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Abstract

In Dumas and Svensson (Journal of International Economics 36 (1994) 467) the lifetime
of a Krugman (Quarterly Journal of Economics 106 (1991) 669–682) type target zone model
is found to be extremely long. This paper shows that the lifetime of the identical target zone
regime can be much lower when real disturbances occur. In particular, the mean lifetime is
found to be very low when real disturbances occur and the real exchange rate elasticity of the
demand for domestic goods is very low. It is also shown that allowing for monetary disturb-
ances to have real effects has very little effect on the lifetime. The results indicate the con-
ditions under which real disturbances might trigger currency crises.  2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Managed exchange rate regimes last only for finite periods of time before they
are either realigned or abandoned. Dumas and Svensson (1994) examine the role of
central bank reserves in determining this ‘lifetime’ when a single central bank
attempts to operate an exchange rate target zone. Central bank reserves play a role
in exchange rate crises only when political considerations prevent the implementation
of unpopular policies. For example, in the first generation speculative attack model
of Krugman (1979) and Flood and Garber (1984) a crisis occurs because the central
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bank finances a fiscal deficit by expanding domestic credit. In the absence of any
offsetting changes the money supply expands and the exchange rate depreciates. To
stabilize the money supply and fix the exchange rate the central bank buys up the
excess domestic currency using foreign reserves. Eventually the stock of foreign
reserves falls to a critically low threshold at which a speculative attack is triggered
wiping out the remaining reserves. If the government were able to eliminate the
deficit the collapse could be avoided indefinitely. In the second generation models
pioneered by Obstfeld (1986),1 an optimizing policy maker abandons the fixed rate
in response to mounting unemployment. If the government were unconcerned by
rising unemployment the domestic interest rate could be raised sufficiently to com-
pensate for any expected depreciation thereby averting the crisis. In practice, dom-
estic interest rate rises are constrained by the government’s desire to limit the rise
in unemployment. In these second generation models the stock of reserves does not
appear at all, but the ceiling on the interest rate defines an equivalent floor on the
money supply and reserves. Thus if implicit constraints prevent the exclusive focus
of monetary policy on the target zone limited reserves will play a role in determining
its expected lifetime. Assuming that there are such implicit constraints, Dumas and
Svensson examine the role of reserves in the lifetime of an exchange rate target
zone. The central result of their work is that the lifetime is extremely long. In the
example of a 10% yearly drift of the fundamental and an initial stock of reserves
100% above the critical minimum, the expected lifetime of a target zone of ±1.5%
is over 10.7 years. In addition, the model predicts the bandwidth itself has only a
very minor effect on the lifetime. Simple division shows that the lifetime of a fixed
rate in the above case is equal to 10 years. With no drift but a standard deviation
of 10% per year the expected lifetime is a remarkable 120 years. The major determi-
nants of the lifetime are the stock of reserves and the size of the drift in the funda-
mental. These results suggest that a narrow target zone ought to be an extremely
robust structure.

This paper extends the work of Dumas and Svensson by attempting to illustrate
the effects of varying the structure of the economy. The basic idea is that whilst a
monetary disturbance can always be offset by a one for one change in the money
supply, re-establishing equilibrium after a real disturbance may prove to be much
more difficult, particularly if domestic production concentrates on differentiated pro-
ducts with a low real exchange rate elasticity of demand. In such a scenario move-
ments in real fundamentals under a floating rate would have a significant impact on
the exchange rate. Under a target zone regime the instability of the exchange rate
creates a much higher frequency of interventions and a much shorter lifetime than
would be the case if the economy was affected only by monetary disturbances. This
paper attempts to address this issue by analysing the lifetime of a target zone model
with a richer underlying structure than is associated with the Krugman model. It is

1 The ERM crisis provided a significant impetus to the development of second generation models. For
examples see the paper by Ozkan and Sutherland (1994) and the volume edited by Cobham (1994).
Obstfeld (1994) provides a overview of these second generation models.
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shown how for the identical target zone regime as was used in Dumas and Svensson
(1994) the expected lifetime can in certain circumstances be very low.

The remainder of the paper is organized into the following sections. Section 2
outlines an extended version of the target zone model which is used in this paper.
The extended target zone model provides a richer specification of the underlying
fundamentals. This has the advantage of allowing for the explicit analysis of the
effects of both real and monetary disturbances and for variations in the underlying
structure of the model. This extended target zone model is due to Sutherland (1995).
Section 3 uses the first passage time technique to calculate the expected lifetime of
a target zone regime. Dumas and Svensson (1994) calculate the lifetime in a variety
of scenarios. The purpose here is to focus on the effects of explicitly modelling real
as well as monetary shocks and in varying the degree of interdependence of the real
and monetary sectors. To do this it is necessary only to examine some particular
case. It seems highly likely that there is some form of drift and as Dumas and
Svensson show, this drift will be a major determinant of the lifetime. In addition
some form of drift is central to most explanations of currency crises. Therefore, it
seems natural to choose the situation in which a drift eventually causes the collapse
of the target zone. As would be expected, it is briefly shown that the effects of
changing the structure of the model readily extend to the simpler case of a drift-less
fundamental. Section 4 contains the results.

