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This paper develops a theory and econometric method of portfolio performance measurement 
using a competitive equilibrium version of the Arbitrage Pricing Theory,. We show that the Jensen 
coefficient and the appraisal ratio of Treynor and Black are theorettcally compatible with the 
Arbitrage Pricing Theory. We construct estimators for the two performance measures using a new 
principal components technique, and describe their asymptotic distributions. The estimators are 
computationally feasible using a large number of securities. We also suggest a new approach to 
testing for the correct number of factors. 

1. Introduction 

The measurement of portfolio performance is an important practical appli- 
cation of asset pricing theory. Two popular measures of performance are the 
‘Jensen coefficient’ and Treynor and Black’s ‘appraisal ratio’. U’sing the 
Capital Asset Pricing Model (CAPM), Jensen (1968) suggests that a positive 
deviation of a portfolio’s average return from that predicted by the security 
market line (the Jensen coefficient) indicates superior performance. The ap- 
praisal ratio is a refinement of Jensen’s measure and is equal to the ratio of the 
Jensen coefficient to the amount of non-market risk undertaken by the manager. 

This paper develops analogous performance measures in an Arbitrage Pric- 
ing Theory (APT) framework by extending Connor’s (1984) equilibrium ver- 
sion of the APT to include a small set of investors with superior information. 
Estimators of the performance measures are suggested and their asymptotic 
distributions are derived. The paper shows that: 

(1) The Jensen coefficient is an appropriate indicator of superior performance 
in our equilibrium APT model. That is, an investor’s portfolio expected 

*We would like to thank Douglas Diamond, Robert Hodrick, Ravi Jagannathan. Larry Jones. 
Robert McDonald. Carol Mershon, Peter Rossi, Daniel Siegel, Sheridan Titman. and espectally the 
referee, Jay Shanken, for helpful comments. 
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return plots above the security market line if and only if he has superior 
information. 
Treynor-Black’s appraisal ratio is a valid measure of level of perfor- 
mance, after making additional preference and distributional assump- 
tions. Given that information signals are normally distributed and inves- 
tors have constant absolute risk aversion, one informed investor has a 
higher appraisal ratio than another if and only if he has an information 
set which both investors would strictly prefer. 

The two performance measures can be consistently estimated from 
observable variables. These estimators do not require that the econometri- 
cian observe all the assets in the economy. Our new estimators belong to a 

new class of beta pricing model statistics, based on the recent asymptotic 
principal components theory of Chamberlain and Rothschild (1983). 
Unlike Chamberlain and Rothschild, our procedure does not assume 
knowledge of the true covariance matrix of asset returns. 
A significant advantage of our estimators is that large numbers of 
securities can be used in estimating factor returns. Previously, it was 
common to use small subsets of securities or to group securities into 
portfolios. The former alternative reduces the precision of the estimates 
while the latter can mask the underlying factor structure. The estimators 
require only an approximate factor structure; previous APT estimation 
models generally use an exact factor structure. Normality of asset returns 
is not necessary for our procedure. 
We propose a new approach to testing whether the correct number of 
factors has been extracted. The test is asymptotically valid (as the number 
of assets approaches infinity) for both exact and approximate factor 
structures. 

Section 2 presents the definitions and assumptions of the model and extends 
the pricing theory of Connor to an economy in which a small number of 
investors have superior information. In section 3 we prove the validity of the 
two portfolio performance measures in the model. Section 4 describes con- 
sistent estimators for the two performance measures and their asymptotic 
distributions. Section 5 provides a summary of our results and a brief descrip- 
tion of possible improvements, extensions, and applications of the model. The 
appendix contains the proofs. In a future paper we will evaluate the perfor- 
mance of a sample of mutual funds with the techniques derived here. 

2. The pricing model 

This section extends the pricing theory presented in Connor to permit a 
small number of investors with superior information. Since the number of 
informed investors is ‘very small’ (infinitesimal) relative to the total number, 
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these investors have no impact on competitive equilibrium prices. This sim- 

plifies the analysis by eliminating the rational inferences that uninformed 
investors would try to make about the information set of informed investors by 
observing equilibrium prices. 

The pricing theory is a direct application of the competitive equilibrium 
version of Ross’s AFT derived in Connor. In the model, there exists a 
countable infinity of assets whose unconditional per dollar returns follow an 
approximate factor model:’ 

7, = p, + b,,f; + b,,f; + . . . + brkfk + 2,. i=1,2,3 ,..., (1) 

or, in vector notation: i: = p + Bf+ Z. We impose E[ 51 = 0, E[IE,] = 0, and 
E[ JE,] = 0, for all i, j. An exact factor model requires V = E[G?] to be diagonal 
with bounded diagonal,elements, whereas an approximate factor model allows 
V to have a non-diagonal form and requires bounded eigenvalues. By judicious 
choice of B, we normalize the factors p to give E[ff] = Ik, where I, is the 
k x k identity matrix. Define B* = (p, B). The matrices B and B* will be 
restricted to have full column rank. 

We assume that k, the number of factors, is known. (We will discuss a test 
for the appropriate number of factors later in the paper.) 

A portfolio CI is a linear functional on R”. Unless noted otherwise, portfolios 
are assumed to have unit cost (i.e., a’e = 1, where e is an R” vector of ones). 
The product of a portfolio with the vector of asset returns is the portfolio 
return. The set of portfolios is restricted to those linear functionals which have 
a finite mean-squared return, and this mean-square defines a norm on the 
space of portfolios.* Any portfolio (Y which entirely eliminates idiosyncratic 
risk, that is, in which E[(&)‘] = 0, is called well diuersi$ed. 

