N,

& The Journal of

{t

4 Systems and

ﬂ Software
ELSEVIER The Journal of Systems and Software 58 (2001) 107-118

www.elsevier.com/locate/jss

A proxy-based security architecture for Internet applications
in an extranet environment

Andy Dowling *, John G. Keating

Department of Computer Science, National University of Ireland, Maynooth, Room 2.110 Callan Extension, Nui Maynooth Co., Kildare, Ireland
Received 4 February 2000; received in revised form 5 August 2000; accepted 18 September 2000

Abstract

Current Internet communications security is typically provided by the integration of secure transport functionality into client and
server software. Two problems arise with this approach: Firstly, the use of integrated security services requires modification to the
existing Internet applications, requiring re-development and re-deployment projects. Secondly, high-level security services such as
authorisation are not provided by secure transport protocols, requiring applications to rely on customised (and often insecure)
mechanisms for the provision of such services. We propose a platform-independent system that uses proxy applications to provide
both secure transport and authorisation services transparently to existing Internet applications. We demonstrate that our approach
requires no modification to existing applications, and that our security services are based on existing and widely used technologies.
We discuss the merits of our architecture in the context of the intended deployment environment: an Internet-based heterogeneous
private network such as an extranet or Virtual Private Network (VPN). We show that our approach achieves its goals at the expense
of introducing a minor degree of performance loss into overall client-server communications, yet we maintain that this performance
loss is a minor expense in relation to the advantages of the system as a whole. © 2001 Elsevier Science Inc. All rights reserved.

Keywords. Internet; Extranet; VPN; Security; Proxy; Authorisation

1. Introduction

Internet-based client and server applications com-
municate with each other using a command and message
format appropriate to the applications’ protocol, which
may be HTTP, FTP, SMTP, etc. By default, the appli-
cation data is transmitted between client and server
without any security mechanisms in place, leaving the
client-server communications vulnerable to intercep-
tion, modification and masquerading attacks.

1.1. Current practices

In order to defeat such attacks, the basic security
services of privacy, integrity and authenticity are pro-
vided by an appropriate secure communications service.
A popular approach is to import the services of a secure
communications protocol such as SSL (Freier et al.,
1996) or TLS (Dierks and Allen, 1999) into the appli-
cations. To avail of the secure communications support

* Corresponding author. Tel.: +353-1-7086082; fax: +353-1-7083848.
E-mail addresses: andy.dowling@may.ie (A. Dowling), john.
keating@may.ie (J.G. Keating).

offered by SSL and other security protocols, both client

and server applications must be modified to use this

functionality, typically by making appropriate API calls
to imported security libraries. Two major limitations
with this conventional approach have been identified:

1. Integrated security services. Integrating security ser-
vices into existing applications requires re-develop-
ment and re-deployment of the applications. This
integration process requires a separate re-develop-
ment project for each application program used in a
particular domain. In addition, the integration pro-
cess may also inject new defects into the modified ap-
plication in such a way as to cause a security breach
under certain conditions. Moreover, if multiple appli-
cations have integrated security services, the amount
of security-related administration increases linearly
with the number of secured applications, since each
application requires individual administration.

2. Authorisation and access control. The security require-
ments of a client-server environment are not entirely
met by secure transport services such as SSL. Inter-
net-based distributed environments such as extra-
nets/VPNs often require secure authorisation and
access control services in order to restrict access to

0164-1212/01/$ - see front matter © 2001 Elsevier Science Inc. All rights reserved.

PII: S0164-1212(01)00031-0

108 A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118

networked resources. Secure communications proto-
cols such as SSL do not provide adequate authorisa-
tion and access control services, and consequently
applications must implement their own services to
complement any existing secure transport functional-
ity. This leads to several problems:
(a) There are no security guarantees when appli-
cations implement their own authorisation and
access control services. An example of this is ap-
parent in web-based environments: a HTTP ser-
ver may authenticate a client using SSL, but
still controls access to web resources using an in-
dependent username/password combination,
leaving the system vulnerable to password-steal-
ing attacks. Whilst some applications may
achieve security through using the underlying au-
thenticated identity for controlling access, this is
not guaranteed, and varies between applications.
(b) The lack of any generic binding between the
authenticated identity and the associated set of
privileges means that server applications tend to
rely on authenticated identities (i.e. usernames)
to control access to resources. If access is required
to resources that require different privileges, the
client must authenticate using a different identity.
In the web-based example mentioned above, this
results in the user managing a different user-
name/password combination for each resource
that they require access to.
(c) The administrative overhead involved in some
custom access control mechanisms may be quite
large. In the web-based example presented previ-
ously, Access Control Lists (ACLs) may be main-
tained on a web server site, each containing a list
of users and/or hosts that are allowed access to a
certain directory. As a site grows in size and as
the access policy of the site becomes more compli-
cated, these ACLs increase in both number and
size, leading to large administrative overhead.
Quantitatively, this overhead has an upper bound
of mx n ACL entries for a site with m restricted
directories and n users.
(d) Application-dependent authorisation mecha-
nisms take different approaches to representing
and exchanging authorisation information. This
leads to a breakdown in interoperability between
applications that use customised authorisation
functionality.

1.2. Solutions

Clearly, a different approach is required in order to
overcome the problems introduced by integrated security
services and application-dependent authorisation sup-
port. We take the approach of providing secure com-
munications and access control using proxy applications.