2. The model

The Sutherland (1995) version of the target zone is defined by the following sys-
tem of equations;

ys�ap�e, (1)

yd�h(s�p�p∗)�gi�w, (2)

m�p�fy�li�n, (3)

E
(ds)
dt

�i�i∗, (4)

dn�undt�sndzn, (5)

de�uedt�sedze, (6)

dw�uwdt�swdzw, (7)

where y is the domestic output, p is the price level, m is the nominal money supply,
i is the nominal interest rate, s is the nominal exchange rate, and e, w, n are the
supply, demand and velocity disturbances, respectively. All variables except i and
i∗ are in logs and the asterisk denotes a foreign variable.

Eq. (1) is the aggregate supply curve where e represents a disturbance term. That
aggregate supply responds positively to the price level in the long run implies that
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nominal wages are permanently fixed. This is an undesirable feature of the model
but is not serious for the current paper. This is because the main results of the paper
require aggregate supply to be unresponsive to movements in the price level2 so that
in general it is assumed that a=0. It is not assumed that the natural rate is unaffected
by stochastic disturbances. Eq. (2) defines aggregate demand to be a function of the
real exchange rate, nominal interest rate and the demand disturbance w. Eq. (3)
is the standard money market equilibrium condition, where real money demand is
determined by output, the nominal interest rate and the disturbance term n. Eq. (4)
represents the uncovered interest parity condition. The disturbance terms e, w and
n are each assumed to follow independent Brownian motion processes with con-
stant drifts.

The advantage of this model as compared to the Krugman model is the linkage
between monetary and real sectors and the explicit inclusion of both real and monet-
ary disturbances. The key parameters of the model are the slope of the aggregate
supply curve, a and the real exchange rate elasticity of aggregate demand h. Structur-
ally the model differs from the Krugman model in that it allows for a less than
infinite real exchange rate elasticity of demand, h��. This means the aggregate
demand curve is downward sloping rather than horizontal. The importance of this
parameter is that it is the main determinant of the degree of exchange rate variability
in response to a real disturbance. If h=� the nominal exchange rate is always defined
by continuous purchasing power parity. If a=0, output is fixed at the natural rate.
These two conditions along with the assumption that there are no disturbances to
aggregate supply can be used to obtain the Krugman form of the target zone model
as a special case of the extended model. The extended model therefore allows a
explicit analysis of the effects of various types of disturbance, both real and monet-
ary, under scenarios in which the output is not fixed and purchasing power parity
does not hold continuously.

The model is solved by defining a new fundamental variable which itself is a
composite of the individual fundamentals. This is:

g�y1(m�n)�y2e�y3w, (8)

where,

y1�
−(a+h)

[l(a+h)+g(1+af)]
, (9)

y2�
−(1−fh)

[l(a+h)+g(1+af)]
, (10)

y3�
+(1+af)

[l(a+h)+g(1+af)]
, (11)

2 A target zone version of the sticky price Dornbusch (1976) model has been developed by Miller and
Weller (1991). It is desirable to use that model here but the dynamic adjustment of prices in the model
makes it extremely difficult to analyse for multiple disturbances.
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y4�
+(1+af)h

[l(a+h)+g(1+af)]
. (12)

The fundamental g follows a composite Brownian motion process where,

dg�mg dt�sgdzg, (13)

s2
g�y2

1s2
n�y2

2s2
e�y2

3s2
w, (14)

mg�y1mn�y2me�y3mw. (15)

The reduced form of the structural equations can then be written in terms of the
composite fundamental as;

s��
g
y4

�
1
y4

E(ds)
dt

. (16)

This equation has exactly the same reduced form as the Krugman target zone model
and the solution for the exchange can now be obtained following the same procedure.
Briefly, the first step is to assume that the exchange rate is free from arbitrary bubbles
so that it can be written as a function of the fundamental only, s=f(g). Ito’s lemma
is then applied to derive the expected rate of depreciation. These two expressions
are then substituted back into Eq. (16) to obtain a second order ordinary differential
equation in f(g) which is solved in the standard way.3 This is:

s��
g
y4

�
mg

y2
4
�A1er1g�A2er2g, (17)

where,

r1, r2�
−mg±(m2

g+2y4s2
g)1/2

s2
g

. (18)

The arbitrary constants are defined by requiring that the solution for the exchange
rate is momentarily flat at the bands edges. This gives the inverse S shaped path
shown in Fig. 1. This solution assumes parameter values which correspond to the
Dumas and Svensson paper. These are, a bandwidth of ±1.5%, s2

g=1% per year,
me=mw=0, mn=10% per year, l=1, a=0 and h→�. For these parameters the band on
the exchange rate results in the following limits for the band on the fundamental
a=�4.91% and b=+8.99%.