The market portfolio, m, is the per-capita supply of assets held by the 
uninformed investors. The informed investors can be ignored in constructing 
the market portfolio since they constitute a set of measure zero. 

Expected returns are beta linear if there exists a scalar y0 and k-vector y 
such that 

p = yoe + By. (2) 

The model places restrictions on the special information of informed inves- 
tors. Informed investors have superior information about asset-specific events 

‘A tilda (-) is used to denote random variables. Sample values of random variables are shown 
without tildas. Asset returns are denoted by ?, while asset excess returns (i.e., returns in excess of 
the riskless return) are denoted by R. 

2The norm is given by ]]a]]* = E[(a’r)‘]‘/*. Using this norm creates equivalence classes 
containing all linear functionals whose difference in return is uniformly zero. That is, if a and p 
are such that q(cr’r - p’r)2] = 0, then a = p. 
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only; no investor has special information about market-wide events. For 
simplicity (this assumption can be weakened with only minor changes to the 
analysis), each informed investor has special information about one asset. The 
informed investors are indexed by the asset about which they have special 
information. Informed investor i receives a signal s, about the return of asset i. 
The conditional distribution of E, obeys 

IE, = YJ, + 3,) 

;i, independent of i,, 

E,[ij,l = 0, 
(3) 

q), ’ 0, a,, > 0. 

We use E[ ] to denote the unconditional (uninformed) expectation and E,[ ] 
to denote the conditional expectation after an informed investor i receives a 
signal. The public information is assumed to be consistent with the signals 
under iterated expectations, so that E[7,] = pi implies E[3,] = 0. 

Summarizing the assumptions of the model: 

Assumption 1. There exists an uncountable infinity of each of N types of 
uninformed investors and a countable infinity of informed investors, all of 
whom have risk-averse von Neumann-Morgenstern utility functions. 

Assumption 2. There exists a countable infinity of risky assets with bounded 
variances whose unconditional per-dollar returns obey the approximate factor 
model (1). 

Assumption 3. Informed investor i receives a signal 5, which is independent 
of f and Z,, j f i, and which obeys (3). 

Assumption 4. E[Z]f] = 0 and E[ZG’]f] = I’. 

Assumption 5. E[( m’E)2] = 0. 

Let B*” denote the first n rows of B*, and let V” denote the first n rows and 
n columns of V. Throughout the paper, ]I ]I denotes the L2-norm.3 

Assumption 6. There exists a cr < cc such that IJ((l/n)B*“‘B*“)P’II I cl for 
all n. 

3Given X is a square matrix, then llXj\ = max grg_ l(g’Xgl. For symmetric, positive semi-definite 
matrices, the L2-norm equals the largest eigenvalue of the matrix. 
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Assumption 7. There exists a c2 < cc such that 111/“11 I c2 for all n. 

Assumptions 1-3 are self-explanatory. Assumption 4 guarantees that the 
idiosyncratic risks are ‘increasing risk’ in the Rothschild-Stiglitz sense, and 
that the idiosyncratic returns are conditionally homoskedastic. Assumption 5 
states that the market portfolio is well-diversified. Assumption 6 guarantees 
that the market factors are pervasive forces in the economy, that is, each 
market factor affects many assets non-negligibly. Assumption 7 comes from 
Chamberlain (1983) and is symmetric to Assumption 6; it guarantees that the 
idiosyncratic risks are non-pervasive, so that they disappear from a portfolio 
with weights spread evenly across the assets [see Chamberlain (1983, theorem 

3)l. 
Connor uses assumptions similar to those above except that all investors are 

uninformed. That paper uses a competitive equilibrium argument to show that 
all investors hold well-diversified portfolios. It is also shown that the expected 
returns of assets are beta linear. Theorem 1 below is an application of Connor. 

A competitive equilibrium consists of a set of portfolios for the N types of 
uninformed investors { /3’, /3*, . . . , /?“) and a set of portfolios for the informed 
investors { J, (Y*, a3,. . . } such that the portfolios are budget-constrained opti- 
mal for every i, j, and supply equals demand: 

(~‘~argmaxE,[u’(w,a”r’)], i= 1,2 ,...1 

pIEargmaxE[uJ(w,,B”i:)], j=1,2 ,..., N, 

m = f (w,/W)P’, 
/=I 

where w,, wJ are initial wealth levels, and W = C~=,w,. 

Theorem 1. In competitive equilibrium, unconditional expected returns are beta 
linear and all uninformed investors hold well-diversified portfolios. (All proofs are 
presented in the appendix). 

A portfolio (Y has a long position (short position) in asset i as (Y’z’ > 0 (< 0), 
where z’ is a vector with a one in the i th place and zeros elsewhere. Note that 
any well-diversified portfolio S has a zero position in each individual asset i 

(6’~’ = 0). Informed investors do not necessarily choose well-diversified port- 
folios. The following theorem partially describes their optimal choices. 

Theorem 2. Informed investor i holds an equilibrium portfolio with a long 
(short) position in asset i if and only if s, is strictly positive (strict& negative). 
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3. Performance measurement in the model 

This section shows that the Jensen coefficient is a valid indicator of superior 
performance for this beta pricing model: an investor’s portfolio return will 
have a positive Jensen coefficient if and only if he has superior information. 
Furthermore, Treynor-Black’s appraisal ratio is also valid and is more precise 
than Jensen’s measure; it balances the gain from exploiting special information 
against the risk of holding a non-diversified portfolio. Under additional 
assumptions, the appraisal ratio gives a complete ordering of the values of 
information sets. 

