
Dynamic task scheduling using genetic algorithms for heterogeneous distributed
computing

Andrew J. Page and Thomas J. Naughton
Department of Computer Science,

National University of Ireland, Maynooth,
County Kildare, Ireland.

andrew.j.page@nuim.ie, tom.naughton@nuim.ie

Abstract

An algorithm has been developed to dynamically sched-
ule heterogeneous tasks on heterogeneous processors in a
distributed system. The scheduler operates in an environ-
ment with dynamically changing resources and adapts to
variable system resources. It operates in a batch fashion
and utilises a genetic algorithm to minimise the total exe-
cution time. We have compared our scheduler to six other
schedulers, three batch-mode and three immediate-mode
schedulers. We have performed simulations with randomly
generated task sets, using uniform, normal, and Poisson dis-
tributions, whilst varying the communication overheads be-
tween the clients and scheduler. We have achieved more effi-
cient results than all other schedulers across a range of dif-
ferent scenarios while scheduling 10,000 tasks on up to 50
heterogeneous processors.

1. Introduction

Distributed computing is a promising approach to meet
the increasing computational requirements of scientific re-
search. However, a number of issues arise which are not en-
countered in sequential processing which, if not properly
handled, can nullify the benefits of parallelization. We be-
lieve that task scheduling is the most important of these is-
sues because inappropriate scheduling of tasks can fail to
exploit the true potential of a distributed system and can off-
set the gains from parallelization due to excessive commu-
nication overhead or under-utilisation of resources. Thus it
falls to one’s scheduling strategy to produce schedules that
efficiently utilise the resources of the distributed system and
minimise the total execution time. The problem of schedul-
ing heterogeneous tasks onto heterogeneous resources, oth-
erwise known as the task allocation problem, is an NP-hard
problem for the general case [5].

Many heuristic algorithms exist for specific in-
stances of the task scheduling problem, but are inefficient
for a more general case [9]. The use of Holland’s genetic al-
gorithms [7] (GAs) in scheduling, which apply evolution-
ary strategies to allow for the fast exploration of the search
space of schedules, allows good solutions to be found
quickly and for the scheduler to be applied to more gen-
eral problems. Many researchers have investigated the use
of GAs to schedule tasks in homogeneous [8, 19] and het-
erogeneous [1, 11, 15, 18] multi-processor systems with
notable success.

Unfortunately, assumptions are often made which reduce
the generality of these solutions, such that scheduling can
be calculated off-line in advance and cannot change [1,
8, 15, 18], all communications times are known in ad-
vance [1, 8, 15, 18], networks provide instantaneous mes-
sage passing [19], that all processors have equal capabili-
ties and are dedicated to processing tasks from the sched-
uler [1, 8, 9, 14, 15, 17, 18, 19, 20]. These assumptions
limit the generality of these scheduling strategies in real-
world distributed systems. It would be more preferable to
make no assumptions about the homogeneity of the proces-
sors, or about the availability of system resources.

In this paper a scheduling strategy is presented which
uses a GA to schedule heterogeneous tasks on to heteroge-
neous processors to minimise the total execution time. It op-
erates dynamically, allowing for tasks to arrive for process-
ing continuously, and considers variable system resources,
which has not been considered by other dynamic GA sched-
ulers. This paper is an updated version of [13] in which
we present a revised algorithm, more comprehensive exper-
iments, and significant testing and verification.

In Sect. 2 we review related work and give an overview
of how a GA operates. In Sect. 3 we describe our schedul-
ing algorithm. In Sect. 4 we present the results of our per-
formance experiments. In Sect. 5 we give our conclusions
and suggest future directions for our work in Sect. 6.



initialise population
do{

crossover
random mutation
selection

}while(stopping conditions not met)

return best individual

Figure 1. Pseudo code for genetic algorithm

2. Genetic Algorithms and scheduling

There are many examples in the literature of artificial in-
telligence techniques being applied to task scheduling [1, 8,
11, 14, 15, 17, 18, 19, 20]. Meta-heuristic search techniques
such as GAs [7], tabu [6], and ant colony search [3] are most
applicable to the task scheduling problem because we wish
to quickly search for a near optimal schedule out of all pos-
sible schedules. Good results have resulted from the use of
GAs in task scheduling algorithms [1, 8, 11, 14, 15, 17, 19,
20].

