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Abstract

Facial expressions and their associated dynamics play
an important role in human communication. The dynam-
ics of facial expressions can be defined as the intensity and
timing of their constituent components as they form. How-
ever, estimating the dynamics of facial expressions is a non
trivial task. The majority of automatic approaches to char-
acterising intensity use a two-level model (also known as
onset-apex-offset). However the FACS specifies five inten-
sity levels for each AU. In this paper we evaluate the effi-
cacy of Local Linear Embedding as a means of estimating
the intensity of facial expression. This is done using both
the full five level FACS model, and a simplified three level
model. We have found that using the FACS intensity scor-
ing results in a considerable overlap between the estimated
intensities. Using a three level model enables us to classify
the intensities with significantly greater degree of accuracy.

1. Introduction

Since the importance of facial expressions was first es-
tablished in 1872 [9], many studies have been carried out
attempting to interpret their meaning. Over the past num-
ber of decades computer vision researchers have created
systems specifically for the automatic analysis of facial ex-
pressions. The most successful of these approaches draw
on the tools of behavioural science, where many different
techniques for encoding facial expressions were developed
(see [12] for a comprehensive review). The Facial Action
Coding System (FACS), created by Ekman and Friesen, in
1978, is the most comprehensive of these standards and is
widely used in research. The FACS provides an unambigu-
ous quantitative means of describing all movements of the
face in terms of 46 Action Units (AUs) [10].

Within the field of facial expression analysis there has
been a significant amount of research investigating the six
prototypical expressions (anger, fear, sadness, joy, surprise,
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and disgust). However, in everyday life, while these pri-
mary expressions occur frequently, when analysing human
interaction and conversation, researchers have found that
displays of emotion or intention are more often communi-
cated by small subtle changes in the face’s appearance [1].

From a computer vision perspective, initial research into
the classification of facial expressions focused on identify-
ing the six prototypical expressions. However, in more re-
cent years computer vision researchers have concentrated
upon classifying the individual movements or AUs that
make up the facial expressions. Perhaps the most substan-
tial work in this area has been conducted by Bartlett et al.
Bartlett et al. proposed a technique which combines Ga-
bor wavelets and SVMs to classify AUs with 93.3% accu-
racy [3]. Again in [16], Littlewort and Bartlett propose a
similar technique which classifies AUs with 97% accuracy.

Recent research has shown that it is not only the expres-
sion itself, but also its dynamics that are important when
attempting to decipher its meaning [1, 3,6, 8, 14]. The dy-
namics of facial expression can be defined as the intensity
of the facial movement coupled with the timing of their for-
mation. Ekman et al. suggest that the dynamics of facial
expression provides unique information about emotion that
is not available in static images [11].

In this paper we provide an overview of the main ap-
proaches currently used in research for the analysis of the
dynamics of facial expression. We also detail our proposed
technique for modelling the dynamics of facial expression
formation. Here, once the AUs present in a facial expression
sequence have been identified, our technique then classifies
the dynamics of the expression in terms of our simplified
three stage model of increasing intensity.

The remainder of this paper will be structured as follows.
In Section 2 we discuss the theory behind the analysis of
the dynamics of facial expressions. We appraise contem-
porary research investigating the dynamics of facial expres-
sion from a computer vision perspective in Section 3. In
Section 4 we provide some background information on the
techniques and methodologies which we have used in our



approach. Following on from this, in Section 5 we demon-
strate the success of our technique for modelling the dynam-
ics of facial expression, discussing some experiments and
work to date. The research presented in this paper builds on
our previous works presented in [18, 19] and [20].

2. Dynamics of facial expression

According to Ambadar et al., few investigators have ex-
amined the impact of dynamics in deciphering faces. These
studies were largely unsuccessful due to their reliance on
extreme facial expressions. Ambadar et al. also highlighted
the fact that facial expressions are frequently subtle. They
found that subtle expressions which were not identifiable in
individual images suddenly became apparent when viewed
in a video sequence [1].

There is a growing trend in psychological research which
argues that the dynamics of facial expression play a critical
role in the interpretation of the observed behaviour. Zheng
et al., state that an expression sequence often contains mul-
tiple expressions of different intensities sequentially, due to
the evolution of the subject’s emotion over time [25].