1. Proxy-based security services. Instead of using inte-
grated security services with existing applications, a
more beneficial approach is to provide all security
services separately to the applications by placing se-
curity proxy applications on the connection between
client and server. Security proxies are deployed at
both client and server sites, and networked applica-
tions have their communications transparently redi-
rected via the proxies for security processing. A
single proxy can be used by multiple applications
(i.e. multiple clients or multiple servers), thus reduc-
ing the amount of security-related administration to
a single application per site.

2. Advanced authorisation and access control. To over-
come the many problems associated with applica-
tion-specific authorisation services, a generic form
of authorisation and access control service is required
that is secure, highly interoperable, easy to administer
and convenient to the end user. This can be achieved
by using a combination of digital certificate technol-
ogy and advanced access control models. Standar-
dised digital certificate structures such as the X.509
Attribute Certificate (AC) (ITU, 1997 E; Farrell,
1999) may be used to securely bind a set of access
privileges to a particular identity (such as an X.509
Public-Key Certificate (PKC) (ITU, 1997 E)) in a
highly interoperable manner. The de-coupling of the
identity from the access privileges means that the
end user no longer manages multiple identities in or-
der to access different resources. Instead, the end user
authenticates once using their PKC, and the contents
of the user’s AC are used for making server-side
access control decisions.

Administration is reduced by restricting access in
terms of the user’s attributes rather than the user’s
identity. Attributes such as roles, groups, and access
identities can be used to implement more flexible access
control models such as Role-Based Access Control
(RBAC) (Ferraiolo and Kuhn, 1992), which reduce the
amount of security administration involved.

In this paper, we describe a proxy-based security ar-
chitecture called YAPS (Yet Another Proxy System),
that provides both secure communications and ad-
vanced authorisation support whilst requiring no mod-
ification to existing Internet applications. We discuss the
YAPS architecture in the context of deployment within
a VPN or extranet environment. We outline the YAPS
architecture, discuss its operation, and we evaluate the
system based on a number of criteria. We conclude with
a statement of further research.

2. Related work

Claessens et al. (1998) describe and compare the ap-
plication of various proxy systems to the problem of

A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118 109

weak SSL in exported US web browser applications.
They propose a proxy-based model called “proxy and
spoofing” to provide secure communications to web
browser software without requiring any modifications to
the browser. There are two limitations with this model.
Firstly, this approach is limited to HTTP-based clients
and cannot be applied to Internet applications in gen-
eral. Secondly, the security enhancements are only made
to on the client side, and do not apply to server appli-
cations. As a consequence, no authorisation and access
control services are provided.

SESAME (Kaijser et al., 1994) is a security archi-
tecture based on Kerberos (Johl and Neumann, 1993)
that provides strong communications security and ad-
vanced authorisation services to Internet applications.
The SESAME architecture provides security compo-
nents which can be used by both client and server ap-
plications. Authorisation support consists of an RBAC
model that uses Privilege Attribute Certificates (PACs)
(European Computer Manufacturers Association, 1996)
for privilege representation. Whilst SESAME offers
both secure communications and advanced access con-
trol, SESAME security must be integrated manually
into applications. Furthermore, SESAME is considered
a closed system as it relies on proprietary protocols
rather than (de-facto) standard protocols such as SSL.

3. YAPS - Yet Another Proxy System
3.1. Overview

YAPS uses security proxies deployed at both client
and server sites in a ‘“double proxy” architecture (see
Fig. 1). Connections to server applications protected by
YAPS proxies are secured between YAPS client and
server proxies using an arbitrary peer-to-peer secure
transport protocol such as SSL or TLS. Proxy-to-proxy
communications take place over the SOCKS V5 (Leech

Client Domain

Client
Application(s)

API Calls +
Application Data

Virtual
Transport

SOCKS V5 +
__Application Data
YAPS
L=l Client Proxy

Client localhost

l AC
Ca Repository I

et al., 1996) protocol. X.509 PKCs are used for au-
thentication. Privileges are encoded as attributes in
X.509 ACs, and access to server resources is controlled
using an attribute-based access control model. The ac-
cess control model also encapsulates the policy-based
model used in the Akenti (Johnston et al., 1998) project,
permitting the distributed administration of access
rights to resources. The YAPS architecture consists of
four main components: certificate issuing authorities,
the YAPS client proxy, the YAPS server proxy, and the
certificate acquisition components.

3.2. Certificate issuing authorities

In order for YAPS to provide authentication and
authorisation services, YAPS requires existing X.509
PKC and AC issuing authorities. These authorities are
used in an offline manner, and are not illustrated in
Fig. 1 for clarity. These offline authorities are trusted by
the YAPS security components to issue certificates
and CRLs. Certificate trust parameters are stored in
local security databases maintained at the client and
server proxy sites.

3.3. YAPS client proxy

The role of the YAPS client proxy is to accept con-
nections from client applications and relay the connec-
tion between the client application and the destination
server. If the destination server is reached via a YAPS
server proxy, then a secure connection is established
with that server proxy and the client request is tunnelled
through the secure connection.

The YAPS client proxy resides on the client host and
listens on a configured TCP port for connections. The
SOCKS V5 protocol (with cleartext payload) is used to
communicate with local client applications over the lo-
cal network interface. In order for the processing to
appear transparent to the client applications, calls to the

SOCKS V5 +
Secure Payload

Server Domain YAPS Server Proxy

Access Only

Server
Application(s)
Application
Data

YAPS
Server Proxy

| <>

Use Condition
Certificates

Fig. 1. YAPS architecture.