The exchange rate is free to move within the upper and lower limits, s̄ and s,
respectively. The limits are defended using non-sterilized interventions to the money
supply. The interventions are marginal and reflecting so that reserves fall at s̄ and
rise at s. It also means the limits on the exchange rate and fundamental coincide.
Because the interventions represent predictable movements in the money supply they

3 For further details on the solution of this model see Sutherland (1995). Note that the model used
here has been extended to incorporate drifts as well as Brownian motion shocks.
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Fig. 1. A target zone with multiple disturbances.

cause the expected depreciation to point towards the middle of the band. That is, as
the exchange rate approaches the upper limit, the expectation of a monetary contrac-
tion and exchange rate appreciation increases. This dampens the movement in the
exchange rate relative to a movement in the fundamental. The reverse is true at the
lower limit. The strength of this effect increases the closer the current rate is to either
of the limits. This gives the exchange rate its inverse S shape. Once the exchange rate
reaches either of the band limits, any further movement beyond the limit is offset
by the combination of the marginal change in the money supply and the expected
depreciation. This means that at the limits the exchange rate is approximately flat
or rather that it ‘smooth pastes’ onto the edge of the band. This smooth pasting
provides a condition which is used to obtain values for the arbitrary constants in
(15). The major pictorial difference between this model and that of Krugman is that
when graphed against the composite fundamental the S curve is negatively sloped,
so that the limits on the exchange rate coincide with the opposite limits on the
fundamental. In the Krugman model the S curve is positively sloped. The models
are identical in that positive velocity shocks depreciate the exchange rate towards
the upper edge of the band. However, positive velocity shocks reduce the composite
fundamental which is the opposite of what happens in the Krugman model. Thus
for velocity shocks to have the same effect the S curve is negatively and not posi-
tively sloped.

3. The lifetime of the target zone

In this section the method of Dumas and Svensson is used to derive the mean
and density of the expected lifetime in the extended target zone model. This method
is extremely neat. Assume that implicit constraints on monetary policy prevent the
money supply, M=D+R being reduced below some critical minimum M̄. Further
assume that domestic credit is held constant at this level. This means that the target
zone will collapse if reserves fall to zero. The prospect of this triggers a buying
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attack which causes the target zone to collapse before reserves would have otherwise
run to zero. Therefore, there is a critical lower level of the reserve stock at which
the attack is triggered and the target zone collapses. In logs let this be r=p. The
collapse occurs at the first instant log reserves fall to p. Since reserves only fall at
s̄ or equivalently when g=a then the target zone collapses on the first occasion that
g=a and r=p. Dumas and Svensson also assume that the target zone is abandoned
when reserves and the money supply become too large. Letting r=q denote the criti-
cally high stock of log reserves means at the date of abandonment, g=b and r=q.

The next step is to note that the fundamental g follows a regulated Brownian
motion process. The fundamental g is regulated by changes in the money supply at
the limits a and b. If �B1r is subtracted from g this results in an unregulated funda-
mental which depends only on the composite Brownian motion. That is,

g�B1r�B1n�B2e�B3w. (19)

It follows that as long as the target zone operates the unregulated fundamental is
constrained to lie within the interval,

a�B1p�g�B1r�b�B1q. (20)

The target zone collapses on the first date that,

g�B1r�a�B1p. (21a)

The zone is abandoned on the first date that,

g�B1r�b�B1q. (21b)

The lifetime of the target zone can now be equivalently modelled as the first
passage time of the unregulated Brownian motion variable g�B1r to the limits given
in (21a) or (21b). Formulas for a variety of scenarios are available in standard texts
on stochastic processes, such as Cox and Miller (1965). To analyse the dependence
of the survival time on the structure of the model it is only necessary to concentrate
on some single case. For obvious reasons this is chosen to be a collapsing target
zone, or rather hitting the critically low reserve level. It is straightforward to extend
the results to the case of both critically high and low levels, although if it is assumed
that there exists a yearly drift of 10% the results for critically high and low levels
are virtually identical. The reason is that the probability of hitting the critical level
in the opposite direction to the drift is virtually zero for the parameters chosen. For
a smaller drift size this would not be true. It is straightforward to extend the analysis
to the case of an abandonment caused by a critically high level of the money supply.