2.1. Posed vs Spontaneous Facial Expressions

Despite the fact that facial expressions can be either sub-
tle or pronounced in their appearance, and fleeting or sus-
tained in their duration, most of the studies to date have
focused on investigating static displays of extreme posed
expressions rather than the more natural spontaneous ex-
pressions.

Posed facial expressions are generally captured by ask-
ing subjects to perform specific facial actions or expres-
sions. They are usually captured under artificial conditions,
i.e. the subject is facing the camera under good lighting con-
ditions, with limited head movement, and the expressions
are usually exaggerated. Spontaneous facial expressions are
more representative of what happens in the real world, typ-
ically occurring under less controlled circumstances. With
spontaneous expression data, subjects may not necessarily
be facing the camera, the image size may be smaller, there
will undoubtedly be a greater degree of head movement, and
the facial expressions portrayed are often less exaggerated.

The dynamics of posed expressions can not be taken
as representative of what would happen during natural dis-
plays of emotions, similar to how individual words spoken
on command would differ from the natural flow of conversa-
tion. Consequently, when analysing the dynamics of facial
expressions, one must realise that while the final image in a
posed sequence will be the requested facial expression, the
sequence as a whole will not allow for the accurate mod-
elling of the interplay between the different movements that
make up the facial expression during its natural formation.

Recently published research has shown that the dynam-

ics of facial expression formation can be used to distinguish
between posed and spontaneous expression of emotion. For
example, Littlewort et al. developed a technique which dif-
ferentiated between real and posed pain, achieving a 72%
accuracy in a two-way forced choice [15]. Vural ef al. used
information relating to the timing and intensity of the ap-
pearance of the facial signals of tiredness, such as blink rate,
eye closure and yawn to determine whether a driver was in
a drowsy or alert state with 90% accuracy [24].

3. Capturing dynamical information from fa-
cial expression sequences

Within the field of computer vision, two main ap-
proaches are currently used to describe the dynamics of fa-
cial expression formation. In this section we provide details
of these two techniques, illustrating how our technique dif-
fers from these approaches.

3.1. Onset-Apex-Offset Phases of facial expression
formation

The onset-apex-offset method, as the name suggests, di-
vides the expression into three temporal phases. This can
effectively be represented as a two level model of expres-
sion intensity, shown in Figure 1 (a). In the onset phase
the initial movements during the expression formation take
place, in the apex phase the expression peaks and the offset
phase is a mirror of the onset phase in that the expression
fades back to neutral, often merging into the onset phase
of another expression. One of the main issues concerning
the application of the onset-apex-offset model to the anal-
ysis of the intensity of facial expression formation, is that
the apex phase does not equate to extreme intensity, rather
it indicates when the expression is most intense for a given
expression sequence.
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Figure 1. Example of how the onset-apex-offset (a), the FACS (b)
and our technique (c) divide up the expression into two, five or
three levels of intensity respectively. In these figures, the y-axis
represents intensity, and the x-axis represents increasing time.
Where T, is the first frame in an expression sequence, and T,
represents the final frame in an expression sequence.

In general, the onset-apex-offset phases are identified
post processing by human experts as seen in [2] where the
results of human observers are used as a form of validation
of research results. Recent studies performed by Pantic ef
al. [17], explicitly analyse the temporal dynamics of facial



expressions in terms of these three phases using rule based
encoding.

3.2. Facial Action Coding System Intensity Scores

As mentioned earlier, the FACS provides an unambigu-
ous, quantitative means of describing all movements of the
face in terms of Action Units (AUs). An AU describes the
movement of one or more muscles in the face that causes an
atomic change in the face’s appearance. However AUs do
not always occur with the same intensity and for this reason
the FACS also includes intensity levels for the AUs.

There are five intensities in total ranging from intensity
A, where a trace change in appearance occurs, to intensity
E, where an extreme appearance change occurs. In Figure 1
(b), we have illustrated how the FACS divides the evolution
of an expression into 5 levels of intensity. However, these
5 intensity levels are not evenly distributed across the evo-
lution of an expression, for example intensity C occurs for
a longer period than intensity A during the formation of a
given AU. The effect that varying intensity of an expression
has on the appearance of the face is shown in Figure 2.

