Key-space analysis of double random phase encryption
technique
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We perform a numerical analysis on the double random phase encryption/decryption technique. The
key-space of an encryption technique is the set of possible keys that can be used to encode data using that
technique. In the case of a strong encryption scheme, many keys must be tried in any brute-force attack
on that technique. Traditionally, designers of optical image encryption systems demonstrate only how a
small number of arbitrary keys cannot decrypt a chosen encrypted image in their system. However, this
type of demonstration does not discuss the properties of the key-space nor refute the feasibility of an
efficient brute-force attack. To clarify these issues we present a key-space analysis of the technique. For
a range of problem instances we plot the distribution of decryption errors in the key-space indicating the
lack of feasibility of a simple brute-force attack. © 2007 Optical Society of America
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1. Introduction

The importance of cryptography [1-4] and informa-
tion security has been recognized by governments
and individuals throughout history. However, ma-
jor technological advances in both computer tech-
nology and global communications have occurred in
the past 50 years. In the digital information age,
access to powerful computers brings with it both
increased demands for, and threats to, security.
This demand has led to ever faster and more pow-
erful encryption systems being continually devel-
oped. Optical encryption [5—-11] is one such solution
to this problem. Optical encryption is particularly
interesting, as it offers the possibility of high-speed
parallel encryption of two-dimensional image data.
Newly available low cost technology such as high
quality spatial light modulators (SLMs), high reso-
lution digital cameras (CCDs), and powerful desk-
top computers (PCs) have made optical encryption
physically realizable. One such method of optical
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encryption is double random phase encoding
(DRPE) [5].

DRPE is what we believe to be a unique method
of optically encoding an image (see Fig. 1). The
primary input image X is encoded to stationary
white noise by the use of two statistically indepen-
dent random phase-keys and two Fourier trans-
forms. One key is placed in the input domain and
the other key is placed in the Fourier domain. (See
Fig. 2 for an optical implementation of the DRPE.)
The method can be numerically simulated by means
of matrices of discrete values and the fast Fourier
transform (FFT) [12]. In this study we concern our-
selves only with the intensity of the output image,
and the output phase can be discarded. Therefore,
in this study of the DRPE system, the random key
located at the Fourier plane serves as the only de-
cryption key to the system.

In a physical implementation of this optical encryp-
tion system it is necessary to capture the full field
information, amplitude, and phase. Since CCDs can
capture only the intensity of a wave field, digital ho-
lographic [6,13-15] techniques need to be employed
to extract the full complex wave field information at
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Fig. 1. Double random phase encoding (DRPE).

the camera. Digital holographic techniques can in-
volve the use of a reference beam, with the resulting
interference fringes being captured by the CCD and
numerical phase retrieval techniques [16,17] being
used to recover and unwrap the phase.

The novelty and advantage of the DRPE technique
over digital encryption techniques such as the Diffie-
Hellman [3] public key algorithm are that it has an
optical implementation. The DRPE and similar opti-
cal systems have been primarily studied numerically
[18] with some experimental studies [19].

Several other studies of the cryptographic strength
of DRPE have been performed to date. Prior work has
been done examining the effect of noise and errors
in the input/output pair when the encryption/
decryption keys are known perfectly [20]. The papers
of Carnicer et al. [21], Frauel et al. [22], and Peng
et al. [23] focused on retrieving exact solutions to the
decryption key for various special-case chosen and
known plaintext attacks. More relevant to the work
presented in this paper, Gopinathan et al. [24] have
analyzed DRPE in the context of attacks that seek to
approximate the decryption key. However, the re-
sults of this study are specific to the particular heu-
ristic used. Until now, there have been no analyses of
the key-space independent of the type of attack meth-
odology employed.

