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Abstract

We present a technique for performing segmentation
of three-dimensional objects encoded using in-line digital
holography from the scenes background. We create a
volume of reconstructions through numerically recon-
structing a digital hologram at a range of depths. For
each reconstruction a variance map is created through
calculating variance about a neighbourhood for each of the
reconstructions pixels. We can then classify a pixel as ob-
Jject or background by thresholding the maximum variance
of every pixel over all depths. We present segmentation
results for objects of low and high contrast.
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1. Introduction

Holography is an established technique for recording and
reconstructing real-world three-dimensional (3D) objects.
Digital holography [12, 18, 19, 20] and holographic image
processing [17, 16] have recently become feasible due to
advances in megapixel CCD sensors with high spatial res-
olution and high dynamic range. We use phase shift in-
terferometry [20] to capture our in-line digital holograms
(DHs), which are in an appropriate form for data trans-
mission and digital image processing. We are interested in
segmenting object regions from background regions in dig-
ital holographic reconstructions. Segmentation is generally
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the first step to object recognition, but also has applications
in video compression and motion tracking [8]. Segmenta-
tion has also recently been applied to 3D data, or layers of
two-dimensional reconstructions, in tomography and digital
holographic microscopy [4].

In Sect. 2, we describe how 3D objects are recorded
using phase-shift digital holography. We then describe
approaches for the focus detection of digital holographic
scenes and how they can be used for segmentation purposes
in Sect. 3. Section 4 details our method for object segmen-
tation using a depth-from-focus algorithm. Our results are
presented in Sect. 5 where we demonstrate the segmenta-
tion of multiple digital holographic scenes. We conclude in
Sect. 6.

2. Phase-Shift Digital Holography

We record Fresnel fields with an optical system based on
a Mach-Zehnder interferometer (see Fig. 1). A linearly po-
larised Argon ion (532.8 nm) laser beam is expanded and
collimated, and divided into object and reference beams.
The object beam illuminates a reference object placed at
a distance of approximately d = 350 mm from a 10-bit
2048 x 2032 pixel Kodak Megaplus CCD camera. Let
Uo(z,y) be the complex amplitude distribution immedi-
ately in front of the 3D object. The linearly polarised refer-
ence beam passes through half-wave plate RP; and quarter-
wave plate RP,. By selectively removing the plates we
can achieve four phase shift permutations of 0, —7 /2, —,
and —37/2. The reference beam combines with the light
diffracted from the object and forms an interference pat-
tern in the plane of the camera. At each of the four phase
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shifts we record an interferogram. We use these four real-
valued images to compute the camera-plane complex field
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Figure 1. Experimental setup for PSI: BE,
beam expander; BS, beam splitter; RP, retar-
dation plate; M, mirror.

Hy(z,y) and reconstructs the complex field U, (x,y) in a
plane in the object beam at any distance z from the cam-
era [18, 20]. Among several efficient options [11] is
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where )\ denotes wavelength and = denotes convolution. As
with conventional holography [10, 2], a windowed subset
of the Fresnel field can be used to reconstruct a particular
view of the object. As the window explores the field a dif-
ferent angle of view of the object can be reconstructed. The
range of viewing angles is determined by the ratio of the
window size to the full CCD sensor dimensions. Our CCD
sensor has approximate dimensions of 18.5 x 18.5 mm and
so a 1024 x 1024 pixel window has a maximum lateral shift
of 9mm across the face of the sensor. With an object po-
sitioned d = 350 mm from the camera, viewing angles in
the range of 1.5° are permitted. Smaller windows will per-
mit a larger range of viewing angles at the expense of image
quality at eachviewpoint.

3. Focus detection in digital holograms

One method for reconstructing a DH at the most in-focus
plane is to use a depth-from-focus (DFF) technique. Al-
though there is no definitive criterion for finding the focal
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plane of a scene or finding the focal distance for a region
within a scene, a number of focus metrics have been pro-
posed and demonstrated [9, 7, 13, 14, 5]. These employ
self-entropy [9], phase changes [7], wavelet analysis [13],
gray level variance [14], and integrated amplitude modu-
lus [5] among others. Using these metrics, applications
such as the detection of the focal plane [7, 13, 5] in dig-
ital holographic microscopy [3] and the measurement of
3D objects in digitised physical holograms [14] have been
demonstrated. These techniques reconstruct over a range of
depths and evaluate each 2D reconstruction using a focus
metric, and when the focus metric returns a maximum the
corresponding depth is returned. This relies on the assump-
tion that a large majority of the scene is in focus at a single
depth. This is not the case if there are multiple objects at dif-
ferent depths, or if the physical object itself extends in the
z direction. This leads to a reconstruction containing some
object regions in-focus with the rest out-of-focus. These
blurred out-of-focus regions make it difficult to segment a
single reconstruction of a DH based on texture or intensity.
An approach for the recovery of 3D shape information
from digitised physical holograms was proposed by Ma et
al. [14]. By calculating variance on non-overlapping blocks
from reconstructions of a DH at different depths they re-
covered depth information from a lower-resolution version
of the sensed object. We choose to extend this variance-
measurement approach in order to classify each 1D vector
(z,y) in the reconstruction volume (each line of pixels par-
allel to the optical axis) as either belonging to the object
or belonging to the background. The decision is taken as
follows: if vector (, y) contains an in-focus pixel from the
object at any depth z then (x, y) is an object pixel, otherwise
it is a background pixel.