Figure 2. Example of the effect of varying the intensity of an ex-
pression. from left to right the intensities are: Neutral, intensity A,
Cand E

Although the FACS provides a good basis for AU and in-
tensity coding of facial images by human observers, the way
in which the AU and intensity codes have been defined does
not easily translate into a computational test. The reason for
this is that the FACS is an appearance based technique with
the AUs being defined as a series of descriptions. The FACS
intensity coding guidelines are also description based, and
as a result are somewhat subjective. Hence special effort is
required to establish and maintain acceptable levels of reli-
ability. Sayette ef al. suggest that the reliability of intensity
coding may be problematic and state that further work is
needed [23].

The main contribution of this paper lies in the develop-
ment of a simplified model of the dynamics of facial expres-
sion formation as illustrated in Figure 1 (c). Our proposed
technique differs from previous works as it is repeatable
across different regions of the face, and provides a more rep-
resentative model of the underlying dynamics of facial ex-
pression formation. More specifically our technique differs
from the onset-apex-offset model as our technique provides
for the automatic identification of the intensity of facial ex-
pression formation on a frame-by-frame basis, whereas the
onset-apex-offset model is mainly concerned with identify-
ing the onset, apex and offset phases across the expression

sequence as a whole. Details of how our technique and hy-
pothesis are provided in Section 5.

4. Proposed Methodology

In this section we provide background information on
the techniques which we implement for modelling the dy-
namics of facial expression formation. Once an expression
has been classified (our classification technique builds on
the works of Reilly et al. [19]), we extract information re-
garding the dynamics of the expression formation by first
projecting shapes of individuals portraying the specific ex-
pressions into a lower dimensional Locally Linear Embed-
ding (LLE) space in order to capture the underlying mani-
fold of that expression as it forms. Where the manifold of
facial expression, refers to the concept that facial expres-
sions and their formations define a smooth underlying man-
ifold in low dimensional space [S]. Once we have extracted
the manifold of the expression formation we classify the
particular intensity of the expression using Support Vector
Machines (SVMs). We validate our results using Receiver
Operating Characteristic (ROC) curve analysis. In this sec-
tion we provide some background details on the different
techniques we implement in our research.

4.1. Local Linear Embedding

The LLE algorithm was introduced by Saul and Roweis
in 2000 as an unsupervised learning algorithm that com-
putes low dimensional, neighbourhood preserving embed-
dings of high dimensional data [22].

The LLE algorithm is based on simple geometric intu-
itions where the algorithm attempts to compute a low di-
mensional embedding with the property that nearby points
in the high dimensional space remain nearby and similarly
co-located with respect to one another in the low dimen-
sional space. As input, LLE takes a dataset of IV real val-
ued vectors X;, each of dimensionality D, sampled from
some smooth underlying manifold. Provided there is suffi-
cient data such that the manifold is well sampled, we can
expect each data point and its neighbours to lie on or close
to a locally linear patch of the manifold [22].

LLE takes place over three steps, where firstly the man-
ifold is sampled, and for each sample, the K nearest neigh-
bours are identified. Secondly each point X; is approxi-
mated as a linear combination of its neighbours X ;. These
linear combinations are then used to construct the sparse
weight matrix W;;. Reconstruction errors are then mea-
sured by the cost function }° W = 37, |X; =37, W;; X, [,
which adds up the squared distances between all the data
points and their reconstructions.

Finally each high dimensional observation X; is mapped
to a low dimensional Y ;, which best preserves the geometry
of X;’s neighbourhood by fixing the W;’s and minimising
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LLE algorithm see [22].

4.2. Support Vector Machines (SVM)

SVMs are a type of learning algorithm based upon ad-
vances in statistical learning theory [4, 21] and are based
on a combination of techniques. The kernel trick is one
of the principal ideas behind SVMs, where data is trans-
formed into a high dimensional space making linear dis-
criminant functions practical. SVMs also use the idea
of large margin classifiers. Suppose we have a dataset
(1,91); ooy (Tmy Ym) € X x {£1} where X is some
space from which the x; have been sampled. We can con-
struct a dual Lagrangian of the form W (a) = >0 a; —
3 21 Qiyiy;(Xi - X;) which are subject to the con-
straints a; > 0 V¢ and Z:r;l a;1y; = 0 The solution to
this equation is a set of « values which defines a hyper-
plane that is positioned in an optimal location between two
classes.