A GA is a meta-heuristic search technique which allows
for large solution spaces to be partially searched in poly-
nomial time, by applying evolutionary techniques from na-
ture [7]. GAs use historical information to exploit the best
solutions from previous searches, known as generations,
along with random mutations to explore new regions of
the solution space. In general a GA repeats three steps (se-
lection, crossover, and random mutations) as shown by the
pseudo code in Fig. 1. Selection according to fitness (effi-
ciency in our case) is a source of exploitation, and crossover
and random mutations promote exploration.

A generation of a GA contains a population of individ-
uals, each of which correspond to a possible solution from
the search space. Each individual in the population is eval-
uated with a fitness function to produce a value which in-
dicates the goodness of a solution. Selection takes a certain
number of individuals in the population and brings them
forward to the next generation. Crossover takes pairs of in-
dividuals and uses parts of each to produce new individu-
als. Random mutations swaps parts of an individual to pre-
vent the GA from getting caught in a local minimum.

Much work has been done on using GAs for static
scheduling [1, 8, 15, 18], where schedules are created be-
fore runtime. However, the state of all tasks and system re-
sources must be known a priori and cannot change. This
limits these schedulers to specific problems and systems.

Dynamic GA schedulers [11, 19, 20] create schedules at
runtime, with knowledge about the properties of the system
and tasks possibly not known in advance, allowing for vari-
able system and task properties to be considered. Dynamic
GA schedulers are thus more practical than static sched-

ulers for real-world distributed systems. Current dynamic
GA schedulers have been shown to produce near optimal
schedules in simulations [19, 20], although assumptions
that have been made limit their generality. For example, in-
stantaneous message passing [19], homogeneous process-
ing resources [19, 20], variable communications costs and
variable processing resources are not considered [19, 20].

3. Scheduling Algorithm

The algorithm we have developed is based on the
state-of-the-art homogeneous GA scheduler developed
by Zomaya et al. [19, 20]. We have created an algo-
rithm which can adapt to varying resource environments
and can produce near-optimal schedules. We wish to sched-
ule an unknown total number of tasks for processing on a
distributed system with a minimal total execution time, oth-
erwise known as makespan.

The processors of the distributed system are heteroge-
neous. The available network resources between processors
in the distributed system can vary over time. The availabil-
ity of each processor can vary over time (processors are not
dedicated can may have other tasks that partially use their
resources). Tasks are indivisible, independent of all other
tasks, arrive randomly, and can be processed by any proces-
sor in the distributed system.

When tasks arrive they are placed in a queue of unsched-
uled tasks. Batches of tasks from this queue are scheduled
on processors during each invocation of the scheduler. Each
idle processor in the system requests a task to process from
the scheduler, which it processes and returns. The sched-
uler contains a queue of future tasks for each processor, and
when a request for work is received the task at the head of
the corresponding queue is sent for processing. A proces-
sor does not contain a queue of tasks; because network re-
sources are limited and processing resources are not ded-
icated, we wish to avoid repeatedly issuing the same task
multiple times, e.g., when a machine is switched off.

Each task has a resource requirement which is measured
in millions of floating point operations (MFLOPs). The
available processing resources, or execution rate, of each
processor is measured in MFLOPs per second, which we
write as Mflop/s to avoid confusion. The execution rate is
measured using Dongarra’s Linpack benchmark [4]. This is
a recognised standard used to benchmark systems for in-
clusion in the list of Top 500 Supercomputers [16]. Avail-
able processing and network resources vary over time, so
a smoothing function is used to minimise localised fluctua-
tions, thus allowing for a more realistic processing environ-
ment. A single processor is dedicated to scheduling.

The queue of unscheduled tasks could contain a large
number of tasks and if all where to be scheduled at once, the
scheduler could take a long time to find an efficient sched-



Figure 2. Encoding of a schedule

ule. To speedup the scheduler, and reduce the chance of pro-
cessors becoming idle, we only consider a subset of the un-
scheduled tasks, which we call a batch. A larger batch will
usually result in a more efficient schedule [19]. We must
thus trade the batch size with running time. To do this we
dynamically set the batch size according to the estimated
amount of time until the first processor becomes idle.