4. Object Segmentation in digital holograms

We employ a DFF technique to create a maximum vari-
ance map. We then create our segmentation mask through
thresholding the maximum variance map with a manually
chosen threshold. We numerically reconstruct the digital
hologram for each depth in the selected range of depths.
Each reconstruction I, = |U,|? is of size M x N pixels. We
first apply a Fourier filtering speckle reduction technique to
each reconstruction [15]. We then calculate variance for
each pixel by calculating variance on n x n pixel overlap-
ping blocks approximately centred on each pixel, and ad-
dress each block with (k,1) where & € [0,M — 1],] €
[0, N —1]. Variance of each overlapping block at each depth
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Figure 2. Screw object DH: (a) numerical
reconstruction, (b) variance plot for back-
ground and object regions.

z is calculated with function V, : R**"™ — R defined by
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and where any indexes (z,y) that go outside the extent of
I, evaluate to 0. V is therefore a volume storing a 2D vari-
ance image for each depth z. A location with high variance
indicates the nearby presence of an object. We find the max-
imum value in each (k, ) vector with

Vinax (k, 1) = max [V, (k,1)]. 4
Where the maximum variance is low, this indicates a back-

ground region. A threshold 7 is chosen and V.« is trans-
formed as

SMask(k, 1) = {1 ,if Vinax(k,1) > 70,if Vipax (k, 1) < T,

&)
where 0 denotes a background pixel and 1 denotes an object
pixel. The binary image SMask is our segmentation mask.
Finally, we apply a mathematical morphology erosion op-
eration (with neighbourhood [n/2] x [n/2]) to SMask to
shrink the boundaries of the object; our use of overlapping
blocks uniformly enlarges the mask. Erosion has the poten-
tial to change the shape of the mask and may remove fine
features along the boundary of the mask.

5. Object Segmentation Experiments

We verify our DFF technique using DHs of real-
world objects. The first object (screw) is 1cm?® and
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Figure 3. Segmentation of screw object DH:
(a) manual, (b) our DFF approach, (c) EM ap-
proach.

was positioned 268 mm from the camera. Our sec-
ond object (knight) is 2cmx2cmx0.6cm and was po-
sitioned 371 mm from the camera. The third object
(stormtrooper) is 1.7cmx2cmx1.1cm and positioned
366 mm from the camera while the fourth object (two
screws) is 1.8cmx2.3cmx 1.6cm and positioned 360 mm
from the camera. Each DH has 2032 x 2048 pixels. We
compute a sequence of reconstructions at different depths
from a single perspective with a uniform interval of 1 mm
between successive values of z. We apply our DFF tech-
nique to this sequence of reconstructions to obtain SMask.
A reconstruction of the screw object is shown in Fig. 2(a),
where two 81 x 81 pixel blocks labeled 1 and 2 have been
manually selected to indicate example background and ob-
ject regions, respectively. Plots of variance calculated on
these blocks over a range of 21 mm are shown in Fig. 2(b).
It can be seen that the variance of the background block
is 1072 lower than that for the object block for this holo-
gram. We found this to be true in the general case and al-
lowed us to choose the appropriate normalised values of
T=2x10"% 7 =4x10"" 7 = 1.4 x 107* and
7 = 2 x 10~ for the screw, knight, stormtrooper and two
screws object respectively. In Fig. 3 we compare our re-
sults with the ground-truth case where we manually classi-
fied each pixel as either background or object, and with the
well-known and robust intensity-based segmentation tech-
nique expectation-maximisation (EM) [8]. EM is a two-
step iterative segmentation algorithm requiring two inputs:
an image histogram h, and the desired number of segments
k. This algorithm attempts to fit k£ Gaussians to the im-
age histogram. The first step estimates the mean, variance
and proportion of the £ Gaussians for the input image his-
togram. The second step attempts to maximise these Gaus-
sian parameters for the input data with a maximum likeli-
hood estimate. This is repeated until the difference between
successive maximum likelihood estimates is below a thresh-
old. Our Gaussian mixture models are computed with

