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Abstract: We present the results of what we believe is the first application
of wavelet analysis to the compression of complex-valued digital holograms
of three-dimensional real-world objects. We achieve compression through
thresholding and quantization of the wavelet coefficients,followed by
lossless encoding of the quantized data.
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1. Introduction

Holography is an established technique for recording and reconstructing real-world three-
dimensional (3D) objects. Digital holography [1, 2, 3, 4, 5,6, 7, 8] has recently become feasible
due to advances in megapixel CCD sensors with high spatial resolution and dynamic range. A
technique known as phase-shift interferometry [3, 6] was used to create our in-line digital holo-
grams [9, 10], which are in an appropriate form for processing and transmission. It has been
proposed [11] to stream digital holograms over a network to generate a form of 3D video [12].
To reconstruct a particular view of the 3D object [14, 15], anappropriate region of pixels is
extracted from the hologram and numerical propagation [4, 6, 9] is applied. A real-time re-
construction technique using inexpensive components has also been demonstrated [13]. Their
large storage requirements mean that to facilitate efficient storage and transmission appropriate
compression techniques must be developed.

Lossless image compression techniques, such as Burrows-Wheeler [16] (BW), perform
poorly when applied to holograms due to the inherent specklecontent that gives the holograms
a white-noise appearance [11]. Holographic speckle is difficult to remove directly as it actually
contains 3D information. Therefore, lossy compression seems essential. Phase quantization
has been applied to holographic data in the past [17]. We extend previous research on quan-
tization compression of holographic data [11, 18, 19, 20, 21] by transforming our data to the
wavelet domain prior to quantization, and further apply lossless compression to the quantized
coefficients. Wavelets have already been used to describe Fresnel propagation of (for example)
digital holograms [25, 26, 27, 28].

2. Digital hologram compression

Five 3D objects were used in our experiments. Their digital holograms contain 2028× 2044
pixels, with each pixel composed of an 8 byte real value and an8 byte imaginary value. For
practical reasons, we analyzed a single 1024×1024 pixel window of each hologram. Uniform
quantization is defined for an individual pixelH(x,y) as

H ′(x,y) = round
{

H(x,y)×σ−1×
[

2(b−1)−1
]}

(1)

and is applied to eachx ∈ [1,Nx],y ∈ [1,Ny], where

σ = max{|min[Im(H)]| , |max[Im(H)]| , |min[Re(H)]| , |max[Re(H)]|} . (2)
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Here,Nx andNy are the number of samples in thex andy directions, respectively,b represents
the number of bits per real and imaginary value, max(·) returns the maximum scalar in its ar-
gument(s), and round(α) is defined as⌊α + 0.5⌋. All real and imaginary values will then be
integers in the range[−2(b−1) +1,2(b−1) −1]. After decompression and prior to object recon-
struction, each value is rescaled, by dividing by 2(b−1)−1, to the[−1,1] interval.

In our compression experiments, a digital hologramH is compressed and then decompressed
asH ′, and an objectU ′ reconstructed by numerical propagation. The quality of thecompressed
reconstruction is measured using normalized rms (NRMS) difference, calculated from

D =

[

Nx−1

∑
m=0

Ny−1

∑
n=0

{

|U(m,n)|−
∣

∣U ′(m,n)
∣

∣

}2×
(

Nx−1

∑
m=0

Ny−1

∑
n=0

|U(m,n)|2
)−1]1/2

, (3)

where(m,n) are discrete spatial coordinates in the reconstruction plane. In order to reduce
the effects of speckle noise, only amplitude in the reconstruction plane is considered and a
5×5 pixel mean filtering operation is applied prior to calculation of NRMS difference.

3. Wavelets

The continuous wavelet transform of a functionf (x) is defined as

g(t,d) =

∫

f (x)ψ∗
t,d(x)dx , (4)

where∗ denotes complex conjugation and the variablest andd denote translation and dilation
factors, respectively. The basis functions, or wavelets,ψt,d(x) are generated from the mother
waveletψ(x), a non-zero function in some small interval that explores, through a convolution
as shown, the properties of the input data in that interval. Ascaling function is used to generate
dilated and translated versions of the mother wavelet, as in

ψt,d(x) = d−0.5ψ [(x− t)/d] , (5)

whered−0.5 ensures energy normalization across different dilations.
The discrete wavelet transform [22] (DWT) has been applied infields such as signal pro-

cessing [23] and image compression [24], and has been found to efficiently represent data
exhibiting sharp changes or discontinuities. The basic process involves applying averaging and
differencing operations to the input data and retaining theapproximation and detail coeffi-
cients, respectively, at each resolution level (a step in the DWT). The simplest wavelet func-
tion, Haar, calculates (in our case) its complex-valued approximations for resolution levelr as
ar

i = [ar−1
2i +ar−1

2i+1]/
√

2 and details asbr
i = [ar−1

2i −ar−1
2i+1]/

√
2, wherei is a pixel index.