110 A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118

client’s transport service (e.g. WinSock) are dynamically
intercepted, translated into SOCKS V5 requests, and are
redirected to the local client proxy. This is performed by
an additional component residing on the client host.

3.4. YAPS server proxy

The YAPS server proxy is a SOCKS V5 proxy server
that acts as a security gateway to server applications.
The server proxy is deployed in such a way that all in-
coming connections to the server application must pass
through the server proxy for security processing before
an indirect connection is made to the destination server
by the server proxy. To prevent direct connections to the
server applications from clients, an arbitrary firewalling
system is used.

3.5. Communications architecture

In the tradition of networking systems (e.g. OSI and
TCP/IP, Tanenbaum, 1996), the communications ar-
chitecture of the YAPS proxies is split up into a number
of conceptual layers, with each layer handling data at a
particular level of abstraction. Both client and server
proxies handle data at three layers. Fig. 2 shows the
architecture for the client proxy.

1. Proxy layer. The proxy layer uses the underlying
TCP/IP service layer to establish connections to other
YAPS proxies using the SOCKS protocol. SOCKS is
used to negotiate connection parameters and to select
a secure transport protocol for data exchange.

2. Security layer. The security layer is responsible for
negotiating a secure connection with the security
layer on the peer host. Data is accepted from the ap-
plication layer, encapsulated in messages specific to
the chosen security protocol, and is passed to the
proxy layer for transmission as SOCKS payload
data.

3. Application layer. The application layer is ultimately
responsible for invoking data exchanges between

HTTP, FTP, SMTP, POP3, NNTP, telnet...

¢ Application Data ¢

Application
Layer

PKCs

SSL, TLS, GSS-API... I Application Security
Data Layer
Secure
Application Data
ACs
SOCKS V5 I Proxy
Layer
To YAPS To Local Client
Server Proxy Applications.
TCPAP Internet
Services

Fig. 2. YAPS layered internal communications architecture (YAPS
client).

YAPS proxies and remote applications. Data such
as HTTP requests/replies and POP3 commands are
handled at this layer. The services provided by the
underlying layers are used to wrap the application
data in a format appropriate for the connection type
(i.e. to local application or remote YAPS proxy).
Note that not all connection types require the services
of all three layers. The YAPS client proxy uses a clear-
text SOCKS payload to the local client applications, and
consequently does not use the security layer. Similarly,
the YAPS server proxy communicates directly with
server applications, and bypasses both the security and
proxy layers.

3.6. Access control services

In addition to the secure transport functionality of-
fered by the YAPS server proxy, the server proxy also
provides access control functionality. Access control is
provided via a number of core components (Fig. 3).

3.6.1. Access Decision Functions
The Access Decision Functions (ADFs) provide a

generic means of determining if access to a requested
resource should be permitted or not. The YAPS ADFs
accept and process a number of arguments in order to
make an access control decision. Once the decision has
been made, the result is either true or false, denoting
access permitted or denied respectively. The arguments
used by the YAPS ADFs are:

1. Requested resource. The resource requested by the cli-
ent. Typical resources include web pages (HTTP),
files (FTP), or e-mail boxes (POP3).

2. Requested operation. The operation that the client
wishes to perform on the requested resource. Opera-
tions include web page retrieval (HTTP GET), web
form posting (HTTP POST), or deleting an e-mail
from a mailbox (POP3 DELE).

3. Requestor’s attributes. The attributes associated with
the (authenticated) client. These are obtained by

Access Requested Resource + Operation

Control Rules
““:..“,.3.;‘,..“"‘“] « HTTP, FTP, SMTP, POP3, NNTP, telnet... I
—_—

Access Granted/Denied
L "‘:"c:“T ¢ Application Data ¢

PKCs
SSL, TLS, GSS-API... I

— Secure
AC Verifier ¢ Application Data ¢
ACs

Trusted — SOCKS V5 |

CAs + AAs
To YAPS
Client Proxy

To Local Server
Applications

TCPAP I

Fig. 3. YAPS server proxy access control architecture.

A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118 111

firstly acquiring the client’s AC, passing it through

the AC verifier and extracting the attributes from

the verified AC.

4. Access control configuration. The access control con-
figuration pertaining to all YAPS-protected server
applications. This denotes which resources are re-
stricted, and the requirements that must be satisfied
by requesting clients in order for access to the re-
source to be permitted.

Application protocols use different means of repre-
senting resources and operations. In order to achieve
application protocol independence in access decision
making, the ADFs do not process the semantic values of
resources and operations. Instead, ADFs compare the
resource and operation values to the stored access con-
trol requirements, and make the access control decision
based on this comparison. This notion of generic re-
source and operation representations is central to the
making of protocol-independent access decisions.

3.6.2. AC verifier

The AC verifier is responsible for verifying the in-
tegrity and contents of X.509 ACs according to a set of
validation rules. The YAPS AC verifier is compliant
with the IETF AC verifier validation semantics, as de-
fined in the IETF AC Internet authorisation profile
(Farrell, 1999).