An encryption technique’s key-space is a set of pos-
sible keys that can be used to encode data using that
technique. For instance, a simple combination lock
with three dials, each with 10 digits, has a key-space
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Fig. 2. Schematic of one possible optical implementation of
DRPE.

of 1000 keys, i.e., 10°. The number of possible combi-
nations therefore grows exponentially with the num-
ber of dials (equivalently, the number of pixels in our
study). The size of the key-space determines the num-
ber of possible unique keys that can be used by the
encryption technique. In an ideal encryption tech-
nique only one key would decrypt the encoded mes-
sage and every other key would give a large error, i.e.,
the decryption would contain no useful information
and be highly uncorrelated from the input image.
However, this is not the case with the DRPE tech-
nique. As is generally known, there are typically sev-
eral keys that will decrypt the encoded message with
relatively low error, and as we demonstrate here
there are in fact multiple keys that give a perfect
decryption.

In what follows we examine the technique’s key-
space using histograms showing the number of keys
that decrypt an encoded message to given quantita-
tive error levels. An analysis of the key-space for
large image sizes (large number of pixels) is compu-
tationally intensive because of the large number of
keys. We therefore carry out our analysis for small
input image sizes and extrapolate from these results
to predict the behavior for larger inputs under certain
assumed conditions. By mapping the decrypting error
across the entire key-space we can provide an anal-
ysis of the strength of the optical encryption tech-
nique.

While a review of the different existing optical en-
cryption methods has been carried out in the past
[18], no one, to our knowledge, has previously carried
out this type of key-space analysis of the DRPE tech-
nique. This may be the case because it was assumed
impractical given the very large size of the key-space
involved. For instance, a random phase-key with four
quantization levels between 0 and 27 and having
10 X 10 pixels has 1.6 X 10 possible unique config-
urations. In this paper, by performing a complete
analysis for small key-spaces, with pixel sizes of
3 X 3,4X4,and 5 X 5, we attempt to identify trends
in key-space, which, if consistent across all experi-
ments, can reasonably be assumed to be consistent in
larger random key-spaces. We then verify our conclu-
sions with a statistical (rather than complete) anal-
ysis of a more practical sized image (256 X 256 pixel
Lena [25]).

Our analysis is based on the key-space of the en-
cryption system. In this system the key is regarded as
phase-key R2 (the phase-key in the Fourier plane—
see Figs. 1 and 2), as we only require the output
intensity of the image. Therefore the number of keys
in the key-space is completely determined by the
phase-key R2 and depends on

(1) The key dimensions in pixels, and
(2) The number of phase quantization levels used
in the phase-key.

A system with a phase-key that has N X M pixels,
each with @ quantisation levels, has @™ keys.
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2. Error Analysis

In our analysis the encryption/decryption process is
performed numerically. The FFT algorithm is used
and each pixel is represented by a single complex
value in the computer. Thus we neglect all physical
modeling issues, e.g., SLM fill factor, polarization,
and diffraction effects. Such simplifications are tol-
erated only because it is the nature of the DRPE
technique, which is our primary consideration here
and not the nonideality introduced by the physical
limitations of the use of SLMs in physically imple-
mented optical systems. However, it should be
noted that although it is found that the immunity of
DRPE is proportional to M, N, and @, ultimately,
®-dependence will be limited by the signal-to-noise
ratio, and the immunity dependence on M and N
will be limited by the resolution. This implies that
there is a physical upper limit to the size of the
key-space. We assume that we have a known
plain/cipher pair (a known input and the resulting
encrypted image using an arbitrary phase key R1
and the unknown key R2).

The metric we use to quantify the decrypting abil-
ity of each phase-key examined is the normalized root
mean squared (NRMS) error in the resulting de-
crypted image. This is calculated using

a0~ 16012 5 16 o)

NRMS = \(2 . 4
=1 j=1
(1)

N
i=1 j=1
where I;( ) and I( ) are the intensities of the decrypted
and original images, respectively; 0 = NRMS where
NRMS = 0 means perfect decryption. We define an
acceptable decrypting phase-key as one that produces
an NRMS error < 0.2. This is because in general the
output at this level can be recognized by visual in-
spection. More specifically we have found, for the
examples discussed in this paper (i.e., Fig. 6 in Sec-
tion 3), that applying simple thresholding to the out-
puts of all the keys that result in NRMS < 0.2 gave
the correct binary input image.