Define a portfolio rule a( ) as a mapping from signals s, to portfoljos (Y. 
Since a( ) is conditioned on s,, it is possible that E[ (Y(S;)‘“E] > 0 even though 
E[IE] = 0. These expectations will be given the usual statistical time series 
interpretations. We assume that the economy is repeated many times with 
independent realizations of the random variates, and investor i uses the 
portfolio rule a( ) each period. The sample arithmetic mean return for investor 
i will approach E[ (Y(S;)‘~] as the number of time series observations grows 
large. We seek to measure the difference between this expected return and the 
expected return to passive (i.e., uninformed) portfolios with the same amount 
of market risk. 

We define the Jensen coeficient for the ith investor as u, = E[cy( s’,)‘Z], which 
is the APT analog of the CAPM-based performance measure suggested by 
Jensen. We can describe the Jensen coefficient in the form of a ‘security market 
line’ (in our multi-beta model, a security market hyperplane). If there exists a 
riskless asset or portfolio with return yO, then combining (1) and (2) we can 

write 

(4) 

which expresses (2) in terms of ‘excess returns’ (returns above the riskless rate). 
If an investor is uninformed, then the conditional expected excess return on 
every asset given the market factor returns will be the beta vector of the asset 
times the excess return on the market factors. Using (4), the excess return of a 
portfolio rule a(S), 2, = ar(S)‘R is 

k, = a, + b,(y +f) + E,, 

where 

b,=E[a(Z)‘B], ~,=E[oL(sI)‘E], 

and 

K% =a(?)'&a,+(~@)'&b&t?). 
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For an uninformed investor, a, is zero. We also prove the converse for an 

informed investor. 

Theorem 3. An investor’s equilibrium portfolio rule has a positive Jensen 

coefficient (a, > 0) if and only if he is informed. 

An analogous result in a mean-variance framework is derived in Dybvig and 
Ross (1984, theorem 2). They assume that informed investors receive informa- 
tion about two or more assets such that the signals cancel out and, therefore, 
give no information about the return on the market portfolio.4 This is 
equivalent to our assumption of asset-specific information in an economy with 
a large number of assets. They show that an investor who chooses conditional 
mean-variance efficient portfolios will exhibit a positive Jensen coefficient. 

Theorem 3 shows that the Jensen coefficient is appropriate for comparing a 
portfolio’s performance against an absolute benchmark of ‘no superior perfor- 
mance’. However, it is not appropriate for relative rankings of portfolios since 

differences in a, may be due merely to differences in risk exposure (for 
example, differences caused by levering the same underlying portfolio rule). A 
performance measure that allows relative ranking is the Treynor-Black ap- 
praisal ratio. It is valid in this model under the assumptions that investors have 
constant absolute risk aversion and that the joint distribution of idiosyncratic 
risk and information signals is multivariate normal. Recall that E, = ?j, + $, for 
all i. 

Assumption 8. Ci, S,, i = 1,2,. . . , are normal and 5,, s’, are independent for 
each i. 

Assumption 9. All investors have constant absolute risk aversion. 

Define the t-ratio as the Jensen coefficient divided by the standard deviation 
of the portfolio’s idiosyncratic variation: 

The t-ratio is the APT analog of the appraisal ratio that Treynor and Black 
suggest for a CAPM model. Given constant absolute risk-averse preferences, 
all investors have t-ratios equal to ~,,/a,,~. Since these normally distributed 
signals are completely characterized by this ratio, the t-ratio gives a complete 
ordering of the superior information of informed investors. The following 
theorem codifies these ideas. 

4An example of non-market information, suggested in Dybvig and Ross (1984), is knowledge 
about which of two firms will win a lawsuit. Since the unexpected gain to one firm equals the 
unexpected loss to the other firm the net effect on the market portfolio return is zero. 

JFE 0 
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Theorem 4. Assume Assumptions 8 and 9 in addition to Assumptions 1-7. 
Consider two informed investors i and j. The investors may have difSering wealth 
levels and coeficients of absolute risk aversion. Ex-ante, investor j would strictly 
prefer to trade his signal for the signal of investor i if and only if t,, > t,,. 

To apply this theory to the measurement of mutual fund performance, we 
assume that fund managers act to maximize the expected utility of their clients. 
Although the model is stated in terms of one actively managed asset position, it 
is simple to generalize the results to a more realistic environment where a 
mutual fund manager follows many securities. We have assumed that the 
informed trader only receives asset-specific information. This precludes infor- 
mation about the realizations of the k factors. Hence market timing (or ‘factor 
timing’) activities are not included in the model. The assumption of no market 
timing ability may be justified on the basis of empirical evidence. Chang and 
Lewellen (1984), Henriksson (1984) and Kon (1983) do not find evidence 
consistent with positive timing performance of mutual funds. 

4. A new class of estimators 

In section 3, we developed a general equilibrium model which produces a 
multi-beta extension of Jensen’s and Treynor and Black’s measures of perfor- 
mance. Now we describe an econometric procedure to estimate these measures 
with asset return data. 

Recalling eq. (5), we can write 

&, = a, + b,(y +f) + Za. (6) 

Given the independence of Sj and r, and the assumption that E[Z(f] = 0, it 
follows’ that E[IE,] f ] = 0. Therefore, we can consistently estimate the coeffi- 
cients a, and b, in (6) by ordinary least squares if we observe y + f. If we also 
assume that u,~ does not depend upon f (conditional homoskedasticity6), then 
the usual techniques may be used to compute standard errors for the estimated 
coefficients. 

‘Note that E[a(S)‘Bf]f] = E[cr(S)‘B]f= b,f and the result follows easily. 