3.6.3. Application protocol handlers

In order to implement access control using applica-
tion-specific resources, some application-specific pro-
cessing is required by the server proxy. The YAPS server
proxy uses application-level processing modules called
“protocol handlers” to parse data at the application
level (Fig. 4). The protocol handlers extract the appli-
cation-specific data from the connection, translate it into
a generic form used by the ADFs, and invoke the ADFs
to determine if access should be granted or denied. If
permitted, the protocol handlers continue to forward
application data between the client proxy and the server
application. If access is denied, an application-specific
error message is formulated by the protocol handler and

HOST: www cs.may.ie

HOST: fip.cs.may.ie
PORT: 80 PORT: 21

HOST: mail.cs.may.ie
PORT: 26
USER bob o

HELO mype.cs.may.ie
RARRLLE MAIL FROM: bobi@ics.may.ie
WD fete 3212: TO: alice@cs.may. e

RETR passwd

|

RES: http:ifwww.cs may iafindex html RES: 5.ma
OP: GET OF: RETR

‘GET lindex.htm| HTTP/1.0

may.ie

RES:
OP: MAIL_FROM
OR

RES: smip:hialice@os.may.ie
OP: MAIL_TO

Fig. 4. Protocol-specific resource translation into generic ADF style.

sent back to the client (e.g. HTTP Error 403 for a web-
based system).

3.6.4. Access control list
The access control configuration for resources ex-

ported by application servers is stored in the YAPS

ACL (Fig. 5). The ACL contains a series of rules, each

rule containing a restricted resource and a series of ac-

cess rules for that resource. The access rules map a

“requirements expression” onto a set of operations that

are permitted to be performed on the associated re-

source should the requestor satisfy the expression. A

requirements expression is a boolean expression defined

in terms of the attributes required in the requestor’s AC
in order for access to be granted. Note that resources are
represented in a generic form (URL), and operations are
represented “‘as-is” (i.e. strings as they appear in the
application protocol exchanges).

YAPS requirements expressions can take one of two
forms: attribute-based or policy-based.

1. Attribute-based expressions. Attribute-based expres-
sions are used to implement attribute-based access
control. This allows the encapsulation of role, group,
and user-based access control models. Access require-
ments are expressed in terms of attribute-value pairs.

2. Policy-based expressions. Policy-based expressions
add an extra level of indirection into the ACL by im-
plementing the policy-based access control model
used in the Akenti (Johnston et al., 1998) project. Pol-
icy-based expressions denote requirements in terms of
the “stakeholders™ (i.e. resource owners) who define
the access requirements for the restricted resource.
Policy-based expressions are used to allow stakehold-
ers to administer the access requirements for their
own resources. Access policies are stored locally as
stakeholder-signed ACs on the YAPS server proxy
as part of the security database (along with the ACL).
Both attribute-based and policy-based requirements

expressions are similar to boolean expressions used in

programming languages such as C and Java™, and
make use of the logical operators “AND”, “OR” and

“NOT” for formulating compound requirements ex-

pressions. Parentheses may also be used to explicitly

Access RULE({
Clauses RESOURGCE hitp:/lwww.cs.may, i

REQUIREMENT USER: johndoa OPERATIONS GET, PUT, DELETE, POST;
REQUIREMENT ROLE: sysadmin OPERATIONS ALL;
REQUIREMENT GROUP: guest && IGROUP: badguy OPERATIONS GET;

Restricted
Resource

Requirements Expression
(Attribute-based)
Requirements Expression
{Policy-based)

REQUIREMENT POLICY (johndoe);

Fig. 5. YAPS ACL components.

112 A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118

specify evaluation precedence in requirements expres-
sions, which defaults to left-to-right for all operators
except logical negation. As a rule of thumb, the order of
evaluation is the same as for the Java programming
language, with parenthesis having the same effect on
precedence as for Java.

3.7. Certificate acquisition mechanisms

In order to make an access control decision, the ser-
ver proxy must acquire the client’s AC. There are two
mechanisms used by YAPS to accomplish this. The first
model, known as the “pull” model, involves the server
proxy retrieving the AC using an appropriate acquisi-
tion protocol. The second model, called the “push”
model, specifies that the client retrieves its own AC
(using the pull model), and sends it to the server proxy
during proxy-to-proxy communication. Both models
have relative advantages and disadvantages, and each is
suited to a particular networked architecture. Hence,
choosing an AC acquisition model is dependent on
factors such as system architecture requirements and
organisational security policy. For maximum compati-
bility with existing distributed system architectures,
YAPS can use both the push and pull models.

3.7.1. AC pull using LAAP

YAPS uses the Limited Attribute certificate Acqui-
sition Protocol (LAAP) (Farrell, 1999) for AC pull.
LAAP is an experimental IETF protocol designed for
the acquisition of ACs. Since ACs are relatively short-
lived to PKCs, they are more likely to be generated “on
the fly” by online AC server components rather than
being stored to/acquired from a certificate directory. For
this reason, LAAP is being developed as an AC acqui-
sition protocol in preference to re-using existing proto-
cols such as LDAP (Yeong et al., 1995). Technically,
LAAP is a simple cleartext request-reply protocol,
which may be encapsulated in SSL/TLS for security as
required.

The main advantage of the pull model is that no
modifications to the client-server communications pro-
tocol are required. Indeed, the client need not be “AC
aware” at all. Consequently, AC pull can be used with
any communications protocol between client and server
proxies. However, the AC pull model imposes addi-
tional load on the server proxy, which must acquire the
client’s AC. This introduces some additional processing,
network and database access overheads.