We note that since we assume a lossless system,
energy must be conserved between the input image
and the output encrypted image. We use this as a
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(a) (b)
Fig. 3. (a) Original image is a binary real image and (b) R2 phase
values (multiply by 2m). The numbers in parentheses correspond to
those in Fig. 11.
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Fig. 4. (Color online) Error produced by each phase-key when

used to decrypt the system. There are four exact, NRMS = 0,
encircled solutions, and 56 cases with NRMS < 0.2. The four exact
solutions are labeled as in Fig. 11.

necessary but insufficient test of the numerical accu-
racy and stability of our software.

3. Results

The analysis of the system presented here was car-
ried out numerically on a PC (Pentium 4 CPU
3.2 GHz, 2 Gbytes RAM using Matlab 7.0.1). We
present the results from a detailed series of tests
carried out using a 3 X 3 image with four quantiza-
tion levels. There are 4**® = 262,144 possible unique
phase-keys in the key-space for this system. The four
possible values for the phase-key levels are 2w X
[0, 0.25, 0.5, 0.75].

The input plaintext image is encrypted using a ran-
domly chosen phase-key from the key-space. Attempts
are then made to decrypt the output using every pos-
sible phase-key. The NRMS error associated with the
use of every possible phase-key in the key-space is
recorded. Figure 3 shows an input image and R2.

The resulting NRMS errors for the entire key-
space of this system are given in Fig. 4. As we move
along the x-axis of the graph we systematically try
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Fig. 5. (Color online) (a) Histogram of the NRMS error associated
with every phase-key in key-space, which shows the number of
phase-keys that decrypt to a certain error. (b) A zoomed-in plot of
the section of (a) near the origin, showing there are four phase-keys
that achieve exact decryption and 24 with 0.04 < NRMS < 0.07
(also see Fig. 11).
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Fig. 6. Decrypted images with NMRS errors of: (a) 0, (b) 0.2, (c)
0.4, (d) 0.6, (e) 0.8, and (f) 1. The application of a threshold at 0.5,
which sets each pixel to either 1 or 0, will mean output (a) and (b)
give the correct solution and output (c) has only one incorrect pixel.

(d)

each phase-key and plot the corresponding error
that each key produces. A single curve is then
drawn connecting each of these points for visualiza-
tion purposes. As is indicated by the four circles,
there are exactly four phase-keys that perfectly de-
crypt the encrypted image, labeled (i)—(iv). This
arises because there are four quantization levels
and because we are interested only in the output
intensity. Therefore only the relative phase be-
tween pixels matters and adding a constant phase
to a decrypting phase-key will not affect the de-
crypted intensity. Thus in such a system, with @
= 4 phase levels, there are four keys that achieve
perfect decryption. However, importantly, we also
note that there are 56 phase-keys that decrypt the
image with an NRMS error < 0.2 (below the dashed
line in Fig. 4).

Figure 5 is a histogram of the spread of phase-keys
in the key-space with respect to the NRMS error they
produce. Figure 5(b) shows a zoomed-in area of 5(a)
close to NRMS = 0. The four phase-keys that per-
fectly decrypt it are once again labeled R2, (i), (ii),
(iii), and (iv). Figure 5(b) shows that 24 phase-keys
decrypt the input with 0.04 < NRMS error < 0.07.
These are labeled (a)—(f) and are discussed later in
relation to Fig. 11.

Figure 6 shows an example of the output image
when a particular phase-key is used for cases when
the NRMS = (a) 0, (b) 0.2, (¢c) 0.4, (d) 0.6, (e) 0.8, and
(f) 1. The input was binary and the resulting outputs
are gray scale. However, based on the a priori knowl-
edge that our input was binary, the output pixels
could be set to either white (1) or black (0), and this

postprocess yields more accurate results. For in-
stance, in Fig. 6, following the application of a thresh-
old of 0.5, both outputs (a) and (b) give the correct
input image, while output (c) has one incorrect pixel
value. This result indicates the significance for this
case of the NRMS = 0.2 value.