5. Experiments and Results

In our research to date we have used the Cohn-Kanade
AU-Coded Facial Expression Database (CK-database) [7].
This database contains approximately 2000 image se-
quences from over 200 subjects. The subjects came from a
cross-cultural background and were aged approximately 18
to 30. The CK-database contains full AU coding and partial
intensity coding of facial images and is the most compre-
hensive database currently available.

Since the CK-database is not completely FACS intensity
coded, one of the first problems which we had to overcome
in our research was to manually FACS intensity code the
facial images ourselves. This was a non-trivial task as al-
though an expression sequence may be labelled as contain-
ing a particular AU or AU group, these AUs may not nec-
essarily appear at the same degree of intensity. A sample of
the final images from expression sequences taken from CK-
Database for AU25 is shown in Figure 3, where it is clear
that these expressions are not all of the same intensity.

Figure 3. Examples of AU25 classified mouths from the Cohn-
Kanade facial expression database

Prior to experimentation we preprocess our data by
firstly aligning the data using Generalized Procrustes Align-
ment (GPA) [13]. GPA aligns two shapes with respect to po-
sition, rotation and scale by minimising the weighted sum of
the squared distances between the corresponding landmark
points. Following on from this we apply Shape Differenc-
ing, whereby the neutral expression shape of each subject is
subtracted from the sample set for that subject. This enables

us to effectively uncover the underlying manifold facial ex-
pression formation independent of identity.

Using this preprocessed data we classify the expression
in terms of the AUs present using the techniques described
by Reilly et al. in [19]. Once we know which AUs are
present, we apply the LLE algorithm to create a one dimen-
sional manifold, which describes the expression formation
going from neutral expression through the various intensity
levels to the extreme expressions.

We hypothesise that the neighbourhood preserving prop-
erty of the LLE algorithm will cause the data to be clus-
tered according to expression intensity, thereby extracting
the manifold of the increasing intensity of the AUs as the
expression forms. Hence the trajectory of the expression in
the LLE space allows us to develop dynamical models of
the expression formation in terms of the increase in expres-
sion intensity over time. The dynamical models shown in 4,
were created by fitting Gaussians to our pre-labelled LLE
data, where there were insufficient samples in our dataset
we plotted the mean of the sample set.

5.1. Estimating the FACS Five Levels of Expression
Intensity Using LLE

In this experiment we developed dynamical models of
expression formation using the FACS intensity range, A - E,
as shown in Figure 4 (i). Here the distributions represent the
progression of AU2S5 from neutral state through the 5 FACS
intensities, i.e. displaying the increase in AU intensity over
time. However, as can be seen from Figure 4 (i), there is a
significant overlap between the intensities in the mid ranges,
for example intensity D covers a large portion of the axis,
demonstrating the confusion between the classes.

DA

Increasing In(enslly OVEr time  we—p

Increasing In(ensl(y over time

Figure 4. Dtstrzbuttons for our FACS based dynamlcal model (i)
and our simplified dynamical model (ii) for AU25, showing the
Gaussians that have been fit to the 1D results of LLE algorithm
which lie on the x-axis. The overlap between the distributions
shows the ambiguity between intensities.

From a practical perspective, what this means is that due
to the overlap between the different intensity distributions,
there will be a high false negative rate for intensity D as the
data belonging to this group could get miss-classified as be-
longing to the other intensities. Similarly, there will also be
a low true positive rate for intensity C, as effectively its data
would fall under the intensity D distribution. We hypothe-
sise that the overlap between the different intensity distri-
butions as shown in Figure 4 (i) is due to the fact that the



FACS intensity codes are quite subjective. Differentiating
between the five intensities across our dataset is a challeng-
ing problem.