3.7.2. AC push using SOCKS V5

The YAPS implementation of the AC push model
involves the transmission of the client’s AC from client
to server proxy during the SOCKS V5 negotiation. The
AC push is similar to the work on AC push previously
published in Internet drafts within the IETF TLS

working group (Farrell, 1998). We prefer the imple-

mentation of AC push in the SOCKS negotiation for

two reasons:

1. Security protocol independence. AC push takes place
independently of the secure communications protocol
used, since the security handshake takes place inde-
pendently of the AC SOCKS exchange. This means
that AC push can be used with any secure transport
protocol.

2. Reduced protocol modification. There is no need to in-
tegrate AC push into existing security protocols (TLS
and others) if the security protocols are encapsulated
in this enhanced SOCKS protocol.

Our approach involves the introduction of a new
SOCKS authentication method, which we refer to as the
“AC Exchange” method in this text. All AC-related
exchanges take place as a sub-negotiation after this
method has been selected, and therefore the compati-
bility with existing SOCKS-based systems is not af-
fected. When a SOCKS connection is established (see
Fig. 6), the client sends a list of authentication methods
that it supports (1). One of the methods in the list is the
AC Exchange method identifier. Once the YAPS re-
ceives the list and recognises the AC Exchange identifier
in the list, the server notifies the client that AC Exchange
has been selected (2), followed by the selected authen-
tication method (3). Authentication then takes place
between client and server (4) using the selected method.
Once authentication has completed successfully, the
server sends an “AC Request” message, requesting the
client to submit an AC to the server (5). The client sends
an “AC Response” message (6) containing the appro-
priate status information, plus the client’s AC, if avail-
able. To complete the handshake, the server sends an
“AC Exchange Complete” message to the client (7).
The method dependent sub-negotiation has now fini-
shed, and the remaining SOCKS exchanges proceed as
normal (8).

In some cases, the server proxy may not require the
client to push the AC at all. For performance reasons,
the server proxy may request the client to push an AC

1. AC_EXCHANGE Method +
Authentication Method List

2. AC_EXCHANGE Selected
3. Authentication Method Selected

YAPS Client Proxy
(SOCKS Client)

YAPS Server Proxy
(SOCKS Server)

4. Method-Dependent
Security Handshake

5. AC Request

6. AC Response

7. AC Handshake Complete

8. SOCKS Connection Request

Fig. 6. AC push in SOCKS V5.

A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118 113

during the first connection request, and retrieve it from
an AC cache for subsequent requests. To accommodate
such situations, the AC request and AC reply messages
in the above example are optional. The YAPS client
proxy will only push an AC to the server proxy if an AC
request message is received after the authentication
phase. If the server proxy does not require an AC, an
AC Exchange Complete message is sent to the client
instead, and the client does not push an AC to the
server.

The main advantage of the AC push model is that the
client’s AC is immediately available to the server proxy
for verification, and no additional load is imposed on
the server proxy. YAPS can use ecither AC push or
pull, depending on the implementation. Server imple-
mentations that support AC pull will not use the
“AC Exchange” SOCKS method, but will use
whatever authentication method is selected to establish
the identity of the client for use in the LAAP request
during AC pull.

4. Implementation

We have developed a prototype implementation of
YAPS to demonstrate the system in operation. The
majority of the YAPS implementation was accom-
plished by developing a number of Java™ applications.
Java was chosen as the development language for ob-
vious reasons: portability, reduced development time,
strong typing, and thread support. SSL, cryptographic,
ASN.1/DER and X.509 functionality was provided by
the IAIK JCE and iSaSiLk toolkits (Institute for applied
information processing and communications), whilst
ACL parsing functionality was provided by the JLex
(Berk) and B/'YACC (Jamison) tools.

Our implementation consists of:

1. Certificate issuing applications. The suite consists of
four Java applications responsible for the generation
of self-signed PKCs, CA-signed PKCs and CRLs,
ACs, and use-condition certificates.

2. YAPS proxies. Both YAPS proxies are multi-
threaded Java applications that run on the respective
client/server host and provide the relevant services.
Protocol handler components were implemented for
performing protocol-specific access control, and were
dynamically “plugged in” to the server proxy using
the Java class-loader mechanism.

3. LAAP server. A simple multi-threaded LAAP server
has been implemented to serve ACs to requesting cli-
ents (i.e. YAPS proxies).

Additional functionality such as AC generation/valida-

tion, SOCKS V5 support, and ADFs were implemented

in Java and imported into the applications. The trans-
parent interception of calls to the clients’ WinSock ser-
vice was accomplished by deploying the commercial

SOCKSCap (NEC Networking Systems Laboratory)
product on the client host.

Access control protocol handlers were implemented
on the server proxy for the HTTP, SMTP and POP3
protocols. The prototype was tested with Netscape
Communicator, Internet Explorer and Microsoft Out-
look. Tests were conducted on the Windows 95™ plat-
form, using Pentium II 350 MHz PCs for client, server,
and AC server applications. Performance tests (HTTP)
on the prototype resulted in a measurable access deci-
sion process of 0.1 s with server-proxy AC caching, 0.2 s
for non-cached AC push, and 1.0 s for AC pull (cleartext
LAAP).