‘Despite the assumption of conditional homoskedasticity of the asset’s idiosyncratic variates 
(Assumption 4) the idiosyncratic variate of a managed portfolio can be heteroskedastic, due to the 
term (a(S)‘E - b,)( f+ y) included in 2,. The usual standard error estimates require conditional 
homoskedasticity. 

One solution is to assume constant absolute risk aversion, in which case a(S)‘B is constant for 
all s as shown in the proof of Theorem 4. In this case, the offensive term disappears from E, and it 
is homoskedastic. Alternatively, one can estimate the standard errors allowing for the conditional 
heteroskedasticity of E,. Using Hsieh’s (1983) procedure, the covariance matrix of the parameter 
estimates can be easily adjusted. 
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Two main difficulties confront us in estimating (6). First, in order to test any 

hypotheses about a, and t, we must rely on asymptotic results (as T + co) 
because the error terms in the above regression need not be normal even if we 
assume that the factors and idiosyncratic terms have a multivariate normal 
distribution. The returns on a managed portfolio are the product of the 
portfolio rule a(:,) and the returns on assets. These portfolio returns need not 
be normal even if individual asset returns are normal.’ 

The second, and more consequential, difficulty is that we do not observe the 
k market factors. To handle this problem, we develop asymptotic principal 
components estimators based on the recent work of Chamberlain and 
Rothschild. The asymptotic principal components theory is similar to standard 
principal components theory except that it uses statistical approximations 
which are valid as the number of cross-sectional observations grows large. 

Our technique assumes that we observe a large collection of asset returns 
from the economy. We show that the sample principal components of the 
excess returns on the n observed assets converge to the realized k market 
factors as n grows large. Thus, our performance measurement procedures 
require that both n and T be large. As n grows large, we can approximate the 
realized k market factors with negligible error; as T grows large, we obtain 
consistent and asymptotically normal least squares estimates of the parameters 
in (6).’ 

For simplicity of notation, we suppress the T superscript when it is not 
needed. Let R be the cc X T matrix of realizations of the excess returns. We 
observe R”, which is the n x T matrix of excess returns on the first n assets. 
We show that our statistics based on R” converge to statistics based on R as n 
approaches infinity. 

Recalling (4), we can write R” = B”F + E”, where F contains the k X T 
realized values of y +f in the sample and &n contains the n x T realized values 

‘As an example, take the case discussed in section 3 where it was assumed that signals and 
idiosyncratic risks are multivariate normal (Assumption 8) and investors have constant absolute 
risk aversion (Assumption 9). In this example, the errors in the regression of portfolio returns on 
market factor excess returns have a distribution that is a mixture of normal distribution with a 
gamma distribution. That is, each period the errors are drawn from a normal distribution ivhose 
variance is drawn from a gamma distribution: 

~(o’)=exp(-o~/$)/(rr(r~$)~‘~ where $=2o~/o~Af. 

This is a rather complicated distribution. Its characteristic function is given by 

$J(r) = (1+ $t2/2)-t’2. 

Different assumptions about the utility functions of investors will lead to different distributions of 
the error terms. However, as long as the portfolio rule is such that the errors are independent with 
finite variance we can rely on the asymptotic distributions of ir, and Fe. 

‘The use of the asymptotic distribution, for T large, does not require that we assume constancy 
of the factor structure over time. It is possible to use the principal components technique to extract 
excess returns on market factors over subperiods. A switching regression can then be employed to 
estimate a, while allowing b, to change across subperiods. 
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of 2’. Define 

0” = (l/n)R”‘R”, 

A” = (l/n)F’B”‘B”P, 

Y” = (l/n)( F’B”‘&” + &“‘B”F), 

z” = (l/n)E”‘&“. 

The observable matrix P’ is the TX T cross-product matrix of asset excess 
returns. The unobservable matrix A” is a TX T cross-product matrix of factor 
related returns. Note that 9” = A” + Z” + Y”. 

Our estimation strategy basically works as follows. We would like to run the 
following regression: 

R, = c;,e;+ &F+ g,, (7) 

where R, is the T-vector of returns on portfolio (Y, and eT is a T-element unit 
vector. We cannot run (7) because we cannot observe F. We use a proxy for F 

consisting of the first k eigenvectors of 9”. We show that this proxy gives 
asymptotically identical estimates (as n + co) to those obtained if we were able 
to use the unobservable F. 

For any symmetric positive semi-definite T x T matrix X, let the principal 
components matrix be the orthogonal k X T matrix of the k eigenvectors of X 
corresponding to the k largest eigenvalues. We normalize the rows of the 
principal components matrix to have mean-square of 1. If J is the principal 
components matrix of X and A, is the diagonal matrix of the corresponding 

eigenvalues, then by definition: 

JX=A,J and (l/T)JJ’= Ik. 

Let G” denote the (observed) principal components matrix of 9” and H” 
the (unobserved) principal components matrix of A”. Let A: and A’, be the 
matrices of corresponding eigenvalues. One can show that H” is a non-singu- 
lar linear transformation of F. That is, there exists a non-singular k x k 
transformation En such that z”F = H”. 

Lemma 1. For every n, there exists a non-singular k X k matrix En such that 
H” = z”F. 

Temporarily assume that we can observe H”, and consider the regression (7) 
using H” in place of F. Let c?: and 2: be the estimates from this hypothetical 
regression, and define iz = 2:/S,‘,. Although our original regression equation 
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used F, replacing F with H” has no effect on the estimates. The reader can 

check, using equations (7.18) and (7.23) in Theil (1971, pp. 39-41) that the 
non-singular z” disappears from the least squares estimates of Liz and .?z. This 
is intuitively clear: a non-singular k x k transformation is merely a ‘resealing’ 
of the independent variables, and so will not affect the estimated intercept term 
or residuals. After adjusting for this non-singular linear transformation, the 
following theorem is the well-known result about the asymptotic normality of 
ordinary least squares estimates. 