5.2. Applying a three level model of intensity

Due to the problems associated with the FACS inten-
sity coding of facial expression sequences, we began ex-
ploratory analysis looking for a better representation of fa-
cial expression intensity. From re-examining our data along
with the outputs from the LLE algorithm, we observed that
the data naturally clustered into three groups across the
expression formation, corresponding to low, medium and
high intensity displays. The results of the clustering of the
dataset under the three-category labelling is shown in Fig-
ure 4 (ii).

Using this three level model, in this experiment we ex-
tract information regarding the intensity and timing of the
formation of AU1+2 - which raises the inner and outer eye-
brow, which has been previously classified. The extraction
of this information provides a means for analysing the dy-
namics of facial expression. The input to this experiment
consisted of 10 subjects from multi-cultural backgrounds,
sampled from across the entire expression intensity range,
68 frames in total, labelled as being low, medium or high

intensities.
= ala
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Figure 5. Increasing intensity over time distribution for AUI+2,
here we have demonstrated how our technique models the increas-
ing intensity as the expression forms

This experiment is split into two tasks, where firstly we
apply the LLE algorithm to create a one dimensional dy-
namical model of the expression formation, using our sim-
plified three stage intensity model. By exploiting the neigh-
bourhood preserving property of LLE, in this low dimen-
sional space our data clustered into three groups, corre-
sponding to our three stage model of expression intensity.
Using the one dimensional outputs from the LLE algorithm,
we fit gaussians to the samples from each of the intensity
levels. The resulting intensity distributions are shown in
Figure 5, where we have also shown the affect that increas-
ing intensity has on the appearance of the eyebrow region,
by tracing the progression of the expression AU1+2 from
neutral to extreme intensity.

Following on from this we divide our dataset into testing
and training sets using a 10-fold cross validation strategy.
In our experiments we use one-against-all Support Vector
Machine (SVMs), as we have three groupings to classify

AoT—
-
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Figure 6. ROC curve results for new 3 intensity model, from left to
right are Low, Medium and High intensities

Intensity | AUC | TP FP TN FN

Low | 0.702 4 10 41 13

Medium | 0.688 34 20 9 5

High | 0.793 43 16 6 3
AverageAUC | 0.727
Table 1. Confusion Matrices for the three intensity levels

we use three one-against-all SVMs. Finally we appraise
our results by performing ROC analysis on the outputs of
our SVMs.

The resulting ROC curves are shown in Figure 6 along
with the confusion matrices in Table 1. From the confusion
matrices we can see that our technique achieves an average
AUC of 0.727 across the three intensity levels. The high
false positives reported for the three intensities, particularly
the medium intensity, can be attributed to the fact that in
applying any of the models (i.e. onset-apex-offset, FACS
five-levels, or our three level model) there is an inherent un-
certainty in the point at which one level ends and the next
begins. Hence in labelling the data there will be a conse-
quent ambiguity at the level boundaries across the dataset.

6. Conclusion and Discussion

The accurate modelling of the dynamics of facial expres-
sion is a non-trivial task. In this paper we have proposed
an alternative to the current methods for describing the dy-
namics of facial expressions. The solution described in this
paper takes a multidisciplinary approach drawing together
psychological tools, statistical models and machine learn-
ing techniques. We first build a shape model that was based
on an anatomical analysis of facial expression - FACS. The
FACS provided us with a universal method of analyzing fa-
cial expression and allowed for the classification of facial
expressions independent of identity. In our experimental
section we illustrated the subjectivity of the FACS AU in-
tensity codes, while demonstrating the success of our sim-
plified three stage intensity model at modelling the dynam-
ics of facial expression in terms of Low, Medium and High
intensity. Due to our small dataset we applied a 10-fold
cross validation strategy, using ROC curve analysis to ap-
praise our results, achieving an average AUC of 0.727. This
is a significant result as the classification of different inten-
sity levels is a challenging problem.

In this paper we have shown that LLE provides an effec-



tive for estimating the intensity of facial expressions. This
intensity information, in conjunction with timing informa-
tion, provides the necessary basis for the automated analysis
of facial expression dynamics. Future work will entail ap-
plying this technique to more comprehensive datasets con-
taining both posed and spontaneous facial expression data,
incorporating a larger variety of AUs and individuals.
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