5. Discussion and evaluation

The existing security architectures mentioned previ-
ously in this paper involve a trade-off between the
available security services and the transparency to In-
ternet applications. Systems such as SESAME (Kaijser
et al., 1994) provide both secure communications and
authorisation services to Internet applications, but re-
quire the applications to be modified in order to avail of
the services. Proxy-based systems like SafePassage
WebProxy (C2Net Software Inc.) and SafePassage
SecureTunnel (C2Net Software Inc.) operate trans-
parently to applications, but offer secure transport
without flexible authorisation support. We now discuss
how YAPS eliminates this trade-off using the double-
proxy architecture and advanced access control.

5.1. Transparent security services

The YAPS architecture consists of security proxy
applications deployed at both client and server sites. The
YAPS proxies implement security processing on the
communications channel between client and server ap-
plications, and consequently security processing takes
place transparently and without modification to the
communicating applications. Client requests are trans-
parently intercepted by a virtual transport service run-
ning in the client host’s operating system, and are
redirected to the YAPS client proxy as SOCKS V5 re-
quests. Since the interception of client requests takes
place at the transport layer, the client application op-
erates as if it were communicating directly with the
server application. On the server side, the server proxy
acts as a client to the server application. Therefore, the
client and server applications operate as if they were
communicating directly with each other, and are not
aware of the intermediate security processing.

Communications between YAPS proxies are estab-
lished using the de-facto standard SOCKS V5 protocol.
The initial SOCKS messages are used to select a secure
communications protocol and consequent exchanges are

114 A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118

encapsulated in the selected protocol as payload data.
Our implementation uses SSL for secure transport, and
hence the communications channel between proxies is
protected against interception, masquerading and
modification attacks.

5.2. Authorisation support

In addition to transport security services between
proxies, the YAPS architecture was shown to provide a
secure, generic and flexible authorisation service that
reduces security administration and end-user manage-
ment tasks.

5.2.1. Security
The security of any system is only as strong as its

weakest component. The YAPS architecture is a com-

bination of existing and custom-made components, and
the security of these is crucial to the security of the
system as a whole. We now evaluate the security of the
system in four main areas with a view to gaining an
overall view of the intended security level provided by

YAPS:

1. PKI security. YAPS assumes the existence of a PKI
with the appropriate CAs and certificate/CRL repos-
itories in place. The YAPS proxies only accept vali-
dated PKCs issued from trusted authorities. PKC
chains from SSL sessions and the PKCs of AC issuers
that are handled by the YAPS proxies are validated
in accordance with RFC2459 (Housley et al., 1999)
before they are used. The private keys associated with
YAPS applications are stored locally in PKCS12
(RSA Laboratories, 1999) format, and are protected
with a PIN-derived symmetric key.

2. Connection security. Connections between YAPS
proxies are secured with an arbitrary peer-to-peer
transport security protocol that uses X.509 PKCs
for both client and server authentication. Using
SSL or TLS as the transport security protocol will re-
sult in a transport layer that provides authentication,
data privacy and data integrity through strong cryp-
tography. Connections to AC servers via LAAP may
be protected by SSL (although this is not a require-
ment in all cases, it may be used where AC contents
are not to be sent unencrypted over the wire).

3. Authorisation security. User attributes, like public
keys, are protected by an underlying PKI. Access
privileges are represented using X.509 ACs, which
are securely bound to the PKC of an authenticated
user. The resulting AC is protected against fabrica-
tion by a digital signature produced by the (explicitly
trusted) AC issuing authority. Like PKCs, ACs un-
dergo a series of rigorous syntactic and security
checks by the AC verifier component in the server
proxy before they are used in the making of an access
decision.

4. Architectural security. Access to the application serv-
ers containing privileged data is restricted to the
YAPS server proxies using an arbitrary firewalling
technique. This may be done at the server configura-
tion, by using separate TCP wrappers, or by a dedi-
cated firewall. These measures, in conjunction with
a correct network architecture (i.e. “sane” routing),
will prevent the by-passing of the YAPS server proxy
by incoming clients. The basic access policy of what
security protocols to use with incoming clients (in
the SOCKS V5 handshake) is configured at the ser-
ver. Implementing an SSL-only policy (with SSL cli-
ent authentication) will ensure that all incoming
clients are strongly authenticated before any access
decisions are invoked by the protocol handlers.

The intended security level of YAPS is strong. The

strength of the security is dependent of the strength of

the underlying PKI. A PKI that is weak in either con-
figuration, management, or implementation will result
in that weakness being propagated to YAPS and any
other security architectures dependent on that PKI.
The machines that host the YAPS proxies are as-
sumed to be secure in the context that only the YAPS
server proxy administrator can access them. The con-
sequences of an attacker gaining full access to a machine
running a YAPS server proxy would be disastrous.

Completely preventing a hacker who has gained access

to a server proxy from compromising YAPS very diffi-

cult, if not impossible. Our implementation stores pri-
vate key information in an encrypted form (using

PKCS12), and both the ACL and security database are

digitally signed. In a future implementation, one could

take this a step further and use tamper-resistant hard-
ware to store private key information.

5.2.2. Interoperability

The use of ACs for YAPS authorisation services
conforms to the current IETF Internet authorisation
profile. This, in combination with the X.509 standard
ASN.1/DER AC encoding, provides a basis for highly
interoperable privilege representation and promotes in-
teroperability between YAPS and other security archi-
tectures. Since privileges are encoded in the AC data
structure, their use is not limited to a particular appli-
cation or application protocol, but may be exported for
use in third-party open systems.