Theorem 5. Given Assumptions I - 7, 

dlimT”2(Ci~--(In)-N(0,u~(1+~‘~)), 
T-+03 

dlim T’/*( r^,‘- fa) - N(O,l + y’y), 
TdCC 

(8) 

(9) 

where dlim denotes convergence in distributiorr. 

Next, we prove that G” is approximately equal to a non-singular k x k 
transformation of F. We need an additional assumption. 

Assumption IO. There exists an average cross-sectional idiosyncratic variance, 

a2 = plim (l/n).E”V. 
n-m 

Intuitively, the proof of the next theorem works as follows. We wish to show 
that G” (the principal components matrix of s2”) is approximately equal to a 
non-singular transformation of F. We have shown that 25” (the principal 
components matrix of A”) is a non-singular transformation of F. We have 
9” = A” + 2” + Y “. It should be clear that the matrix Y n goes to a zero matrix 
with n. The matrix Z” consists of the time autocovariance of idiosyncratic 
variates. The cross-terms and the diagonal terms of this matrix are, respec- 
tively, of the form 

O/n) 5 ‘it&,, and (l/n) t ET*,. 
i=l r=l 

In Lemma 3 we show that the off-diagonal terms go to zero with n, and the 
diagonal terms approach u*. This implies that Z” goes to u 21T for large n. 
Therefore, for large n, 9” is approximately equal to A” + u2Z,. The eigenvec- 
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tors of a matrix are unaffected by the addition of a scalar matrix. Therefore, 
for large n, G” is approximately equal to H” (up to a non-singular transforma- 
tion). Since H” is a non-singular transformation of F, G” is approximately a 
non-singular transformation of F. 

Theorem 6. Given Assumptions l-7 and 10, there exists @” and non-singular 

L” such that G” = L”F + @” and plim.,,@” = 0, the null matrix. 

Consider running regression (7) using the observable G” in place of the 
unobservable H”. Let ciz’ and i,“’ be the values calculated from this regres- 
sion. We combine Theorems 5 and 6 to derive the asymptotic distributions of 
these observable estimates. 

Corollary 1. Given Assumptions 1-7 and 10, 

dlim plim T112( i?zT- a,) - N(0, a:(1 + f-y)), 
T+cc ,,drn 

00) 

and 

dlim plim T1j2( i,“‘- ta) - N(O,l + y’y). 
T-+m n+oo 

Note that, for finite n, the use of G” rather than F in (7) corresponds to a 
regression with errors in variables. Thus the coefficient estimates are biased. 
However, Corollary 1 shows that this bias disappears as n becomes large. The 
mean square error of the parameter estimates will be equal to the sum of the 
squared bias and the variance of the parameter estimates. The usual computa- 
tion of the standard errors of the parameter estimates will approach the second 
component. Thus, for finite n the usual reported standard errors will under- 
state the mean square error by the bias squared. Monte Carlo simulation may 
provide an indication of the size of n required for our approximation to be 
reasonable. 

To summarize the results of this section, we present an algorithm for testing 
the performance of a mutual fund. Suppose one observes a T-vector of excess 
returns on a mutual fund, R,, and a n X T matrix of excess returns on a large 
collection of securities R”. To test the performance of the fund: 

(1) Compute a k x T principal components matrix of (l/n)R”‘R”. There are 
many efficient routines for performing this calculation. 

(2) Run the time series regression R, = ci, + iaG” + 2,. Also calculate i, = 

fi ,/&I. 
(3) For large n and T, the statistics 8zT and t^,“’ approximately have the 

distributions given by (10) and (11). 
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The algorithm works with the time-series cross-product matrix of excess 
returns. For most time period/cross-sectional samples, the time-series matrix 
has a much smaller dimension than the corresponding cross-sectional cross- 
product matrix used by standard factor analysis routines. Furthermore, the 
algorithm calculates the principal components (eigenvectors) of this matrix, 
which is computationally much easier than calculating factor variates for a 
matrix of equal dimension. 

This algorithm tests the performance of a single fund. Our pricing model 
allows multiple informed portfolio holders. One can easily adjust the statistics 
of Corollary 1 to perform tests against a collection of estimates; for instance, 
to test whether all of the true Jensen coefficients equal zero. 

The results of this section also provide a new approach to testing the 
assumption that the correct number of factors has been extracted. We have 
shown that plim”,, (0” - A”) = a2Z,. To test for an approximate factor 
structure with k factors, one can check whether the last T - k eigenvalues of 
9” are equal.’ This promising approach to finding the value of k is investi- 
gated further in Connor and Korajczyk (1985). 

5. Summary 

The Capital Asset Pricing Model (CAPM) has played a central role in 
performance evaluation by providing a benchmark against which actively 
managed portfolios can be compared. Two of the most influential applications 
of the CAPM to performance evaluation are the Jensen coefficient and Treynor 
and Black’s appraisal ratio. However, the use of these CAPM-based measures 
has been called into question on the basis of a number of theoretical considera- 
tions and empirical findings. A major criticism is based on the infeasibility of 
observing the true market portfolio. 

We propose performance measures based on an equilibrium version of the 
Arbitrage Pricing Theory. We derive APT analogs for both Jensen’s measure 
and the Treynor-Black measure, prove their theoretical compatibility with the 
model, and develop consistent estimators for the performance measures. 