So far the phase-key used contained 3 X 3 pixels,
and this is too small to be considered statistically
significant. We extended the experiments to larger
key sizes and repeated all of the previously described
tests for phase-keys with 4 X 4 pixels and 5 X 5 pixels
with @ = 2. Increasing the size of the key-space, from
439 = 962,144 to 2% = 33,554,432 phase-keys,
and using both nonuniform binary and gray scale
inputs, we note that exactly the same trends we had
reported are still observed.

Based on our simulations we note that the number
of acceptable phase-keys, NRMS < 0.2, as a percent-
age of the total number of keys in the key-space falls
very quickly as the size of the phase-key increases.
This suggests that it is more secure to have phase-
keys with a large number of quantization levels de-
spite the resulting increase in the number of both
exact solutions, @, and solutions with NRMS < 0.2,
Y. This trend is illustrated in Table 1. The results for
Y, presented in Table 1, are average values found
after 10 runs of each simulation.

Can our results for keys with 9, 16, and 25 pixels be
extrapolated to keys with a larger number of pixels?
We ran a simulation for a system with a 256 X 256
(65,536) pixel phase-key with @ = 8 quantization
levels giving 8¢ keys. The input image for this
simulation was a gray scale picture of Lena (256
X 256). We randomly generated 10° phase-keys and
used them to decrypt an output. In Fig. 7 we plot the
resulting histogram of the NRMS error values. None
of the keys generated an NRMS error outside the
0.98-1.02 range. Thus, as in Fig. 5(a), most keys
produce NRMS values centered at NRMS = 1. For
the sake of thoroughness all eight exact phase-key
solutions were tested and we confirmed that each key
decrypted perfectly.

Next for this large key-space case we took the orig-
inal decrypting key and added increasing amounts of
error. To systematically examine key degradation we
first introduced the error by randomly choosing a
number of pixels and adding identical amounts of
phase error to all the pixels chosen. Figure 8 shows
the results of these simulations for various numbers
of pixels and phases. Each point on the graph repre-
sents 100 simulations with the average of these re-
sults being plotted. Clearly, as the number of pixels in

Table 1. For a 3 x 3 Pixel System With Q = 2, 3, and 4 There Is a Comparison of the Number of Keys in the Key-Space to the Fraction of Keys That
Produce an Output an Exact Solution and the Fraction of Keys That Produce an Output With NRMS < 0.02. The Increase in Exact Solutions and
Solutions With NRMS < 0.2 Is Much Less Than the Increase in Key-Space

Size of Key-Space QU0
Fraction That Are Exact Solutions Q/QNM
Number With NRMS < 0.02 Y
Fraction With NRMS < 0.02 Y/QN M

209 = 512 33 = 19,683 4359 = 262,144
0.0039 0.000152 0.0000153
4 11 58
0.00781 0.000559 0.000221
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Fig. 7. (Color online) Distribution of 1 X 10° keys randomly gen-

erated in a 256 X 256 system with @ = 8. Note that the y-axis is
a logarithmic scale. For comparison see Fig. 5(a).

error increases, the NRMS error increases. Further-
more, the largest error arises when the constant
phase value added to all the pixels chosen is 7. This
is as expected since, as the phase-key is modulo 27, a
pixel will have the largest error when it is 7 radians
away from its correct value. This also explains why
the curve is symmetric about the phase error value of
7. The phase-key used in this simulation had 65,536
pixels. We perturbed up to a maximum of 3,500 pix-
els, corresponding to 5.3% of the total number of pix-
els in the key.

We repeated this experiment but chose to add one
of seven equally likely phase values, w/4, w/2, 3mw/4,
w, 5bw/4, 3w/2, and 7m/4, to each of the randomly
chosen pixels in error. Once again each simulation
was repeated 100 times and the average result is
plotted (A: solid curve) in Fig. 9. The constant phase
values presented in Fig. 8 were averaged and also