G <_1 " (fl—ue(k))g)
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where . (k),02 and p. are the estimated mean,variance
and proportion respectively. The shallow focal range of
the screw object DH allows for a comparison between our
method and this 2D technique. We use receiver operat-
ing characteristic (ROC) analysis [6] to display the relative
tradeoff between the true positive rate and the false negative
rate of our classifiers. In this analysis the DFF block size is
the variable in our choice of classifier. We estimate the true
positive rate of a classifier as
True Positives

tp rate ~ 7
P Total number of positives 7

and the false positive rate as

False Positives

(®)

fp rate =~ Total number of negatives
Classification results are plotted on orthogonal axes defined
by tp rate and fp rate, allowing us to choose the block size
n that best maximises the tp rate while simultaneously min-
imising the fp rate. For the screw object DH, we used a
set of nine different block sizes, ranging from n = 7 to
n = 151.  The ROC curve this set of classifiers pro-
duced can be seen in Fig. 4(a). Since the data is clustered
in the top left corner of the ROC graph a zoomed in ver-
sion of the top left corner of the ROC graph is shown in
Fig. 4(b). As desired, all points are located far from the
random guess classifier performance. It is clear from these
graphs that a small block size classifies background pix-
els perfectly at the expense of object pixels, and a large
block size classifies object pixels perfectly at the expense of
background pixels. Our compromise between perfect back-
ground/object segmentation is to minimise the distance be-
tween the points in ROC space and the point (0,1), since we
regard false positives and false negatives as being equally
undesirable. Through experiments with different objects we
chose a block size of 81 x 81 pixels which has an average
tp rate of 98.83% and an average fp rate of 1.04%. Using
this block size, we created the segmentation mask shown
in Fig. 3(b). By comparison, EM achieved a good fp rate
of 1% but a relatively poor tp rate of 80%. The segmen-
tation mask created by EM is shown in Fig. 3(c). As ex-
pected the segmentation mask obtained from a volume of
variance maps outperforms one created using an individual
reconstruction. We also present the results of applying our
DFF technique to three other DHs: a low contrast knight
object, a low contrast stormtrooper object and a high con-
trast two screws object. A reconstruction of the knight ob-
ject, stormtrooper object and two screws object is shown in
Fig. 5(a), 6(a) and 7(a) respectively. As part of the speckle
reduction measures taken for these DHs, the reconstruction
sizes have been reduced to 512 x 512 pixels. This is one
quarter of the resolution of the previous experiments which
leads us to choose a block size of 21 x 21 (one quarter the
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Figure 4. ROC graphs for object segmenta-
tion using different block sizes, (a) full ROC
graph, (b) ROC graph magnified to show the
top left corner.

(a) (b) (c)

Figure 5. Segmentation of knight object DH:
(a) numerical reconstruction, (b) segmenta-
tion mask obtained, (c) segmented recon-
struction.



(a) (b) (c)

Figure 6. Segmentation of stormtrooper ob-
ject DH: (a) numerical reconstruction, (b)
segmentation mask obtained, (c) segmented
reconstruction.

(b) (c)

Figure 7. Segmentation of a two screws ob-
ject DH: (a) numerical reconstruction, (b)
segmentation mask obtained, (c) segmented
reconstruction.

size of the block size chosen as a result of the ROC analy-
sis). The erosion operator has a neighbourhood of 11 x 11
(half the block size used to create the segmentation mask).
The resulting segmentation masks are shown in Fig. 5(b),
6(b) and 7(b). A segmented reconstruction at a in-focus
plane for each of the DHs is shown in part (c) of Figures 5, 6
and 7. These segmented reconstructions are obtained from
I.(z,y) - SMask(z,y) where - means pointwise product.
These results illustrate how objects can be successfully seg-
mented from the background.

6. Conclusions

We have presented an approach for the segmentation of
DHs into object and background. We have shown segmen-
tation masks obtained from DHs containing high and low
contrast objects. We have also demonstrated that our DFF
approach produces a segmentation mask with a higher ac-
curacy than one produced using a single reconstruction and
a 2D segmentation algorithm. We expect our single object
segmentation method will be successful for all macroscopic
objects recorded by digital holography except pure phase
objects. The performance of the algorithm for small ob-
jects has yet to be ascertained. For microscopic objects it
is expected that a phase-unwrapping based approach would
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be best. The accuracy of our approach is limited by an ap-
propriate choice of block size and threshold value. Also,
this method is currently limited to the segmentation of the
scene from its background where that background is not it-
self composed of other objects. Extensions to our technique
are currently planned for multi-object segmentation.
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