‘Given that X is a positive semi-definite matrix of rank h, let eig( X) denote the h-vector of the 
eigenvalues of X ordered from largest to smallest. Note that A” is positive semi-definite with rank 
k and its smallest eigenvalue is bounded above zero (let c, denote this bound). The scalar matrix 
CJ’I~ has T eigenvalues all equal to u*. It follows that 

eig,(A”+021T)=eig,(A”)+a2, jsk, 

2, T>j> k. 

Since eig, (A”) r cj > 0 for all n and the eigenvalues of the plim equal the plim of the eigenvalues. 
we have 

plim[eig,(P-eig,+,(I2”)]>0, plim[eigk+l(P)~eigr(P)]=O. 
,I - CC II-U2 
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In this model an investor’s portfolio return has a positive Jensen coefficient 
on average if and only if he has superior information. Using added assump- 
tions, Treynor and Black’s appraisal ratio has an even stronger justification. 
We show that one investor has a higher appraisal ratio than another if and 
only if he has a strictly preferable information set. 

We derive consistent estimators for the two performance measures, and 
show their asymptotic distributions. These estimators are an extension of the 
asymptotic principal components technique of Chamberlain and Rothschild. 
The asymptotic principal components theory is similar to standard principal 
components analysis except that it uses approximations which hold as the 
number of cross-sections becomes large. 

The technique requires only an approximate factor structure, whereas previ- 
ous APT estimation algorithms have assumed an exact factor structure. Our 
statistical technique does not assume normally distributed returns, as do 
previous APT estimation techniques. The method is computationally efficient 
and therefore does not require that the analyst form portfolios or otherwise 
restrict the number of securities under consideration. We feel that this is a 
significant advantage since much of the debate about the applicability of the 
APT has revolved around the questions of whether current techniques provide 
‘good’ estimates of the model’s parameters [e.g., Dhrymes et al. (1984) and 
Roll and Ross (1984)]. Some ambiguity remains with our APT-based approach 
since uncertainty about the true number of pervasive factors replaces the 
uncertainty about the return on the true market portfolio in CAPM-based 
measures [see Shanken (1982,1985)]. However, we can test the assumption that 
the true number of pervasive factors is equal to k by investigating the last 
T - k eigenvalues of L?“, even when the economy only follows an approximate 

factor structure. That is, the last T - k eigenvalues of 9” approach a2 as n 
becomes large. Since our technique allows the use of large numbers of 
securities, reliance on asymptotic results is not unreasonable. 

Additional work could take several directions. Our asymptotic results in- 
volve n approaching infinity before T is allowed to become large. This does 
correspond to a common case in finance in which many more cross-sections are 
available than time series observations. Ideally we would like to allow n and T 
to grow simultaneously (possibly with their ratio approaching some limit). We 
know of no straightforward technique for solving this problem and leave it for 
future endeavors. 

We have ignored the delegated management problem by assuming that 
mutual fund managers act completely in the interest of their clients. One might 
wish to modify this assumption, or give a competitive entry model which 
justifies it. We have eliminated the problem of rational price inference by 
treating the informed investors as a set of measure zero. It may be possible to 
extend the analysis to permit truly heterogeneous information. [See Admati 
and Ross (1985) for discussion of this problem in a CAPM context.] 
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Further research will include estimation of the model. In a subsequent 

paper, we intend to apply the measures derived here to the evaluation of 
open-ended mutual funds. Also, we plan to use this analytical framework to 
perform tests of the APT’. Individual assets or constant composition portfolios 
should have Jensen coefficients equal to zero if the APT is valid. Thus a direct 
test of the APT, in our framework, is a test for zero abnormal performance 
across assets or constant composition portfolios. These future papers will treat 
a number of remaining empirical and econometric issues. 

Appendix 

This appendix gives the proofs of the theorems. 

Proof of Theorem 1. Since the informed investors have no effect on prices or 
supply clearing, the proof of this theorem is identical to Connor’s Theorems 2 
and 3. We will show that Assumptions 1, 2, and 4-7 of our paper imply 
Assumptions l*-6* used there. Assumptions l*-4* are identical to Assump- 
tions 1, 2, 4 and 5. We must show that Assumptions 6 and 7 imply Assump- 
tions 5 * and 6 *. 

Assumption 5 *. For any portfolio (Y there exists a factor-equivalent (i.e., 
a’B* = 6’B*) well-diversified portfolio 6, where S is not subject to the unit cost 

constraint. 

Assumption 6 *. There exists a riskless portfolio. 

Consider an arbitrary portfolio a. Construct the n-vector 8” = 
B*“( B*“‘B*n)-l(a’B*)‘. Next, construct the portfolio represented by the 

portfolio weights 6 *” = (8 “, 0, 0, 0, . . . ). Consider the portfolio 6 = lim n _ _,8 *n. 
It is easy to show (following Connor’s Lemma 3) that this limit exists and that 
the resulting portfolio has the properties E[(&%)*] = 0 and 6’B* = dB*. This 
proves Assumption 5*. Next, consider any ‘zero beta’ portfolio CQ, i.e., 
abB=(O,O,..., 0); such a portfolio exists since B has full column rank by 
assumption. Construct a well-diversified portfolio 6 which is factor-equivalent 

to CQ. Note that the portfolio is riskless. This proves Assumption 6*. Theorem 
1 of this paper then follows from Theorems 2 and 3 of Connor. 

It should be noted that, given Theorem 1, factor-equivalent portfolios have 
equal cost [as is easy to show using (2)]. A portfolio which is factor-equivalent 
to a unit cost portfolio will have unit cost; a portfolio which is factor-equiv- 
alent to a zero cost portfolio will have zero cost. 