3.1. Encoding

Each individual in the population represents a possible
schedule. Fig. 2 shows the encoding used. Each character
is a mapping between a task and processor. Each character
contains the unique identification number of a task, with−1
being used to delimit different processor queues, wherePi

is processori. Thus the number of characters isH+M−1,
whereH is the number of tasks in the batch, andM is the
number of processors.

3.2. Fitness Function

A fitness function attaches a value to each individual in
the population, which indicates the goodness of the sched-
ule. We use relative error to generate the fitness values. We
wish to calculate the fitness of each individual in the popu-
lation. Previously assigned, but unprocessed, load for each
processor is considered by calculating the finishing time of
a processorj. δj,i = (Lj/Pj), whereLj denotes the pre-
viously assigned load, measured in MFLOPs, andPj is the
current processing power in Mflop/s of processorj.

The theoretical optimal processing time can now be
found as,

ψ =

(
N∑

i=1

ti/
M∑

j=1

Pj

)
+

M∑
j=1

δj , whereti is the process-

ing requirement of taski in the batch (in MFLOPs) andN
is the total number of tasks in the batch.

The relative error of individuali is given as

Ei =

√√√√ M∑
j=1

∣∣∣∣∣ψ −
(
Lj,i +

N∑
y=1

((ty/Pj) + Γc
(y,j))

)∣∣∣∣∣

2

where Γc
(y,j) is the communication cost of schedul-

ing tasky on processorj. The fitness value of individual
i is Fi = 1/Ei, andFi = [0, 1]. A larger value indi-
cates a better or fitter schedule.

3.3. Selection, Crossover and Mutation

We choose to use the standard weighted roulette wheel
method of selection which is widely used by previous re-
searchers who have applied GAs to task scheduling [8, 14,
19]. Each individualiin the population is assigned a slot be-

tween 0 and 1. The size of sloti is ςi = Fi ×
(

ρ∑
j=1

Fj

)−1

,

where
ρ∑

i=1

ςi = 1 andp is the number of individuals in the

population. After the selection process is complete we use
the cycle crossover method [12] to promote exploration as
used in [19]. We have chosen to use two types of mutation
to promote exploration of the search space. First we ran-
domly swap elements of a randomly chosen individual in
the population. Then we use a re-balancing heuristic to mu-
tate and improve the population. The initial population is
generated using a list scheduling heuristic. A percentage of
tasks are randomly assigned to processors with the remain-
ing tasks being assigned to the processors that will finish
processing them the earliest. This leads to a well balanced
randomised initial population.

3.4. Stopping Conditions

The GA will evolve the population until one or more
stopping conditions are met. The individual with the lowest
makespan is selected after each generation and if it is less
than a specified minimum, the GA stops evolving. The max-
imum number of generations is set at 1000 because the qual-
ity of the schedules returned with more than that number
does not justify the increased computation cost (as in [19]
and demonstrated in Fig. 3). The GA will also stop evolv-
ing if one of the processors becomes idle, in which case it
will return the best schedule found so far.

3.5. Rebalancing heuristic

We have introduced a re-balancing heuristic to improve
the quality of results returned. For each individual in the
population, in each generation, we select the most heavily
loaded processor. A task is then selected at random from an-
other processor and if it is smaller than a task in the most
heavily loaded processor, a swap is performed. We only al-
low a maximum of 5 random searches for a smaller task. If
the resulting schedule is fitter, it is kept.

Fig. 3 shows the average percentage decrease in
makespan after each generation of the GA, with points
taken after every generation. Each point on the graph is
an average of 50 runs of the scheduler. The largest re-
ductions in makespan occur in the first 100 generations.
After that the reductions begin to level out, requir-
ing larger numbers of generations, with little improvement.