NRMs ]
Error
0.3

3000

n , 2000
T 1000

Number of Pixels

Phase Added to the :
in Error

Pixels in Error
Fig. 8. (Color online) The exact phase-key is taken and a constant
phase is added to an increasing number of pixels to see how it
affects the decryption. There are 65,536 pixels in the phase-key
and the maximum number of pixels changed is 3,500, which is
5.3% of the total number of pixels.
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Fig. 9. (Color online) The exact phase-key R2 is taken and seven

equally likely phase values are chosen randomly and added to an
increasing number of pixels to see how it affects the decryption (A,
solid curve). The values from Fig. 8 are averaged and plotted (B,
dotted curve). The random selection of phases produces a slightly
higher NRMS error. NRMS < 0.2 when 1.5%-1.9% of the total
number of pixels are in error.

plotted (B: dotted curve). Comparing these results we
note that in this case (i.e., A) we predict a slightly
higher error than the average value of those pre-
sented in Fig. 8, (i.e., B). This would seem to indicate
that random phase error positioned randomly among
the pixels will in general, be more deleterious than
constant errors randomly positioned. We repeated
the “A” simulation for gray scale Lena images of
64 X 64, 128 X 128 and 256 X 256 pixels. We note
that the shape of the curve is consistent for the
different-sized keys. Furthermore, in all cases, it was
observed that on average when 1%—2% of pixels were
in error the key resulted in an NRMS error ~0.2.

4. Aids in the Visualization of Key-Space

Our analysis of the DRPE technique from a key-space
perspective allows users to evaluate the security of
the system against a brute-force attack. However, by
fully mapping the key-space in a systematic manner,
it might then be possible to navigate the map, i.e., to
find a solution without the need to check every key.
One difficulty is to find a sensible method of repre-
senting a multidimensional key-space.

We now propose two graphical aids to help in the
conceptualization of key-space. The first is a method
of plotting key-space that emphasizes the pixilated
nature of the key. If we take, for example, a phase-
key with two pixels and @ = 8 quantization levels,
the key-space of this system will contain 64 keys and
eight exact solutions. Figure 10 shows a plot of the
key-space for such a system with a randomly gener-
ated gray scale input image. The eight exact solu-
tions, which have NRMS = 0 error, form a diagonal
curve, and since the system is modulo 2, this line is
broken into two parallel segments. We can see that if
we choose any key at random, fix the phase value of
one pixel, and then vary the phase of the other pixel,
we are guaranteed to hit one of the exact solutions. In
this way we have reduced the dimension of the
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Fig. 10. (Color online) Visualization aid of the key-space for a
system with two pixels and @ = 8.

search. While this graphical technique offers some
insights when visualizing key-space for 1, 2, and 3
pixel systems, since each pixel requires an axis, keys
with larger numbers of pixels defy simple represen-
tation.

The second graphical aid we propose involves map-
ping out individual keys as paths so that a visual
comparison can be made between them. We illustrate
this technique in Fig. 11, in which we reexamine the
3 X 3 pixel case with @ = 4 previously discussed in
Section 3. Labeling the pixels of R2 from 1-9, as
shown in Fig. 3(b), we plot the quantized R2 phase
values as a function of pixel position. In this way keys
can be drawn as paths on the grid. R2 appears twice
in Fig. 11 as two parallel piecewise linear curves
(thick solid lines) separated by 2w radians. The other
exact solution keys with NRMS = 0, labeled (i1)—(iv)
(see Figs. 4 and 5), appear with identical path shapes
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Fig. 11. (Color online) Visualization aid for mapping out the
phase-keys for the cases examined in Figs. 4 and 5. The thick solid
line is R2 (i). The dashed lines (ii), (iii), and (iv) are the other
correct keys. The labels (a)—(f) correspond to keys giving low NRMS
error decryption.

to R2, separated by shifts of constant quantized
phase value.

Before proceeding we first return to Fig. 5(b),
where we see R2 (1)—(iv) at NRMS = 0. We also see
labeled, as (a)—(f), the 4 X 6 = 24 keys with NRMS
error between 0.04 and 0.07. One of each of the four
keys associated with (a)—(f) is now plotted on Fig. 11.

These keys naturally divide into two types: The
first type involves cases (d) circle, NRMS = 0.0555,
and (f) triangle, NRMS = 0.0606. Both these cases
involve R2, with the phase value of the last pixel (“9”)
being incorrect by plus (arrow up, circle) or minus
(arrow down, triangle) one quantization phase level.
Thus, they clearly represent weak perturbations to
the R2 key, which, using the NRMS error function
(cost function), produces a small perturbation of the
error value.