5.2.3. YAPS management issues
The management and administration tasks required

by YAPS can be broken down into a number of sec-

tions:

1. PKI management. YAPS is built upon an existing
PKI. The management tasks associated with a PKI
exist regardless of whether or not YAPS has been de-
ployed. In a “real-world” PKI deployment, these
tasks include CA management, PKC (and possibly

A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118 115

key) generation, directory management, PKC and
CRL publishing.

2. Proxy management. Each YAPS server proxy main-
tains its own configuration and operates in its own
environment, requiring individual administration.
The way in which YAPS is deployed in front of appli-
cation servers, (i.e. single proxy, multiple servers; or
multiple proxies, multiple servers) determines the
amount of management required. In practice, each
proxy that is deployed will require separate manage-
ment. At worst, the number of applications that re-
quire management doubles (multiple proxies,
multiple servers). At best, management of one addi-
tional proxy is required (single proxy, multiple serv-
ers). Either way, the management of security is
de-coupled from the actual server application and is
done at the proxy(ies), providing a consistent and
uniform security management interface.

3. Application server management. Security and access
control management tasks are delegated to the YAPS
proxy associated with a particular application server.
All other management tasks remain with the applica-
tion server. By migrating security-related tasks to the
proxy, the attribute and policy-based access control
models can be exploited to significantly reduce the
amount of access control administration across all
server applications.

4. Privilege management. YAPS introduces the require-
ment for an AA and an AC server (which, in practice,
are the same application) to produce ACs upon re-
quest. Identity to attribute mappings are managed
at the AC server, (i.e. role and group membership
are assigned to users here) along with the configura-
tion of the AC server itself. If policy-based access
control is used, the management tasks involved in de-
fining access control requirements for particular re-
sources are delegated to the resource owners.

In addition to the management of the underlying PKI

and the server applications themselves, YAPS requires

management of the proxies and the AC server. Whilst
this is an obvious burden on the system administrator,

YAPS compensates by reducing the workload involved

in access control maintenance. YAPS also provides a

consistent interface for security management across

multiple application servers.

5.2.4. Ease of use

The reduction in security administration on the server
side is mirrored on the client side. By using the YAPS
client proxy to handle security, the end-user does not
have to manage numerous security configurations and
passwords across various client applications. The user
need only remember a single pass-phrase in order to
unlock their private key for the client proxy, and use
their applications with a single YAPS configuration to
securely access remote YAPS-protected servers.

5.3. YAPS limitations and workarounds

The YAPS architecture is by no means a perfect se-
curity solution. Whilst YAPS does offer more in terms of
security and flexibility than the existing systems men-
tioned earlier, there are a number of minor drawbacks
associated with the YAPS architecture. We now discuss
these limitations, and we outline possible solutions and
workarounds to these issues.

5.3.1. Routing

In order for the YAPS client proxy to determine
whether a destination server is accessed via a YAPS
server proxy, it must maintain a lookup table mapping
destination addresses to YAPS server proxy “gateway”
addresses. This is analogous to the concept of IP net-
work routing (Tanenbaum, 1996). In environments
where the number of ‘“secure domains” protected by
YAPS server proxies is small, this is a trivial issue.
However, for large networks with many separate net-
works accessed via YAPS server proxies, maintenance
and configuration issues regarding the YAPS lookup
tables become more prominent. The responsibility for
maintaining the correctness of the routing tables falls on
the end-user, contradicting the goal of reduced end-user
management tasks in the first place.

An interesting solution to this problem involves re-
mote configuration. Upon startup, the YAPS client
could connect to a local LAAP server and download a
lookup table encoded in an AC issued by the local
system administrator. In addition to removing the re-
sponsibility of routing table management from the end-
user, the routing table configuration is protected against
fabrication.

Another routing-related problem arises when “bind”
requests are made by the client application. When this
occurs, the client proxy cannot always determine
whether to bind to a local port, or to relay the request
to a server proxy. Moreover, if multiple routing entries
exist for multiple server proxies, the client cannot de-
termine which proxy the bind request must be relayed
to. One possible solution to this problem is for the
client proxy to anticipate whether or not to forward
the bind request based on the state of existing con-
nections opened by the same application. For example,
examination of run-time logs produced by SOCKSCap
has shown that, when FTP clients make a bind request
to accept file data from a download request, SOCK-
SCap recognises the existing FTP control connection
and consequently relays the request to the appropriate
proxy so that the FTP data channel can be secured.
This solution only works for protocols that firstly es-
tablish a connection with a remote server application
using a “‘connect” request, and would not work for
more complicated protocols that may not use an initial
outgoing connection.

116 A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118

5.3.2. SOCKS V5

YAPS relies heavily on SOCKS VS5 and is therefore
restricted by limitations imposed by the SOCKS pro-
tocol itself. One such limitation is the inability of
SOCKS V5 to proxy incoming UDP datagrams. An-
other limitation is the fact that SOCKS can only proxy a
single incoming TCP connection per request. As previ-
ously mentioned, IETF work is underway with the aim
of resolving these issues in a next-generation SOCKS
protocol (IETF Authenticated Firewall Traversal
Working Group, 1999). The fact that SOCKS V5 is used
by YAPS for inter-proxy communications also means
that the security functionality used by the YAPS client
proxy cannot be used to secure communications with,
say, publicly-accessible web servers that rely on SSL (i.e.
without SOCKS) for secure communications. This is
effectively an implementation issue, and could be re-
solved by implementing the client proxy such that it will
provide direct SSL-enabled communications to desti-
nation servers that have well-known SSL port numbers.