The probability density and expected survival time conditional upon the initial
levels of g and r are:

f(T|g, r)��(a−y1p)−(g−y1r)
sg(2pT 3)1/2 �exp�−((a−y1p)−(g−y1r)−mgT)2

2s2
gT

�, (22)

E[T|g, r]�((a�y1p)�(g�y1r))/mg. (23)
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4. Results

The aim is to examine how varying the structure of the model and the source of
disturbances affects the expected lifetime. As compared to the analysis of Dumas
and Svensson the advantage is the richer specification of the underlying fundamental.
In particular, the Krugman target zone model is a reduced from of the monetary
model of exchange rates with output assumed to be fixed at a natural rate. The
fundamental of the Krugman model is, strictly speaking, the stochastic money supply.
However, the fundamental is usually interpreted in a more general way, and as in
Dumas and Svensson a single stochastic variable is interpreted as representing the
combined degree of real and monetary divergence. This assumes that all types of
disturbance would lead to one for one movements in the exchange rate under a
floating regime. This seems a fairly strong assumption even if output is fixed at a
natural rate. It may be a very strong assumption for an economy which specializes
in a narrow range of tradable products. A disturbance to the supply or demand for
such a product might create a much greater degree of exchange rate instability than
would a monetary disturbance of similar size. To examine this issue, Fig. 2 repro-
duces the density function simulated in Dumas and Svensson. We then examine how
the shape of this function changes as the source of disturbances and the structure of
the model are changed. In order to generate Fig. 2 the parameter values are chosen
so that the extended form of the target zone model simplifies to the monetarist
reduced form on which the Krugman model is based. The required values are:
f=1, l=1, g=0, a=0, h→�, p=0, q=200%, me=mw=0, mn=10% per year, s2

e=s2
w=0,

s2
n=1% per year, g=(a+b)/2 and r=(p+q)/2. The latter assumption gives an initial log

excess reserve stock above the critical minimum of r�p=100%.
For these values the mean lifetime is approximately 10.7 years and the probability

of collapse within 5 years is just 1.7%. Trivially increasing the size of the drift or
reducing the log excess of reserves reduces the mean lifetime. The mean lifetime
can be decomposed into the time bought by excess reserves and the time bought by
the bandwidth. With the initial values of the reserve stock and fundamental calculated
at the mid-points the mean lifetime is:

E[T|g, r]�
(a−b)
2mg

�
y1(q−p)

2mg
. (24)

Fig. 2. f[T|r,g,mn=.1,sn=.1,a=0,h→�].
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The first term represents the lifetime bought by the bandwidth and the second term
the time bought by excess reserves. For the parameter values consistent with the
Krugman model this becomes:

E[T|m�n, r]�
(b−a)
2mn

�
(q−p)
2mn

. (25)

Of the total mean lifetime of 10.7 years, 10 years are bought by excess reserves
with the bandwidth of ±1.5% adding only an additional 81

2 months. Unless the band
is extremely wide or if excess reserves are extremely low the choice of bandwidth
is a relatively unimportant determinant of the expected lifetime. Even a fixed rate (
b=a) lasts for 10 years, although the drift of velocity is assumed to be 10% per year.

Fig. 2 serves as a baseline case. The remaining subsections examine how the
zone’s lifetime changes as the structure of the model is changed. In Section 4.1 the
model is extended to see if allowing for real effects of monetary disturbances has
any significant effects on the mean lifetime. Section 4.2 examines the relationship
between the mean lifetime, real disturbances and the structure of the model. In vary-
ing the underlying structure of the extended target zone model the results focus on
the elasticity of aggregate supply to the price level a, and the elasticity of aggregate
demand to the real exchange rate, h. The reason for focusing on these parameters
can be seen from Eq. (24). The time bought by the excess stock of reserves is
determined by (y1/2mg). This expression is free of l and g. These parameters do
affect the time bought by the bandwidth but this is only significant if the time bought
by excess reserves is very low. The elasticity of the transactions demand for money
does affect the time bought by excess reserves, particularly in the case of demand
disturbances, but it seems unlikely that f will deviate much from unity. Therefore,
the focus of the analysis is on the two parameters that do affect the time bought by
excess reserves and which conceivably vary greatly amongst countries. The drift-
less case and the effects of changing the values of l, g and f are briefly examined
in Section 4.3.

4.1. Monetary disturbances in the extended model

With purely monetary disturbances the drift of the composite fundamental equals
mg=y1mn Substitution into (24) gives the mean lifetime in the extended model:

E[T|g, r]�
(b−a)
2y1mn

�
(q−p)
2mn

. (26)

The second term of (26) represents the time bought by excess reserves or alterna-
tively the lifetime of a fixed rate. Under a fixed rate regime a monetary disturbance
is offset by an equal and opposite change in reserves. Thus a downward drift in
money demands of 10% per year creates a 10% per year drain on reserves. For an
initial reserve stock 100% above the critical minimum the fixed rate lasts for 10
years. Because of the direct relationship between money disturbances and reserve
changes this part of the lifetime is unaffected by any of the structural parameters of
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Fig. 3. E[T|r,g,mn=.1,sn=.1] and h.

