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Abstract

We characterise optimal revenue-constrained trade and industrial policy towards dynamic oligopolies, prove

that total net subsidy payments at the optimum are decreasing in the social cost of funds, and illustrate the

implications in Cournot and Bertrand special cases.

D 2004 Elsevier B.V. All rights reserved.

Keywords: Export subsidies; R&D subsidies; Social cost of funds; Strategic trade policy

JEL classification: F12; L13

1. Introduction

The theory of strategic trade policy highlights differences in commitment ability between firms and

governments as a key motivation for intervention in oligopolistic markets. The theory has also been

extended to many periods, allowing consideration of industrial as well as trade policy, but only on the

assumption that subsidies can be financed costlessly by non-distortionary taxation, so the marginal

social cost of funds is unity1. In this paper we extend the theory of strategic trade and industrial

policy to allow for divergences between the social valuations of corporate profits and subsidy revenue

foregone. We characterise optimal revenue-constrained trade and industrial policy towards dynamic

oligopolies, prove that total net subsidy payments at the optimum are decreasing in the social cost of

funds, and illustrate the implications in special cases, where investment precedes either Cournot or
0165-1765/$ - see front matter D 2004 Elsevier B.V. All rights reserved.
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Bertrand competition. Finally, we note the wide range of issues to which our approach can be

applied.
2. Strategic trade and industrial policy with and without revenue constraints

In the absence of a government revenue constraint, the setting is the same as in Neary and Leahy

(2000). We consider a market with two firms, denoted ‘‘home’’ and ‘‘foreign’’, which compete over a

finite number T of time periods. In each period t, each firm takes an action, choosing the value of

some variable, at for the home firm and bt for the foreign firm. This specification allows for many

alternative types of oligopolistic interaction: in each period the decision variables might be output,

price, R&D, etc. The home firm seeks to maximise the present value of its profits, p, equal to the

sum of the present values of its gross profits (i.e. sales revenue less total costs) R and its subsidy

income S:

Max
a

pða; b; sÞ ¼ Rða; bÞ þ Sða; b; sÞ; ð1Þ

where a and b are the vectors of the home and foreign firm’s actions, respectively. Both R and S

are twice differentiable functions of own and rival actions; in addition, S depends on a vector of

subsidy rates, one for each period, chosen by the home government, s. In many applications, the

subsidy is directly related to the firm’s decision variable, so the vector of partial derivatives Sa
equals s. An exception is the case of an output subsidy in Bertrand competition, where some

elements of Sa have the opposite sign to those of s.2 As for the foreign firm, we assume that it is

not assisted by its government, so its decision problem is simply to maximise p*(b, a) =R*(b, a) by
choice of b.

The home government seeks to maximise welfare:

W ða; b; s; dÞ ¼ pða; b; sÞ � dSða; b; sÞ; ð2Þ

where d is the marginal social cost of funds, so the excess of d over one measures the distributional

preference for subsidy revenue over corporate profits. To focus on strategic issues, we assume that

all home output is exported, so welfare does not depend on consumer surplus. We also assume that

the government commits to all future subsidies before firms take any actions. The government’s

problem is, therefore, to choose the vector of subsidies s to maximise Eq. (2), anticipating the game

played between the firms. Formally, we can view the government as solving the first-order

conditions of the two firms for their actions as functions of the subsidies, â(s) and b̂(s), and

substituting into Eq. (2). Since the number of instruments or subsidies equals the number of targets

or actions chosen by the home firm, and provided (as we assume) the function â(s) is invertible, this

is equivalent to the government’s choosing a. It is as if the government solves â(s) and b̂(s) for b̂(a)
2 In Bertrand competition, the firm’s decision variable at is its price pt, but its subsidy income in period t, S t, equals st xt,

where xt, the period-t demand function, depends in general on all current and past actions (prices). Hence, BS t/Bat = stBxt /

Bpt, which has the opposite sign to xt.
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and ŝ(a), and then substitutes these into Eq. (2) to give a reduced-form welfare function which

depends only on a and d:

Ŵ ða; dÞuW ½a; b̂ðaÞ; ŝðaÞ; d� ¼ R̂ðaÞ � ðd � 1ÞŜðaÞ; ð3Þ

where the reduced-form gross profits and subsidy revenue functions R̂ and Ŝ are defined analogously to

Ŵ: e.g. R̂(a)uR[a, b̂(a)]. Maximising welfare, therefore, leads to the government’s first-order condition:

Ŵa ¼ R̂a � ðd � 1ÞŜa ¼ 0; ð4Þ
while its second-order condition is that the matrix Ŵaa is negative definite.