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No. of generations

%
 r

ed
uc

tio
n 

in
 m

ak
es

pa
n

Pure GA
1 rebalance
50 rebalances

Figure 3. Average reduction in makespan af-
ter each generation of the GA

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

No. of rebalances

T
im

e 
(s

)

Figure 4. Time taken to schedule 10,000 tasks
with varying numbers of re-balances in every
generation of the GA

The re-balancing heuristic minimises the makespan fur-
ther than a pure GA, with 50 re-balances per individual in
the population per generation, resulting in the makespan be-
ing reduced to only 65% of its original value after 1000
generations (from Fig. 3). A single rebalance reduces
the makespan to approximatly 70%, whilst no rebalanc-
ing (pure GA) reduces to 75%.

These re-balances do have an associated additional cost
in terms of time. Fig. 4 shows the time taken to run a GA
for 1000 generations with varying numbers of re-balances.
It increases the time taken linearly. We have decided to only
perform a single re-balancing at each generation to enable
the algorithm to run quickly.

3.6. Smoothing Function

A smoothing function is defined that finds a single rep-
resentative value for a sequence of values. As each new
value is added to the sequence, this representative value
is updated. For the firsti values of a sequence of values
a1, a2, . . ., this representative value would be denotedΓa

i ,
and defined recursively asΓa

i = Γa
i−1 + ν(ai − Γa

i−1),
where the smoothness of the sequence of representative val-
ues is controlled byν ∈ [0, 1], and where we letΓa

0 = a1.
The function allows one to vary the influence of more re-
cent sequence values on the representative value, from no
influence (ν = 0) to complete dominance (ν = 1). The
smoothing function is employed in several instances in our
scheduler. In this paper, we describe the application of the
smoothing function to the firsti values of an arbitrary se-
quencex1, x2, . . . with the notationΓx

i .

3.7. Dynamic Batch Size

We wish to define batch sizes that are large enough so
that the processor hosting the scheduler is utilized fully
(and to achieve low makespans), but not too large that any
processors become idle before the schedule has been fully
computed. The GA takesΘ(H2) time to create a schedule,
whereH is the number of tasks in a batch (batch size). After
thepth batch has been scheduled, the first processor will be-
come idle aftersp = minM

j=1(δj/Pj), whereδj is the total
processing time in MFLOPs of the tasks waiting to be pro-
cessed by processorj, andM is the number of processors.

We chooseHp+1 =
⌊(

Γs
p + 1

)1/2
⌋

as a simple approxima-

tion of the optimal size for batchp+1. Once a schedule has
been assigned the batch size is recalculated.

4. Experiments

The scheduling algorithm described in Sect. 3 has been
implemented and and applied to simulated data. A num-
ber of different experiments have been performed to
demonstrate the effectiveness of the scheduling algo-
rithm with varying communicating costs. We compare
our scheduler to six other schedulers, and evaluate the re-
sults using two different but related metrics, makespan and
efficiency. Makespan is the total execution time of a sched-
ule. Efficiency is the percentage of the time that proces-
sors actually spend processing rather than communicating
or idling.

A representative set of heterogeneous computing task
benchmarks does not exist as yet, as noted by Theyset
al. [15]. Our task sizes are randomly generated using, uni-
form, normal, and Poisson distributions. By using different
random distributions, we can demonstrate the flexibility of
our scheduling algorithm. This is often overlooked in the



literature [1, 8, 9, 11, 14, 15, 17, 19, 20]. For these exper-
iments we will vary the communication costs and the task
sizes.

4.1. Other schedulers

We have also compared our scheduling algorithm against
a number of well known batch and immediate mode heuris-
tic schedulers. An immediate mode scheduler only consid-
ers a single task for scheduling on a FCFS (first come,
first served) basis while a batch mode scheduler consid-
ers a number of tasks at once for scheduling. We will com-
pare our algorithm to three immediate mode and three batch
mode schedulers [11, 15].

The earliest first (EF) algorithm is an immediate mode
scheduler. When a task is presented for processing, the
scheduler considers the existing load on each processor and
allocates the task to the processor which will finish pro-
cessing it the earliest. The EF algorithm uses the available
information about the task and the processors when mak-
ing a scheduling decision. It has a worst case complex-
ity of Θ(M), whereM is the number of processors, when
scheduling a single task.

The lightest loaded (LL) scheduler is an immediate mode
scheduler which allocates tasks to the processor with the
lowest current load, measured in our case as MFLOPs. It
does not consider the size of a task when scheduling it. It
has a worst case complexity ofΘ(M).