the model. It therefore represents the minimum lifetime in the case of purely monet-
ary disturbances. It follows that varying the structure of the model only alters the
81

2 months of lifetime bought by the bandwidth.
Figs. 3 and 4 demonstrate that varying the parameters a and h leads to only very

small changes in the mean lifetime. For the changes shown the mean lifetime remains
well within a range of 10–11 years. Specifically, Fig. 3 shows that unless output is
fixed, a=0 increasing the elasticity of aggregate demand to the real exchange rate,
η, increases the mean lifetime. A positive monetary disturbance depreciates the nomi-
nal and, unless a=0, the real exchange rate which raises goods and money demands.
The larger is h the bigger are the increases in goods and money demands to any
given size of depreciation. Under the target zone regime the depreciation of ±1.5%
raises money demands by a larger amount the bigger is h and this reduces the size
of the remaining excess supply of money at s̄. Thus raising h reduces the number
of marginal interventions which increases the mean lifetime. If output is fixed the
real exchange rate is constant and equilibrium is restored by the combination of the
rise in domestic prices and interventions at s̄. This gives a mean lifetime of 10.7
years and corresponds to the strict form of monetary model on which the Krugman
model is based.

Fig. 4. E[T|r,g,mn=.1,sn=.1] and a.
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Fig. 4 illustrates the effects of increasing the price elasticity of supply, a. The
effect on the lifetime is determined by the value of fh. This is easiest to understand
by comparing the amount of exchange rate variability under a free float with a fixed
rate of output against a situation in which output is not fixed. With a fixed rate of
output, purchasing power parity holds and the nominal exchange rate depreciates by
an amount which exactly matches to the original disturbance. If output is not fixed
the price level rises by less than the nominal exchange rate so that the real exchange
rate depreciates. In terms of money demand the reduction in the size of the increase
in the price level raises money demand with an elasticity of one. However for a value
of a other than zero the real exchange rate depreciation raises aggregate demand and
output with an elasticity of h. The increase in output raises the demand for money
with an elasticity of f. The overall elasticity of money demand to the real exchange
rate is the product of the elasticity of aggregate demand to the real exchange rate
and the elasticity of the transactions demand for money fh. Thus if fh�1 raising
a reduces the increase in money demand in response to a real exchange rate
depreciation, whilst if fh�1 the reverse is true. It follows that if fh�1 raising a
increases the size of the depreciation caused by a monetary disturbance under a
floating regime. In the target zone regime this means more frequent interventions
and a reduced lifetime. The reverse is true if fh�1, whilst if fh=1 the mean lifetime
is unaffected by the value of a and is equal to the baseline case of 10.7 years.
Despite these effects on the time bought by the bandwidth the overall effect on the
lifetime in the case of monetary disturbances is relatively minor.

4.2. Real disturbances

The previous subsection shows that when the disturbances only emanate in the
money market the structure of the model is not an important determinant of the
zone’s lifetime. The model’s structure is much more important when real disturb-
ances are included. To illustrate this, consider the mean lifetime in the case of purely
supply disturbances. Substituting for the values of mg and y1, y2 into (24) and setting
mn=mw=0 yields:

E[T|g, r]�
(a−b)
2y2me

�
(a+h)

2(1−fh)me
(q�p). (27)

Varying the structural parameters, a, h and f now alters the mean lifetime, through
both the time bought by the bandwidth and the time bought by excess reserves. The
reason that a and h alter the time bought by excess reserves is that real disturbances
indirectly affect the money market and exchange rate. In the case of monetary dis-
turbances a one for one change in the money supply is sufficient to offset the disturb-
ance. In the case of real disturbances the exchange rate and money supply must
adjust to re-establish equilibrium in both the goods and money markets. This can
require much larger movements in the exchange rate and money supply.

In calculating the mean lifetime in the case of supply disturbances it is assumed
that me=±10% per year. If fh�1 the exchange rate depreciates in response to a
positive supply disturbance. In this case the drift is chosen to be me=+10% per year.
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However, if fh�1 a positive drift causes the exchange rate to appreciate. In order
to generate a positive probability of collapse the drift is chosen to be me=�10% per
year. The explanation for this is that a positive supply disturbance lowers the price
level and raises output. These changes have opposing effects on money demand so
that the exchange rate may either appreciate or depreciate. The extent to which the
price level falls and output rises depends upon the value of h. If this elasticity is
very large the aggregate demand curve is very flat and a very small real depreciation
will raise aggregate demand significantly. It follows that with h large most of the
effect of a supply disturbance is concentrated in output with only a relatively small
change in the price level. Conversely if h is very low the fall in the price level is
much larger and the increase in output much smaller. The increase in output raises
money demand with an elasticity of f. This means a supply disturbance changes the
transaction’s demand for money with an elasticity of fh. On the other hand, the
elasticity of money demand with respect to the price level is one. The overall effect
on money demand depends upon a comparison of the two. In particular, if fh�1
the reduction in money demand from the fall in the price level dominates causing
the exchange rate to depreciate. If fh�1, money demand rises and the exchange
rate appreciates so that the drift in supply is chosen to be negative. Figs. 5 and 6
illustrate effects on the mean lifetime of changing the values of h and a.