When the marginal social cost of funds is unity, only the first term R̂a on the right-hand side of Eq. (4)

matters. This term can be expressed as the deviation of Sa, the vector of subsidy terms evaluated at an

arbitrary point, from S̄a, the vector of optimal subsidy formulae in the standard case when d equals one3:

R̂ Va ¼ R Va þ R Vb b̂a ¼ �ðSa � S̄aÞV ð5Þ
The second term on the right-hand side of Eq. (4) can be written:

Ŝ Va ¼ S Va þ S Vb b̂a þ S Vs ŝa: ð6Þ
Substituting into the first-order condition Eq. (4) gives the optimal subsidies in the general case:

S Va ¼
1

d
S̄ Va � d � 1

d
ðS Vb b̂a þ S Vs ŝaÞ: ð7Þ

This shows that S̄a, the standard formula for the optimal subsidies, must be modified in two respects.

First, the usual strategic motive for intervention (summarised by S̄a) is diluted, counting for less the

higher is d. Second, there is an additional group of terms, which reflect the deadweight loss of raising

revenue. These terms are likely to contribute to a reduction in the optimal subsidies. (Consider the

one-period case for example. If competition is Cournot, Sa is the optimal subsidy, while Ss and ŝa are

both positive; whereas if competition is Bertrand, then Sa is negatively related to the optimal subsidy,

Ss is positive and ŝa is negative.) There is no general presumption that this must always be so. (Fig. 1

below provides a counter-example in a simple case.) However, we can show that total subsidy

payments are unambiguously related to d:

Proposition 1. Total subsidy payments fall as d rises.

Proof. Totally differentiate the subsidy revenue function Ŝ(a) with respect to d and evaluate at the

optimal a, using the total differential of the government’s first-order condition (4):

dS

dd
¼ Ŝ Va

da

dd
¼ �Ŝ Va Ŵ

�1
aa Ŵad ¼ Ŝ Va ŴaaŜa ð8Þ

This is a quadratic form in a matrix which must be negative definite from the government’s second-

order condition. Hence, S and d must be inversely related along the revenue-constrained iso-welfare

locus. 5
3 See Neary and Leahy (2000), Eqs. (6), (8) and (24).



Fig. 1. Revenue-constrained optimal subsidy locus in R&D-Cournot game.
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Figs. 1 and 2, drawn in subsidy space, illustrate a two-period linear-quadratic example. Firms

choose the level of cost-reducing R&D in the first period and then compete on either output (in Fig. 1)

or price (in Fig. 2)4. In both figures iso-R contours are ellipses centred on point A, the optimum in the

absence of revenue constraints, while iso-S contours are downward-sloping concave loci. Revenue-

constrained optima must lie on the locus, passing through A, of tangency points between these two sets

of contours. A higher marginal social cost of funds (i.e. a rise in d) implies a movement downwards

along this locus from point A. However, as Fig. 1 illustrates, this implies in the Cournot case that the

investment subsidy becomes less negative (though it never attains a positive value). The export subsidy

falls in absolute value, as Proposition 1 requires. The Bertrand case in Fig. 2 is more intuitive. Here,

both subsidies fall in algebraic value as d rises, though the investment subsidy never actually becomes

negative.
3. Concluding remarks

In conclusion, we may note the wide applicability of our approach. When d is interpreted as the

marginal social cost of funds, it may exceed unity for a variety of reasons, including the deadweight loss

from financing subsidies by distortionary taxation, pure distributional considerations, or the fact that the
4 The cost of R&D k equals ck2 and the cost of production c equals c0� hk. In Fig. 1, the demand function is p= a0�X, and

the marginal efficiency of R&D gu h2/c is set at 0.2. In Fig. 2, goods are symmetrically differentiated in demand, the demand

function for home output is x = a� ( p� p*), where p and p* denote home and foreign prices, respectively, and g equals 0.4. For

very high or very low subsidies, one or other firm is unprofitable.



Fig. 2. Revenue-constrained optimal subsidy locus in R&D-Bertrand game.
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home firm is partly foreign-owned5. All these imply a value of d greater than one. The model can also

be interpreted in ways which imply a value of d less then one. The first case is where the home firm’s

profits at the unconstrained optimum would be insufficient to induce it to enter the market, and a non-

distorting subsidy to fixed costs is unavailable. Hence the government’s problem is to choose the

optimal policy package to maximise welfare subject to a profit constraint. Forming the Lagrangian, the

government’s problem is to maximise L =W + k(p� pm), where pm is the minimum required profit

level. Replacing W by R and dividing by 1+ k, this is equivalent to Eq. (3), except that the coefficient of

the deadweight-loss term is now positive rather than negative: k=(1� d)/d, or d= 1/(1 + k) < 1. A second

case, following Grossman and Helpman (1994) is where the incumbent government seeks to maximise a

political support function, which is a weighted average of welfare and political contributions. Assuming

that the latter equal profits in equilibrium, the political support function is U= aW+(1� a)p, which
(replacing W by R), can again be written in the form of Eq. (3), with d= a< 1. In both these cases,

Proposition 1 implies that total subsidy payments must be greater than in the unconstrained optimum,

and, in Figs. 1 and 2, the optimum lies along the same revenue-constrained loci as before, but above

rather than below point A.
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