The round robin (RR) scheduler is the most basic of
the immediate mode schedulers used in these experiments,
where tasks are assigned to processors in a round robin fash-
ion. No load or task information is used when making a
scheduling decision. It has a worst case complexity ofΘ(1).

The max-min (MX) scheduler is a batch mode heuristic
scheduler. It takes batches of tasks on a FCFS basis. These
tasks are then sorted according to task size in a descend-
ing order. The largest task is then allocated to the processor
that will finish processing it first (same as EF). This is re-
peated until the batch is empty, after which another batch
is considered. The main aim of this scheduler is to have the
largest tasks scheduled as early as possible, with smaller
tasks at the end filling in the gaps. It has a complexity of
Θ(max(M,nlogn)), wheren is the size of the batch.

The min-min (MM) scheduler is similar to the MX
scheduler, except tasks are sorted in ascending order accord-
ing to size.

The scheduler proposed by Zomayaet al. (ZO) in [19]
has been implemented for this paper. It is the current state
of the art homogeneous GA scheduler and the basis for our
scheduler. The ZO scheduler was easily converted from a
homogeneous scheduler to a heterogeneous scheduler by
using the Mflop/s benchmark for task sizes rather than time.
It is a batch scheduler which uses GAs to create schedules.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/mean communications cost

E
ffi

ci
en

cy

PN

MM

MX

EF

LL

ZO

RR

Figure 5. Efficiency of schedulers with a nor-
mal distribution of task sizes and varying
communication costs.

We have validated our implementation of this scheduler by
reproducing some of the performance results in [19] (not in-
cluded here).

4.2. Setup

We simulated the performance of our scheduler
against the performance of six other schedulers, de-
scribed in Sect. 4.1, for these experiments. All of the
tasks arrived for scheduling at the beginning of the sim-
ulation. Each experiment was repeated 50 times and an
average result was calculated for each point on the result-
ing graphs.

We scheduled up to 10,000 heterogeneous tasks onto 50
heterogeneous processors. For these experiments each pro-
cessor was assumed to have a fixed execution rate, measured
in Mflop/s. The aim of these experiments is to show that pre-
dicting the communication costs in advance will improve
the efficiency, compared to heuristics which adapt to com-
munication costs after they have been incurred. All sched-
ulers were presented with the same set of tasks for schedul-
ing and all schedulers have the same information available
to them.

We have decided to use a population size of 20, which is
known as a micro GA [2] and used in [19, 20], which speeds
up computation time without impacting greatly on the final
result.



EF LL RR ZO PN MM MX
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e

Figure 6. Makespan when task sizes have
a normal distributed with a mean of 1000
MFLOPs and a variance of 9× 105

4.3. Normal distribution

Fig. 5 shows the efficiency of the seven different schedul-
ing algorithms when the task sizes are normally distributed.
We used a batch size of 200 with 1000 tasks to be sched-
uled which were randomly generated at the beginning of
each scheduling simulation with each point on the graph
consisting of an average of 20 complete schedules. Fig. 5
consists of the efficiency of 2000 complete schedules with
varying communications costs, and all other variables kept
fixed. The task sizes were generated with a mean of 1000
MFLOPs and a variance of9 × 105. The horizontal axis in
Figs. 5 is the mean communication cost for all communica-
tion links between all clients and the scheduler. Each com-
munications link has its own randomly generated mean cost,
which is normally distributed. Fig. 5 shows that our sched-
uler (PN) gives the best processor efficiency. Fig. 6 is the
makespan for the algorithm, with a varying batch size and
shows that PN out performs all the other schedulers in terms
of total execution time.

4.4. Uniform distribution

Fig. 7 shows the efficiency of the seven different sched-
uler with varying communication costs. The task sizes were
uniformly distributed between 10 and 1000 MFLOPs. The
two meta-heuristic schedulers (PN and ZO) clearly pro-
vide more efficient schedules compared to the more simple
heuristic schedulers. This occurs because the meta-heuristic
schedulers have the ability to explore a wider search space.
We have also varied the range of task sizes noting the
makespan in each case. In Fig. 8 many of the schedulers
provide similarly efficient schedules. This is because the ra-

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

1/mean communication cost

E
ffi

ci
en

cy

PN

MM

MX

EF

LL

ZO

RR

Figure 7. Efficiency of schedulers with a uni-
form distribution of task sizes and varying
communication costs.

