesture classification performance showed that the three di-

mensional feature vector F7, defined in Table 1, was the best

performing feature with an AUC measurement of 0.949.

The threshold model system showed a 5.2% increase in per-

formance when compared to a static threshold based sys-

tem. Experiments carried out on continuous sentences show

that our system had a detection ratio of 0.956 and a re-

liability measure of 0.932. Experiments also showed that

the gesture spotter was able to flag gesture start points and

end points within 312 milliseconds and 326 milliseconds

respectively when compared to a human interpreter. Recog-

nition of continuous sign language sentences without an ex-

plicit modeling of movement epenthesis is a difficult task

and few researchers have dealt with this problem [20]. The

contribution of this paper is that we have developed a robust

pattern recognition framework for the recognition of motion

based gestures and identification of movement epenthesis

without the explicit modeling of these movement epenthe-

sis. Although our framework was evaluated on sign lan-

guage data, the system we propose is extendable to more

general motion based gesture recognition for HCI.

8.1. Future Work

In this work we have proposed a spatiotemporal recog-

nition framework, a next step in the overall goal of machine

recognition of sign language is to integrate hand posture and

non-manual information into the recognition process.

9. Acknowledgements

The Authors would like to acknowledge the financial

support of the Irish Research Council for Science, Engineer-

ing and Technology (IRCSET).

References
[1] M. Assan and K. Grobel. Video-based sign language recog-

nition using hidden markov models. In Proceedings of the
International Gesture Workshop on Gesture and Sign Lan-
guage in Human-Computer Interaction, pages 97–109, Lon-

don, UK, 1998. Springer-Verlag.

[2] B. Bauer and K.-F. Kraiss. Towards an automatic sign lan-

guage recognition system using subunits. In GW ’01: Re-
vised Papers from the International Gesture Workshop on
Gesture and Sign Languages in Human-Computer Interac-
tion, pages 64–75, London, UK, 2002. Springer-Verlag.

[3] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking

of non-rigid objects using mean shift. Computer Vision and
Pattern Recognition, 2000. Proceedings. IEEE Conference
on, 2:142–149 vol.2, 2000.

[4] W. Gao, G. Fang, D. Zhao, and Y. Chen. Transition move-

ment models for large vocabulary continuous sign language

recognition. IEEE FG 2004, pages 553–558, May 2004.

[5] D. Kelly, J. McDonald, T. Lysaght, and C. Markham. Anal-

ysis of sign language gestures using size functions and prin-

cipal component analysis. In IMVIP 2008, 2008.

[6] Y.-J. Kim and A. Conkie. Automatic segmentation combin-

ing an hmm-based approach and spectral boundary correc-

tion. In In ICSLP-2002, pages 145–148, 2002.

[7] H. K. Lee and J. H. Kim. An hmm-based threshold model

approach for gesture recognition. IEEE PAMI, 21(10):961–

973, 1999.

[8] R. H. Liang and M. Ouhyoung. A real-time continuous ges-

ture recognition system for sign language. In IEEE FG 1998,

page 558, Washington, DC, USA, 1998. IEEE Computer So-

ciety.

[9] J. R. Liddell, S.K. American sign language: The phonologi-

cal base. Sign Langauge Studies, 64.

[10] L. A.-C. M. Castrillon-Santana, O. Deniz-Suarez and

J. Lorenzo-Navarro. Performance evaluation of public do-

main haar detectors for face and facial feature detection. VIS-
APP 2008, 2008.

[11] S. C. W. Ong and S. Ranganath. Automatic sign language

analysis: A survey and the future beyond lexical mean-

ing. IEEE Trans. Pattern Anal. Mach. Intell., 27(6):873–891,

2005.

[12] L. Rabiner. A tutorial on hidden markov models and selected

applications in speech recognition. Proceedings of the IEEE,

77(2):257–286, Feb 1989.

[13] H. Sagawa and M. Takeuchi. A method for recognizing a

sequence of sign language words represented in a japanese

sign language sentence. In IEEE FG 2000, page 434, Wash-

ington, DC, USA, 2000. IEEE Computer Society.

[14] T. Starner, A. Pentland, and J. Weaver. Real-time american

sign language recognition using desk and wearable computer

based video. IEEE PAMI, 20(12):1371–1375, 1998.

[15] J. Stokoe, William C. Sign language structure: An outline

of the visual communication systems of the american deaf.

Journal of Deaf Studies and Deaf Education, v10 n1 p3-37
Win 2005, 2005.

[16] P. Viola and M. Jones. Rapid object detection using a boosted

cascade of simple features. CVPR, IEEE, 1:511, 2001.

[17] C. Vogler and D. Metaxas. Parallel hidden markov models

for american sign language recognition. In In ICCV, pages

116–122, 1999.

[18] C. Vogler and D. Metaxas. A framework for recognizing the

simultaneous aspects of american sign language. Computer
Vision and Image Understanding, 81:358–384, 2001.

[19] C. Wang, S. Shan, and W. Gao. An approach based on

phonemes to large vocabulary chinese sign language recog-

nition. In IEEE FG 2002, page 411, Washington, DC, USA,

2002. IEEE Computer Society.

[20] R. Yang, S. Sarkar, and B. Loeding. Enhanced level build-

ing algorithm for the movement epenthesis problem in sign

language recognition. pages 1–8, 2007.

1080