As would be expected from the above discussion, Fig. 5 illustrates that increasing
η can either increase or decrease the mean lifetime, depending upon the value of
fh. For very low values of h the mean lifetime is very low. For example, if
h=0.1 the mean lifetime is just 1.2 years. When fh�1, increasing h increases the
mean lifetime. For h=0.25 the mean lifetime is 3.6 years and for h=0.5 the mean
lifetime is 10.8 years. As h approaches unity the net effect of a supply disturbance
on the money market become smaller and smaller, causing the mean lifetime to
become infinitely long. When fh=1 the fall in the price level and the rise in output
have perfectly offsetting effects on money demand. For larger values of h, such that
fh�1 the drift of supply is chosen to be negative and increases in h now reduce
the mean lifetime. For example, when h=1.5 the mean lifetime is 32.4 years, when

Fig. 5. E[T|r,g,me=.1,se=.1] and h.
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Fig. 6. E[T|r,g,me=.1,se=.1] and a.

h=10 the mean lifetime is 11.8 years. There is however an asymmetry between the
effects of raising h when fh�1 and raising h when fh�1. This occurs because
whilst raising h when fh�1 reduces the size of the original excess money supply
it also increases the elasticity of aggregate demand to the real exchange rate. Both
effects combine to raise the mean lifetime. If fh�1 raising h raises the size of the
original excess money supply but it still raises the elasticity of aggregate demand
to the real exchange rate. These have opposing effects on the mean lifetime which
prevents the lifetime from falling to zero as h→�.

Fig. 6 shows that unless h→�, increasing a raises the mean lifetime. If output is
not fixed, the fall in prices created by the original disturbance creates a contraction
of domestic supply which reduces the effects of the original disturbance. For
example, if h=0.1 and a=0 the mean lifetime is 1.2 years. Increasing a to 0.25 raises
the mean lifetime to 4.3 years and if a=0.5 the mean lifetime is 7.2 years. As the
value of h is increased the mean lifetime becomes less sensitive to the value of a.
The reason is that a determines the contraction in supply that occurs as the price
level falls. Raising the value of h reduces the size of the fall in the price level which
reduces the importance of a. When h→� the aggregate demand curve is horizontal
and all of the effect of a supply disturbance is concentrated in output.

The mean lifetime in the case of purely demand disturbances is;

E[T|g, r]�
(a−b)
2y3mw

�
(a+h)

2(1+af)mw
(q�p). (28)

Figs. 7 and 8 map out the change in the mean lifetime as h and a are increased.
A negative drift of 10% per year is chosen in order that the exchange rate

depreciates. Fig. 7 illustrates the effects of increasing h. As with supply disturbances
the mean lifetime is very sensitive to the value of h. If h=0.1 the mean lifetime is
1.29 years, if h=0.25 the mean is 2.9 years, 5.5 years if h=0.5 whilst if h is 1, so
that fh=1, the mean lifetime is identical to the baseline case of 10.7 years. For larger
values of h, such that fh�1, the mean lifetime exceeds the baseline case and as
h→�, demand disturbances have no effect at all. The importance of h is easiest to
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Fig. 7. E[T|r,g,mw=.1,sw=.1] and h.

Fig. 8. E[T|r,g,mw=.1,swe=.1] and a.

understand by considering the effects of a demand disturbance under a pure free
float. Under a pure free float a negative demand disturbance causes the nominal
exchange rate to depreciate until demand returns to its previous level. Demand dis-
turbances have no effect on prices and output under a floating regime. The extent
of any depreciation is determined by the value of h. The larger is h the more aggre-
gate demand increases as the nominal and real exchange rate depreciates. Thus the
larger is h the smaller is the required depreciation. Under a target zone regime a
low value of h leads to frequent interventions and a low mean lifetime.