EF LL RR ZO PN MM MX
0

500

1000

1500

2000

2500

3000
T

im
e

Figure 8. Makespan when task sizes are
uniformly distributed between 10 and 100
MFLOPs.

tio of the smallest to the largest task is only 1:10. As the set
of tasks becomes more equal, the efficiency of most of the
schedulers should improve. We see that when the range is
increased in Fig. 9 (1:1000) the differences between the var-
ious schedulers become more accentuated.

4.5. Poisson distribution

We have randomly generated sets of tasks using a Pois-
son distribution and varied the mean. In Fig. 10 we can see
that PN performs the best followed by MM, whilst MX per-
forms quite badly, when the mean is small. When the mean
is increased to 100 MFLOPs (see Fig. 11) the batch sched-



EF LL RR ZO PN MM MX
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e

Figure 9. Makespan when task sizes are
uniformly distributed between 10 and 10000
MFLOPs.

EF LL RR ZO PN MM MX
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e

Figure 10. Makespan when task sizes have
a Poisson distributed with a mean of 10
MFLOPs

ulers all perform well, whilst the immediate mode sched-
ulers do not perform as well.

5. Conclusion

A scheduling algorithm has been developed to schedule
heterogeneous tasks onto heterogeneous processors in a dis-
tributed computing system. It provides efficient schedules
and adapts to varying resource availability (processing re-
sources and communication costs). The algorithm also fully
utilises the dedicated processor running the scheduler. The
GA employed a list scheduling heuristic to create a well-
balanced randomised initial population. The fitness function

EF LL RR ZO PN MM MX
0

2000

4000

6000

8000

10000

12000

14000

T
im

e

Figure 11. Makespan when task sizes have
a Poisson distributed with a mean of 100
MFLOPs

utilises the relative error metric internally to find schedules
with a low makespan. Roulette wheel selection is used to ex-
ploit past results to direct the search for efficient schedules.
Cycle crossover promotes exploration of the search space,
with random swaps and random re-balancing of processor
queues within individuals perturbing this exploration.

We have tested our scheduler under various different sce-
narios. To show the generality of our scheduler we used
three different types of random distributions, each with
thousands of different randomly generated sets of tasks and
varying communication overheads.

The Figs. 5 through 11 show that our scheduler per-
forms better than the other schedulers. We can conclude that
our scheduler gives better performance over multiple differ-
ent scenarios and would give consistently better efficiency
in unknown conditions compared to the other techniques
tested in this study. Our scheduler estimates the communi-
cation costs between each client and server using historical
information, so it can create better schedules and reduce the
makespan. For the other schedulers, the effect of communi-
cation is only considered after tasks or batches of tasks have
been scheduled, leading to less efficient solutions.

The algorithm proposed in this paper consistently uses
processors more efficiently than the current state-of-the-art
GA algorithms for the same problem. It is more suitable
for real-world use because it considers properties of dis-
tributed systems, such as variable communication costs and
variable availability heterogeneous processors, which other
algorithms for the task scheduling problem do not consider.



6. Future work

We intend to compare all of the schedulers in Sect. 4 on a
general-purpose distributed system [10]. The system is cur-
rently deployed on over 250 heterogeneous PCs and runs
problems from cryptography, bioinformatics, and biomedi-
cal engineering. This will allow us to test our scheduler un-
der real-world conditions.

7. Acknowledgement

Support is acknowledged from the Irish Research Coun-
cil for Science, Engineering, and Technology, funded by the
National Development Plan.

References

[1] I. Ahmad, Y.-K. Kwok, I. Ahmad, and M. Dhodhi. Schedul-
ing parallel programs using genetic algorithms. In A. Y.
Zomaya, F. Ercal, and S. Olariu, editors,Solutions to Par-
allel and Distributed Computing Problems, chapter 9, pages
231–254. John Wiley and Sons, New York, USA, 2001.