Proof of Theorem 2. Let (Y be the equilibrium portfolio of investor i. Con- 
struct a well-diversified portfolio 6 which is factor-equivalent to 01. Thus: 
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a’? = 67 + CU’Z. Since E[“E]f] = 0, the portfolio 6 is strictly preferred to OL for 
any risk-averse preferences unless E,[&] > 0 or E,[(&)2] = 0. The budget- 
optimality of (Y ensures that one of these two conditions holds. Since E,[E,] = 0, 
j f i, we know that E,[&] > 0 if and only if (a’z’)s, > 0. We have shown that 
( (Y’z’)s, 2 0 and that fl(a’Z)*] > 0 implies (‘Y’z’)s, > 0. 

The last step is to show that the inequality (a’z’)s, 2 0 is strict when s, # 0. 
Suppose that E[( &)2] = 0 when s, # 0. Construct a well-diversified portfolio $I 
which has the same factor risk and unconditional expected payoff as asset i: 

$‘B* = z”B*, E[($5)2] = 0. 

Construct the costless portfolio 9 = I’ - $. The portfolio n has a random 
return of ?i - $7 = El. Consider adding a small increment of n to the investor’s 
equilibrium portfolio (Y. By the budget-optimality of (Y, the marginal effect on 

expected utility must be zero: 

(d/dx)Ei[u(&T+x&)] =0 at x=0. 02) 

Solving for the derivative in (12), 

ZZ s,E, [ u’( a?)] f 0, a contradiction. 

Proof of Theorem 3. If an investor j is uninformed, then he cannot condition 
on any information more precise than the public information set, E[Z] = 0, and 
therefore E[a$“E] = 0. If an investor i is informed, then by Assumptions 3 and 4, 
E[cyj($,)‘Z] = Qaj(s”i)‘z’?r]. By Theorem 2, (Y~(s,)‘z’s, > 0 whenever s, # 0; 

therefore E[ ?f] # 0 implies E[( ai(S,)‘z’)S,] > 0. 

Proof of Theorem 4. First we show that t, = u,Ju,~. Consider the portfolio 
choice problem of the investor given an observed signal s,, 

,I:: E, [ -exp( -A,w,( a’B*f”* + a?))], 03) 

where A,_> 0 is the coefficient of absolute risk aversion of investor i and 
r*’ = (1, f ‘). Using the mean independence of “E given f, (13) is equivalent to 

mt;E[ -exp( -A,wicr’B*f”*)]Ei[ -exp( --A,w,oL’“F)]. 04) 

For any portfolio (Y there exists a portfolio 8 and a zero-cost portfolio /3 such 
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that cw’r” = S’B*f* + /3” E. Hence the second multiplicative term in (14) is not 

subject to the cost constraint and an unconstrained subproblem of (14) is 

rn? E, [ - exp( -A,w,P%)] . (15) 

Note that (14)-(15) and the independence of s, and f imply that a(s)‘B = b, 

for all s. That is, the factor risk of the portfolio is constant. By Assumptions 4 
and 8, 5-,, h = 1,2,. . , are independent variates and all except Z, have zero 
mean. Applying Jensen’s inequality, the optimal /? for (15) will have B’E = 
( P’z’)E,. Define 0 = p’z’ and rewrite (15) as 

m;xE, [ -exp( -A,w,e(s, + ii,>)]. (16) 

Applying the formula for the mean of a lognormal random variate to (16) and 
setting the derivative equal to zero, we get a necessary and sufficient first-order 
condition : 

We have shown that the return on the optimal portfolio LY(.s,)‘I. can be written 
in the form (Y(s,)‘T = 6’B*f* + (s,/uv~Aiwj)(s, + ql). Therefore, (Y(s,)‘E = 
(s/u?: w, A,)(s, + 17,) and computing t, (using the mean-zero normal property 
E[ s”p ] = 3~7:) gives t, = ~_~,/a,,. 

Next we show that t,, > t,, if and only if investor i would ex ante prefer to 
observe s, instead of s,. Since t, does not depend upon A, or w,, this holds if 
unconditional expected utility is increasing in ta. Since, as shown above, the 
optimal portfolio cy(s,) is separable into 6 and f?(s,) where 6 does not depend 
on s,, expected utility is proportional to 

E[ g”:E, [-exP(-A,w,@(~,)(~, + ii))I]. 
‘8 

Using the optimal rule for tY(s,), 

= E(E<[ -exp( -(S:+S,ij,)/ui)l). 

Bringing a term which does not depend upon 9, outside of E,[ 1, 

= E[ -exp( -s”:/c$E,[exp( -z;ii,/u;)])]. 
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Calculating the expectation over vi, 

= E[ -exp( -Sf/cr; - :$/ei)]. 

Combining terms and writing each side in terms of a standard normal random 
variate Z, 

= E[ -exp( - :~*e~/e~)] = - (jr,2 + I)-“~, 

which is an increasing function of t,. 

Proof of Lemma 1. By the definition of A”, we have (l/n)FfB”‘B”F = A”. 
Together with the definition of the principal components matrix this gives 

(l/n) F’B”‘B”FH” = H”‘A,. 

Postmultiplying both sides of (17) by n( FH”‘)-‘( B”‘B”)-’ gives 

(17) 

F’= Hn’~AH(FHn’)-l(Bn’B”)-l. 

This completes the proof, except that we must verify that (FH”‘) is non-singu- 
lar, so that its inverse exists. This follows from (17). Both F and H”‘A H have 
rank k. The k X k matrix (FH”‘) must have rank k; otherwise the left-hand 
side of (17) will have rank strictly less than k. 