Fig. 8 maps out the effects of increasing a. When ah�1 increasing a raises the
mean lifetime, whilst if fh�1 raising a reduces the mean lifetime. With a�0 a
negative demand disturbance will reduce both prices and output. The extent of these
falls depends on h. As the price level falls the real exchange rate depreciates which
offsets the original disturbance. That is, the value of h will determine how much
output falls relative to the price level. Given the value of a the larger is h the smaller
is the fall in the price level relative to output. The fall in the price level reduces
money demand with an elasticity of one. The fall in output reduces money demand
with an elasticity of f. With the fall in price level reducing output with elasticity of
h, it follows that the a fall in output reduces money demands by fh relative to a
fall in the price level. Thus if fh=1 the money demand effects of a demand disturb-
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Fig. 9. f[T|r,g,a=0,h=.33,sn=.1].

ance have an elasticity of unity irrespective of whether output or the price level
varies. In this case the excess money supply exactly matches the disturbance and
this defines the size of the contraction in reserves that must occur at s̄. It also defines
the response to the depreciation of s to s̄. It follows that if fh�1 raising a raises
the mean lifetime, whilst if fh�1 it reduces the mean lifetime. The fact that the
lifetime is increased when a rises modifies the above results. For instance, when
h=0.25 and a=0 the mean lifetime is 2.9 years. Raising a to 0.25 raises the mean
lifetime to 4.4 years and if a=0.5 the mean lifetime is 7.24 years.

The results illustrate that for low values of a and h the mean lifetime is signifi-
cantly reduced if the disturbances emanate from real sources. On the other hand, the
mean lifetime is significantly increased if a and h are large and the primary source
of disturbance is aggregate demand. Figs. 9 and 10 simulate the density function
for the more interesting case when a and h are low and when all types of
disturbance occurs. Specifically, it is assumed that a=0, h=1/3, mn=me=0.03333 and
mw=�0.03333. In terms of exchange rate depreciation this gives a combined real
and monetary drift of 10% per year.4

Fig. 10. f[T|r,g,a=0,h=.33,sw=.1].

4 The composite drift is mg=�23%.
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In generating Fig. 9 it is assumed that sn=0.1, whilst for Fig. 10 it is assumed
that sw=0.1. All other parameter values are as previously assumed which gives a
variance of the composite fundamental of s2

g=0.01 if sn=0.1, and s2
g=0.09 if

sw=0.1. This alters the shape of the density function in the usual way. The mean
lifetime is fairly short, around 51

2 years in both cases. The probability of collapse
within 5 years is quite high at just under 60% in both cases. However, the larger
variance associated with demand disturbances leads to a much larger probability of
short and long lifetimes in the case of sw=0.1. In particular, if sn=0.1 there is a
probability of collapse within 3 years of just 2%. For sw=0.1 there is a 30% chance
of collapse within 3 years and a 14% chance of collapse within 2 years. The prob-
ability of a lifetime over 10 years is similarly increased.

4.3. The drift-less case and other factors

Thus far the results concentrate solely on the collapse of a one-sided zone when
the fundamental exhibits a drift which pushes the exchange rate towards the upper
limit of the target zone. This means that the central bank loses reserves with a higher
probability than it gain reserves. If the fundamental is drift-less these probabilities
are equal and the lifetime will clearly be higher. The previous results regarding the
structure of the model still apply though. For example, the mean lifetime of a two-
sided process5 is given by:

E(T|g, r)�
[(g−y1r)−(a−y1p)][(b−y1q)−(g−y1r)]

s2
g

.

Choosing the parameter values to reproduce the Krugman model, as per Section
4, gives the Dumas and Svensson result that the mean lifetime is almost 120 years.
However, as with the drift case the mean lifetime is considerably lower when the
disturbance is in the real side of the economy and when the elasticity of demand to
the real exchange rate is low. For example, if sw=0.1 and h=1/2 the mean lifetime
is approximately 30 years, whilst if h=0.25 it is just 8.4 years even in the unlikely
case that the fundamental exhibits no form of drift. As with the previous results the
reason is that changing the structure of the model alters the moments of the composite
fundamental. For instance, under the Krugman structure a monetary shock of 10%
per year corresponds to a variance of 1% per year. With h=1/3 and sw=0.1 the
variance of the composite fundamental is 9% per year.

In the previous results the parameters l, g and f were held constant. The para-
meters l and g measure the elasticities of money demand and aggregate demand to
the domestic nominal interest rate. These parameters do not affect the time bought
by excess reserves but they are key determinants of the stabilizing property of the

5 See Karatzas and Shreve (1988, p. 99). In the case of a drift-less fundamental and a one-sided process
it is possible that the target zone would never collapse. Therefore, to generate a positive probability of
collapse it is necessary to consider a two-sided process, that is both collapse and abandonment.
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zone. The key feature of the target zone model is that movements in the exchange
rate create offsetting movements in the expected rate of depreciation and nominal
interest rate. A depreciation creates a falling interest rate which raises money demand
directly with an elasticity of l, and indirectly through aggregate demand with an
elasticity which increases in g. It follows that raising the values of l and g enhances
the amount of stability generated by the zone which increases the zone’s lifetime.