The second type involves cases (a) NRMS = 0.0430,
(b) NRMS = 0.0474, (¢) NRMS = 0.0475, and (e)
NRMS = 0.0559. They also correspond to a single
path, differing from one another only in the phase
value of the last pixel, 9. The common part of these
keys is represented in Fig. 11 by squares joined by a
thin solid line. As in the case of R2, four equivalent
phase shifted versions of each path give the same
NRMS error; these other versions of each path are
not given in Fig. 11. Clearly, these keys provide al-
most exact decryption while simultaneously differing
completely from the exact R2 key. This indicates that
the NRMS error function predicts the existence of
keys (local minima) with little difference from R2 (the
global minimum, i.e., NRMS = 0). This also provides
some explanation why low NMRS-based estimates of
R2, found during plaintext attacks [23], do not on
occasion then provide good decryption of other images
encrypted using R2.

Therefore, based on our use of the NRMS error
function, this implies that the DRPE technique is
secure from brute-force attack, since good keys, as
defined by the NRMS, are simply not identifiable. To
further support this conclusion we examined the
value of the NRMS error when other R2 pixel phase
values were changed by one phase level. In general,
large errors, NRMS ~ 0.4, were observed. Thus, in-
creasing or decreasing the difference between the
keys (paths) in the key-space does not necessarily
correspond to a simply related change in the NRMS
error of the decrypted image.

5. Conclusion

In a desire to study the robustness of the DRPE tech-
nique to brute-force attack, we have examined the
key-space assuming that insights gained by fully
mapping small key-spaces can be extrapolated to
large key-spaces. Comparing the full, yet statistically
insignificant, small key-space results to the incom-
plete, but statistically significant, large key-space re-
sult provides evidence in support of this hypothesis.

We have observed that for image data a DRPE
system with @ quantization levels has @ phase-keys
that perfectly decrypt the system. This has been ex-
plained as a result of being interested only in the

10 September 2007 / Vol. 46, No. 26 / APPLIED OPTICS 6646



output intensity. Since the size of the key-space de-
pends on the number of quantization levels, i.e.,
QY™ any increase in the number of quantization
levels will produce a much larger key-space whose
size increases much more rapidly than the resulting
increase in the number of exact solutions.

Defining an NRMS error metric, we have shown
that as well as there being @ exact solutions there are
always several phase-keys that will decrypt the sys-
tem with low NRMS error. For the low dimensional
cases examined, we have shown that for NRMS
< 0.2, the decrypted outputs frequently yield the cor-
rect solution after a simple thresholding operation is
performed. However, we also have demonstrated that
the number of keys for which NRMS < 0.2 also de-
creases rapidly as a fraction of the total number keys
in the key-space.

It is important to note that these results are not
definitive, as a 5 X 5 pixel sized key, the largest
key-space we fully mapped, is too small to be consid-
ered truly statistically significant. Therefore, we also
have presented results for a gray scale Lena image
with 256 X 256 pixels, and taking @ = 8. For such a
large key-space any brute-force method of mapping
the entire key-space currently appears to be unreal-
istic. The strength of the DRPE technique is, how-
ever, indicated by our observation (for both small and
large key-spaces) that the majority of the phase-keys
produce results centered on the NRMS error value of
1 and, furthermore, that the introduction of even a
small number of random variations in the R2 key will
in general lead to large NRMS errors. However, while
brute-force attack appears impractical, it should be
noted that nonbrute-force attack techniques, based
on heuristic approaches [24], exist and have been
applied successfully.

To aid in the mapping of the key-space we have
introduced and discussed two simple graphical rep-
resentations. Examining small key-spaces, we have
applied these to illustrate (i) a systematic reduction
in the dimensionality of the key-space, and (ii) the
relationship between deviations from the correct
keys and the NRMS error function. These graphs
clarify our observations regarding the robustness of
the DRPE technique to brute-force attack and show
the difficulty in systematically mapping (and thus
searching) the key-space.
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