[2] A. Chipperfield and P. Flemming. Parallel genetic al-
gorithms. In A. Y. Zomaya, editor,Parallel and Dis-
tributed Computing Handbook, pages 1118–1143. McGraw-
Hill, New York, USA, first edition, 1996.

[3] A. Colorni, M. Dorigo, and V. Maniezzo. Distributed opti-
mization by ant colonies. InProceedings of the First Eu-
ropean Conference on Artificial Life, pages 134–142, Paris,
France, 1992. Elsevier.

[4] J. Dongarra, J. Bunch, C. Moler, and G. Stewart.LINPACK
Users Guide. SIAM, Philadelphia, USA, 1979.

[5] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man & Co., New York, NY, 1979.

[6] F. Glover. Future paths for integer programming and links to
artificial intelligence.Computers and Operations Research,
13:533–549, May 1986.

[7] J. H. Holland.Adaptation in Natural and Artificial Systems.
MIT Press, Cambridge, MA, USA, 1992.

[8] E. Hou, N. Ansari, and H. Ren. A genetic algorithm for mul-
tiprocessor scheduling.IEEE Transactions on Parallel and
Distributed Systems, 5(2):113–120, February 1994.

[9] H. Kasahara and S.Narita. Practical multiprocessing
scheduling algorithms for efficient parallel processing.IEEE
Transactions on Computers, 33(11):1023–1029, November
1984.

[10] T. M. Keane. A general-purpose heterogeneous distributed
computing system. M.Sc. thesis, Department of Computer
Science National University of Ireland, Maynooth, Ireland,
2005.

[11] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund. Dynamic mapping of a class of independent tasks
onto heterogeneous computing systems.Journal of Paral-
lel and Distributed Computing, 59(2):107–131, November
1999.

[12] I. M. Oliver, D. J. Smith, and J. Holland. A study of permuta-
tion crossover operators on the traveling salesman problem.
In Proceedings of the Second International Conference on
Genetic Algorithms on Genetic algorithms and their appli-
cation, pages 224–230. Lawrence Erlbaum Associates, Inc.,
1987.

[13] A. J. Page and T. J. Naughton. Framework for task
scheduling in heterogeneous distributed computing using ge-
netic algorithms. In15th Artificial Intelligence and Cogni-
tive Science Conference, pages 137–146, Castlebar, Ireland,
September 2004.

[14] H. J. Siegel, L. Wang, V. Roychowdhury, and M. Tan. Com-
puting with heterogeneous parallel machines: advantages
and challenges. InProceedings on Second International
Symposium on Parallel Architectures, Algorithms, and Net-
works, pages 368–374, Beijing, China, June 1996.

[15] M. D. Theys, T. D. Braun, H. J. Siegal, A. A. Maciejewski,
and Y.-K. Kwok. Mapping Tasks onto Distributed Hetero-
geneous Computing Systems Using a Genetic Algorithm Ap-
proach, chapter 6, pages 135–178. John Wiley and Sons,
New York, USA, 2001.

[16] Top 500 Super Computers. http://www.top500.org.
[17] A. Y. Zomaya, M. Clements, and S. Olariu. A framework

for reinforcement-based scheduling in parallel processor sys-
tems. IEEE Transactions on Parallel and Distributed Sys-
tems, 9(3):249–260, March 1998.

[18] A. Y. Zomaya, R. C. Lee, and S. Olariu. An introduc-
tion to genetic-based scheduling in parallel processor sys-
tems. In A. Y. Zomaya, F. Ercal, and S. Olariu, editors,Solu-
tions to Parallel and Distributed Computing Problems, chap-
ter 5, pages 111–133. John Wiley and Sons, New York, USA,
2001.

[19] A. Y. Zomaya and Y.-H. Teh. Observations on using ge-
netic algorithms for dynamic load-balancing.IEEE Trans-
actions on Parallel and Distributed Systems, 12(9):899–911,
September 2001.

[20] A. Y. Zomaya, C. Ward, and B. Macey. Genetic schedul-
ing for parallel processor systems: comparative studies and
performance issues.IEEE Transactions on Parallel and Dis-
tributed Systems, 10(8):795–812, August 1999.