4. Wavelets applied to digital holograms

Wavelets have been adapted for the compression of multidimensional data [29] and SAR image
data [30], which has similar properties to our data. We modified Matlab’s wavelet toolbox in
order to apply the DWT to our complex-valued data. Also, sincethe neighboring pixels in our
holograms exhibit no correlation, we chose to employ the 1D DWT. We used 53 discrete mother
wavelets, with 1, 3, 10 and 20 resolution levels. Figure 1 shows dramatically changing values
in the approximation and detail coefficients for 1−20 resolution levels with the Haar wavelet
in holograms of two 3D objects (a die and a bolt). If all coefficients are considered together for
clustering, then resolution levels with a narrow range of coefficient values would be quantized
with a smaller number of clusters compared to levels with a broader range of coefficient values.
Hence there is a need to quantize each level independently inany compression algorithm.
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Fig. 1. Vertical bars illustrating minimum and maximum values at each level of approxima-
tion for 20 resolution levels using the Haar wavelet for (a) die and (b) bolt,and each level
of detail for (c) die and (d) bolt. x-axis: resolution level, y-axis: value at each level.
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Fig. 2. NRMS error of the reconstructed object plotted against compression ratio for the
die object for wavelet levels 1, 3, 10 and 20 for (a) bior3.7, (b) Haar, and (c) db4.
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Fig. 3. NRMS error of the reconstructed object plotted against compression ratio for (a) die,
and (b) bolt, for uniform quantization and 7 mother wavelets with 3 resolutionlevels.

(a) (c)(b)

(d) (f)(e)
Fig. 4. Reconstructions of the die and bolt objects, respectively, with (a),(d) 2 bits, (b),(e) 3
bits, and (c),(f) 4 bits uniform quantization of the Haar wavelet coefficients.
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(b - after)(b - before)(a - after)(a - before)

(d - after)(d - before)(c - after)(c - before)
Fig. 5. Scatter plots of the complex-valued Haar wavelet coefficients forthe die object. Each
point in each complex plane represents the value of a thresholded wavelet coefficient. Plots
show the distribution of values before and after quantization: (a) approximation, (b) level 3
details, (c) level 2 details, and (d) level 1 details, for a complex thresholdof ±0.35±0.35i.

Our approach was to uniformly quantize the wavelet coefficients, apply BW to the concate-
nation of the real and imaginary streams (previously found to be the best lossless approach for
our data [11]), measure the compression ratio, apply the inverse DWT, reconstruct the on-axis
view of the 3D object, and calculate NRMS error. The performance of each mother wavelet ap-
peared to depend on the number of resolution levels, the number of quantization bits, and on the
hologram. Of the 53 wavelets initially evaluated, we chose arepresentative set of 7 (bior3.7,
coif5, db4, dmey, Haar, rbio3.7 and sym5) for systematic analysis. For clarity, only selected
results are shown. Figure 2 shows NRMS error plotted againstcompression ratio for the die
hologram. In a comparison of these 7 wavelet functions, resolution level 3 was deemed to have
performed best (lowest NRMS error with the highest compression ratio for a particular number
of bits of quantization) over all 5 holograms. Figure 3 showsthe results at this resolution level
for two holograms. The improved performance of the wavelet functions over uniform quantiza-
tion in the hologram domain is apparent. Figure 4 shows reconstructions of a 1024×1024 pixel
window of two holograms with quantized Haar wavelet coefficients, with 3 resolution levels.

5. Combined thresholding and quantization

We introduced a thresholding technique to improve performance, which sets to zero all complex
wavelet coefficients that have a real or imaginary value closer to zero than our threshold, prior
to quantization (see Fig. 5). Resolution levels 1, 3, 10 and 20, and threshold values in the range
[0.05+0.05i : 1+i] with increments of 0.05 in either dimension, were evaluated. Over the afore-
mentioned seven mother wavelets, and over all five digital holograms, and for quantization of
2−6 bits, 3 resolution levels was found again to achieve on average the best performance. Fig-
ure 6 shows the compression performance at 3 resolution levels, at 2,3, and 4 bits quantization,
and for several different thresholds. These plots show thatthe amount of quantization largely
dictates the compression ratio (the distinct clusters for each number of bits) and the different
threshold levels perform more of a fine tuning task. The leftmost point on each curve is due
to quantization alone (threshold of±0±0i), and each additional point on the curve represents
increased thresholding. The slope of each curve defines the effect of thresholding. It can be seen
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Fig. 6. NRMS difference of the reconstructed object plotted against compression ratio for
hologram (a) die, and (b) bolt, for thresholding and 4, 3 and 2 bit uniform quantization
applied directly to the hologram data and seven mother wavelets all with 3 resolution lev-
els.• uniform.,� bior3.7.,⋄ coif5.,△ db4., x dmey.,∇ Haar.,⊲ rbio3.7.,⊳ sym5.
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Fig. 7. NRMS difference of the reconstructed object plotted against compression ratio for
die hologram for thresholding and (a) 4 bits, (b) 3 bits, and (c) 2 bits uniform quantization
applied directly to hologram data and seven mother wavelets all with 3 resolution levels.

that thresholding achieves improvements in compression ratio for little or no increase in NRMS
error. The three clusters in Fig. 6(a) were replotted on separate scales for Fig. 7. We note the
surprising observation that most mother wavelets perform comparably for each hologram, and
that no single mother wavelet consistently outperforms theothers for all quantizations.

6. Conclusion

We investigated the use of the DWT for the compression of digital holograms of 3D objects.
Of 53 wavelet functions initially tested, we chose a representative sample of seven. A range
of resolution levels were examined and it was found that 3 levels performed best on average
with our holographic data. The coefficients at each level of detail as well as the approxima-
tion coefficients were rescaled independently, due to the diverse range of values we observed
in each level, and we applied uniform quantization to the rescaled wavelet coefficients prior
to lossless encoding. Thresholding was shown to have the ability to increase compression ra-
tios with little increase in reconstruction error. Although it was expected that several factors
would affect compression performance (choice of mother wavelet, choice of hologram, num-
ber of resolution levels, number of bits of quantization), it was surprising that no one wavelet
function outperformed all others in the study. Although in terms of compression ratio alone,
wavelet quantization and uniform quantization are comparable, an analysis of the combined
compression ratio and NRMS error shows wavelet quantization to be superior.
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