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Using photosensitive recording materials to record holograms
1
 is costly and inflexible. Digital 

holography
2,3

, (DH) refers to the science of using discrete electronic devices, such as CCDs to record 

the hologram. In this case reconstruction is performed numerically by simulating the propagation of the 

wavefield back to the plane of the object. One major advantage of DH over material holography is the 

ability to used discrete signal processing (DSP) techniques to the recorded signals. In recent years DH 

has been demonstrated to be a useful method in many areas of optics such as microscopy, deformation 

analysis, object contouring, particles sizing and position measurement. ‘In-line’ or ‘on-axis’ DH refers 

to the implementation of the original Gabor architecture in which the reference wavefield travels in the 

same direction as the object wavefield. As in the continuous case this method suffers from poor 

reconstructed image quality, due to the presence of the intensity terms and the conjugate image that 

contaminates the reconstructed object image.  However it is possible to use DSP techniques to 

minimise this contamination. 

 

While it is possible to remove the intensity terms with efficient numerical techniques, it remains 

difficult to remove the conjugate image. This may be achieved using an off-axis recording setup 

equivalent to that used by Leith and Upatnieks
4,5

. However, this increases the spatial resolution 

requirements, and limits the system significantly which is undesirable when one considers the already 

limited resolution of pixilated cameras. An alternative approach known as phase-shifting 

interferometry has been introduced allowing for an in-line set-up to be used with at least two 

successive captures and enabling separation of the object wavefield from all of the other terms.  

 

This paper deals with the subject of superresolution in Digital Holography (DH), i.e. increasing the 

resolution of DH system beyond its limit. The limiting factor regarding resolution in a DH system is 

the pixel size, which is equal to the smallest resolvable unit.  By careful superposition of different 

digital holograms captured of the same 3-D object, we attempt to increase the resolution of the 

reconstructed image and equivalently to increase the range of angles of reconstruction.  This is 

accomplished by rotating the input object wavefield either by rotation of the object (it is 2-D) or by 

rotation of a mirror that is placed between the object and the CCD. Rotating the input wavefield shifts 

the wavefield in the hologram plane in space and spatial frequency. Therefore, those parts of the 

hologram field that contained energy at too great an angle for recording and were therefore arranged to 

be adjacent to and not on the CCD will be shifted in space onto the CCD face and will also be shifted 

to an angle that can be recorded. We outline a sub-pixel correlation technique to stitch the consecutive 

holograms together in both the space and spatial frequency domains. Multiple captures enable us to 

record a DH of large resolution and angle of reconstruction. Storage and reconstruction of the stitched 

hologram is also discussed and experimental results are given. We use the Wigner Distribution 

Function to qualify and quantify the method and we explain the improvements accomplished by the 

system by comparing the numerical aperture before and after the process of superresolution.   

 

Recently Lohmann et. al. offered a novel interpretation of the holographic principle
6
 in terms of the 

Wigner Distribution Function
7
 (WDF) . This interpretation offers considerable insight into holography 

in general including DH. In particular, the storage capacity of materials and electronic devices may be 

examined in relation to the holograms that are to be stored. The WDF is the ideal tool with which to 

analyze our superresolution process because it allows us to view our signal as a function of space and 

spatial frequency (angle) simultaneously. The WDF was initially proposed by E. Wigner in 1932 to 

describe quantum mechanical systems
7
. The WDF is a bilinear representation of a 1D signal. The 2-D 

‘Wigner Chart’ is a simple tool for describing complex optical phenomena in an elegant 

diagrammatical fashion
37

. We use Wigner analysis to explicitly describe our method. 
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The greatest obstacle in digital holography is the resolution of the cameras, which is significantly lower 

than that of the photosensitive materials. The resolution of optical imaging systems in general may be 

improved upon using superresolution techniques
8-11

 – i.e. by increasing the synthetic aperture of the 

system in question. Methods have been proposed in the literature to increase the synthetic aperture of 

digital holographic systems by creating large digital holograms from many different camera positions
9-

11
. However, these methods are difficult to implement and take considerable time. In a form of 

incoherent superposition was proposed
12,13

 to increase the synthetic aperture of holographic systems in 

which the off axis illumination was used to shift signal energy from high spatial frequencies to lower 

one enabling recording. The idea of incoherent superposition of digital holograms for superresolution 

has also been proposed
14 

involving the tilting of the illuminated spherical beams that are incident on 

objects in DH magnification systems allowing for improvements in resolution in the order of 2-3. The 

method of superresolution outlined in this paper is based on the coherent superposition of digital 

holograms and can increase the numerical aperture of many digital holography systems by a large 

factor, the limit of which has yet to be determined 

 

In this paper, we propose the coherent superposition of different holograms of the same object where 

each hologram corresponds to a different spatial area in the hologram plane. Recording different 

sections of the hologram plane and using them to create a large mosaic is a form of digital holographic 

superresolution. The goal is the recording of a large digital hologram, which may enables us to increase 

the resolution of the reconstructed object wavefield, and therefore the angle of view.  All analysis is 

carried out using the WDF allowing us to simultaneously consider position and spatial frequency. To 

capture the various holograms we propose one method in particular but we note that one may propose 

two methods that theoretically achieve the same results and are equivalent to rotation of the CCD. The 

first method is based on a rotation of our object, assuming the object is 2-D, around the axes of interest 

effectively shifting the input object wavefield in the spatial frequency domain. The wavefield that is 

incident on the CCD is therefore shifted in space and in spatial frequency and so the overall bandwidth 

of each hologram lies within that of CCD and the standard Nyquist sampling theorem can be employed. 

The second method and the one that we focus primarily on in this paper is based on a rotation of a 

mirror (or any suitable reflective or refractive device) that is placed between the object and the CCD in 

the system, see Fig. 1. This method may be applied to 3-D object and brings about the same shift in 

space and in spatial frequency of the hologram plane as in the 2-D case mentioned above.  

 

In all of these methods the individual holograms that are captured must be aligned relative to one 

another using position identification algorithms. It is possible that one may determine these shifts with 

an accurate knowledge of movement of the apparatus in the experimental procedure but this would 

require a most difficult accuracy.  We propose a double sub-pixel correlation technique using the 

Discrete Fourier Transform (DFT) to be applied in (i) the space domain (using the absolute value of the 

recorded holograms) and (ii) the spatial frequency domain (using the DFTs of the spatially overlapping 

portions of the two complex holograms). Once the relative positions of all the holograms (in (i) space 

and (ii) spatial frequency or angle) have been identified they must be stitched together in some manner. 

It becomes clear that actually stitching them together in the most obvious manner to create a large 

planar hologram is not at all efficient when one considers the computer storage of this ‘giant’ hologram 

and the numerical reconstruction process that must be applied to it.  
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Fig. 1. Architecture for superresolving digital holography. Here our input is a 3-D object. A mirror, 

positioned close to the object reflects the object wavefield towards the CCD. The mirror can be 

rotated. 
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