Fig. 11 illustrates the effects of increasing l on the time bought by the bandwidth.
The parameter values are assumed to be identical to those that were used to generate
the densities in Figs. 9 and 10. Two possible bandwidths are assumed, a narrow
zone of ±1.5% and a wide zone of ±15%. For the narrow zone the time bought by
the bandwidth is, for any realistic value of l, fairly small. The wider zone buys
approximately 1.3 years when l=1, rising to 3 years when l=10. In addition, if g is
increased the time bought by the bandwidth will be higher. For example, if l=3 and
g=0 the time bought by the bandwidth is 1.9 years; if g=1/2 this rises to 2.21 years,
2.48 years when g=1 and 3.35 years when g=5. In all cases, for the values assumed
the time bought by excess reserves is almost exactly equal to 5 years. Values of
l=3 and g=1/2 do not seem unrealistic, in which case the time bought by the band-
width amounts to over 30% of the mean lifetime.

The parameter f represents the elasticity of the transaction’s demand for money.
This parameter has been held constant at unity throughout for two reasons. Firstly,
it seems unlikely that f will be anything other than unity except perhaps in the very
short run. Secondly, it only affects the lifetime in the case of money and demand
disturbances if the aggregate supply curve is non-vertical. Again this would give the
model some undesirable long run properties. In the case of supply disturbances rais-
ing f will increase in the size of the initial excess money supply or demand which
is created. Thus raising f will lower the mean lifetime. Nonetheless it is hard to
imagine that f could take on a value which is significantly different from unity and
certainly not a value which is significantly greater.

The results of Sections 4.1 and 4.2 suggest that currency crises are at least as
likely to be triggered by real disturbances as by a monetary disturbance. However,
it is evident that the size of the real and monetary drifts might be quite different. In
particular, the traditional Krugman (1979) model of a currency crisis focuses on the

Fig. 11. Time bought the bandwidth and l.
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Fig. 12. E[T|r,g,a=0,h→�] and mn.

Fig. 13. E[T|r,g,a=0,h→�] and mw.

role of budget deficits and credit creation. The model is intended to represent a
situation in which a large and presumably growing budget deficit leads to a high
rate of credit creation and a rapid loss of reserves. In such a situation a much larger
monetary drift than 10% per year is perfectly feasible. Fig. 12 provides a plot of
the mean lifetime against the size of a monetary drift in the baseline case. Fig. 13
provides a plot of the mean lifetime against the drift in aggregate demand, assuming
that aggregate supply is fixed at the natural rate. In the case of demand disturbances
it is also assumed that either h=0.5 or h=2. Roughly speaking, increasing the size
of the drift halves the mean lifetime in the case of monetary disturbances. The same
is roughly true for demand disturbances. In addition, halving the value of h approxi-
mately halves the mean lifetime for any given size of drift in demand.

5. Conclusions

This paper extends earlier work by Dumas and Svensson which examines the
lifetime of an exchange rate target zone as a function of limited reserves. Underlying
the modelling is the assumption that implicit constraints prevent the exclusive focus
of monetary policy on the defence of the target zone. In these circumstances the
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lifetime of the target zone will depend upon the size of the reserve stock. Dumas
and Svensson find the main determinants of the lifetime to be the size of the drift
of fundamentals and the size of the reserve stock available to defend the target zone.
In Dumas and Svensson a single drift term is interpreted as a the combined degree
of real and monetary divergence. This paper uses an extended version of the target
zone model to examine how variations in the underlying fundamentals which define
this drift affect the lifetime of the target zone. The central result is that if the main
source of disturbances is the goods market the lifetime of the target zone can, under
certain circumstances, be much lower than was found by Dumas and Svensson. The
reason for this is that unlike monetary disturbances real disturbances cannot always
be offset by a one for one change in the domestic money supply. When real disturb-
ances occur their effect on the money market and lifetime varies greatly as the struc-
ture of the underlying fundamental is changed. In particular, if aggregate demand is
very unresponsive to the real exchange rate and if output is fixed at the natural rate
the expected lifetime is very low. Under these circumstances restoring equilibrium
in the goods market following a negative disturbance to aggregate demand requires
a very large depreciation of the real exchange rate. With the nominal exchange rate
bounded by the upper limit of the target zone the only way to restore equilibrium is
if the domestic price level falls by a equivalently large amount. Therefore, a demand
disturbance creates a much larger monetary disturbance and a correspondingly rapid
depletion of the reserve stock. The lifetime of the zone is low only if the elasticity
of aggregate demand to the real exchange is very low. Whilst really low values seem
implausible in the medium to long run, such low values do not seem implausible
over a short time period in which case the lifetime of the zone would indeed be
very low.

The model assumes that there are implicit constraints which prevent the exclusive
focus of monetary policy on the defence of the target zone. This corresponds to the
first generation speculative attack models originated by Krugman (1979). A later
class of models following Obstfeld (1986) have begun to make explicit these con-
straints. An interesting topic of future research would be to analyse the expected
lifetime of a target zone in these second generation speculative attack models. A
possible avenue of doing so might involve upper and lower and bounds on the move-
ment of unemployment from some initial level.
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