Proof of Theorem 5. By Lemma 1 we have that 

R, = a, + b:H” + E,, 

where H” is a rotation of the original factors (H” = z”F) and b, is the inverse 
rotation of the original factor loadings of the portfolio. By assumption, Zut is 
independently distributed through time with finite second moment. Let QH 
denote the limit (as T -+ co) of the cross-product matrix of the independent 
variables (including the unit vector) divided by T, 

QH = T’im (l/T) 

Under these conditions we have [see Schmidt (1976, theorem 5, p. 60)] 

dlim T’/‘( ii%- a,) = N(0, o,‘,Qi), 
T+W2 
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where QE E the (1,l) element of 9;‘. A consistent estimate of QE can be 

obtained from the (1,l) element of Q;‘, where QH is the sample cross-product 
matrix. Applying the formula for the inverse of a partitioned matrix [Theil 

(1971, p. 18)] we can show that QH - l1 - 1 + y’y. The details are not presented 

here. 
Thus, 

dlim T1/‘(Ciz- a 
T-00 

a) = N(0, o,z,(L + Y’Y)). 

To show the limiting distribution of the t-ratio note that &Et converges in 
probability to u,~ [by Proposition 1 of Schmidt (1976, p. 55)]. Since T’/2(riz - 
a,) converges in distribution to N(0, u,‘,(l + y’y)) and 6,: in probability to u,~, 
then T1’2(iz - t,) converges in distribution to N(0, 1 + y’y) [see Rao (1973, 
p. 122)]. 

Before proving Theorem 6 we need two lemmas. Since the results are 
technical, we relegate the proofs to an unpublished appendix which is available 
from the authors. 

Lemma 2. Let A” and 52” be (non-random) sequences of positive semi-definite 
T x T matrices with rank equal to k and greater than or equal to k, respectively. 

Dejine G”, A’& H”, A$, to be the principal components matrices and associated 
eigenvalue matrices of s2”, A”, respectively. Define W” = 52” - A” and assume 
that lim ,,_,,]]W” - u21,j] = 0 and there exists cg < 00 such that I/(YI; - 
u~Z,)~'I~ < c3 for all n. Then G”= L”H”+ @“, where L” = (A%- u2Zk))’ 

X (l/T)G”H”‘A”nH” and lim, ,m@n = 0. 

Lemma 3. Define W” = 9” - A”. Given Assumptions 1- 7 and IO, 

plim(]W” - u2ZTll = 0, 
n-CC 

and 

,!~~prob(ll(A”,-~‘l,)-~11>c,) =0 forsome cg< co. 

Proof of Theorem 6. By Lemma 2 we know that for any two sequences of 
non-random matrices s2”, A”, with lim ,,,,llD”-A”-u2Z,/J=0 and Ij(A",- 
u~Z~)~~/I -c cj, for all n, we have G”= L”H”+ @“, where lim._,@“=O. We 
must convert this limit on fixed matrices into a probability limit on the random 
realizations of G” and H”. 
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It follows from Lemma 3 that there exists a sequence 6, such that lim. _ mSn 
= 0 and, for every n, prob{ ])O” .-A” - a’Z,]j < S,} > 1 - 6, and prob{ I]A”, - 
a21k))‘]] < c3} > 1 - 6,. For each n, consider the set of possible realizations of 
A” and P’ for which ]Js2” - A”- a*Z,\1< 6, and ]](A”,- a21,)-‘(1 -C c3. The 
chosen set of events at point n has probability greater than or equal to 1 - 26,. 
For any sequence of realizations H”, G” from the chosen set, we have 
lim n _ ,@” = 0. Since the probability of this set of events approaches 1 as n 
approaches infinity, this means that plim. _ oo@n = 0. 

Proof of Corollary 1. We show that 

This result combined with Theorem 6 proves the corollary. 

Theorem 5 shows that G” = L”F + a”, where plim. _ oo@* = 0. By the defini- 
tion of OLS intercept estimates [see Theil (1971, p. 39)] the difference between 
a ̂z’ and 2: is given by 

i?;[F’(FDF’)-‘F- ( L”F+ W)‘((L”F+ @“)D(L”F+ @“)‘)p’ 

x (L”F + @‘)I DR;, (18) 

where 

D = (I,- (l/T)e,e$.) and Z,= (l/T)e,. 

Now the term (L”F+ @“)D(L”F+ a”)’ *is the covariance matrix of the 
sample principal components, which is non-singular with probability one when 
T is greater than k [see Arnold (1981, p. 438)]. Therefore (18) is a continuous 
function of @” in a neighborhood of the sample principal components. This 
allows us to use the property that plim. _ ,g( @“) = g(plim. _ ,@“) if g( .) is 
continuous. Therefore, 

=&.[F’(FDF’)p’F-F’L”‘(L”FDF%“‘)-’L”F]DR’ a 

= e,[F’(FDF’)-‘F- F’L”‘L”‘-’ ( FDF~)-~L+~L~F] DR; = 0. (19) 
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Since 

_nT a, -aa = (ci;‘-ii;) + (6:~a,), 

we have that 

dlim plimT’/2(ii~T- a,) = $lit [0 + T’/2(Ci~--~)] 
T+m ,,drn 

where the last eqtiality is by Theorem 6 and the penultimate equality is by (19). 
The proof that plim nnT= 

n + KPECI 8,: and hence that dlimT_,plim.,,(i,“T- t,) 

= N(O,l + y’y) is essentially identical to the proof for ~21~. We omit it here. 
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