If advanced access control was required by existing
web servers without using SOCKS, a YAPS proxy on
the server side could be deployed, which would not use
SOCKS V5 at all, but would use HTTP over SSL and
only perform AC pull to obtain client ACs.

5.3.3. Reliability and load balancing
The use of a single proxy gateway to server appli-

cations introduces both performance and reliability

factors.

If a YAPS server proxy was to encounter a failure,
the server applications would not be reachable until the
problem is rectified. To minimise service disruption,
backup mechanisms can be put in place in the event of a
server proxy failure. Secondary YAPS servers can be
deployed at the appropriate locations, and their services
can be invoked by client proxies if the primary server
proxy does not respond in a certain amount of time.

Using a single server proxy as a gateway to multiple
server applications has an impact on the performance of
YAPS, as the single server proxy effectively becomes a
performance bottleneck. To alleviate this, YAPS can be
distributed to balance the load across multiple servers.
This can be done using either of two techniques:

1. Proxy per server. This is the most straightforward
way to implement load balancing with YAPS. Instead
of maintaining a single YAPS server proxy for all ser-
ver applications, each server application is protected
by a dedicated YAPS server proxy, and this distribu-
tion is visible to incoming clients. For example, two
web servers: webservl.cs.may.ie port 80 and web-
serv2.cs.may.ie port 80 could be protected by two
YAPS proxies residing on proxyl.cs.may.ie port 80
and proxy2.cs.may.ie port 80. Distributing YAPS in
this manner eliminates the bottleneck created by a
single server proxy for both server applications. The

downside to distributing YAPS in this manner means

that the amount of configuration administration in-

creases linearly for each server application, since each

YAPS server proxy maintains its own security dat-

abase, ACL and system configuration. In addition,

the routing configuration of the client must be up-
dated to route requests to the web servers via the cli-
ent and server proxies.

2. Proxy per server with dispatching. In some cases, a
single server application may have its load distributed
across multiple physical machines, each running a
replicated copy of the server application (i.e. a “web
farm’). Distributing YAPS in this manner is a com-
plex task. One cannot simply apply round-robin
DNS or some other form of network-layer load bal-
ancing solution, as this will not work with session-
based protocols such as SSL or with application pro-
tocols that maintain state information (i.e. HTTP and
cookies). Applying off-the-shelf application-layer
distribution products such as Arrowpoint CS-800
(Arrowpoint Communications) will not work as
they would require SOCKS compatibility and logic
to handle the AC push.

A possible solution in this case is to implement a
YAPS “dispatcher” server-side proxy that will select
which of the replicated proxies is to deal with a partic-
ular request. Once selected, the dispatcher would act as a
transport-level gateway passing encrypted traffic back
and forth between client and server proxies. In order to
keep application-level sessions intact across subsequent
connections, the dispatcher can keep a record of appli-
cation servers and any associated sessions that may be
been established. The only application protocol inde-
pendent session information available to the dispatcher
is available from the security layer (i.e. the SSL session
ID). This assumes that the transport security protocol is
session-based. In addition, distribution based on the
content of the application data is not possible since the
dispatcher cannot decrypt it. application data.

The provision of a reliable YAPS service follows the
same pattern as the dispatching service discussed above.
In addition to the relaying of connections between in-
coming clients and actual YAPS server proxies, the
dispatcher could be used to periodically probe all of the
server proxies in the farm, and would redirect incoming
connections to a working server proxy in the event of a
failure.

5.3.4. Resource and operation abstractions

In order to achieve a high degree of application
protocol independence, the YAPS ADFs use the notion
of abstract resource and operation pairs in both the API
exported to the protocol handlers and the server proxy
ACL. Whilst abstract resources are handled using URLs
(which, by their definition, are protocol independent),
the notion of the abstract operation is still an issue that

A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118 117

YAPS has left open. YAPS does not try to make an
abstraction of operations, but uses application-protocol
specific operations in the ACL such as GET, POST, and
PUT (for HTTP), which are compared to the protocol-
specific operations passed to the ADFs from the pro-
tocol handlers. This requires an intimate knowledge of
application protocols by YAPS server proxy ACL ad-
ministrators. Simple abstractions such as read and write
may not be sufficient as application protocols become
more complex, and the abstract operation concept needs
more study.

5.3.5. Performance

The fact that communications are diverted and rou-
ted through numerous proxy applications means that
extra propagation delays are introduced into client—
server communications. These propagation delays, in
addition with the secure communications and authori-
sation overhead, contribute to an overall decrease in
client-server communications performance. However,
the results obtained from our experiments (see also,
Dowling, 1999) have shown that this impact is by no
means severe. Nonetheless, minimising the performance
degradation is an ongoing task, and one can only aim to
improve performance via the use of more efficient soft-
ware techniques, load balancing and accelerated hard-
ware. Whilst YAPS introduces some performance
degradation, it does provide much in return for the extra
communications overhead. YAPS has been shown to
provide secure transport, secure authorisation, fine-
grained access control with reduced administration,
application-protocol independence and high interoper-
ability potential.

5.3.6. Evaluation summary

The routing issues, in addition to the dependency on
SOCKS VS5, restricts the use of YAPS to confined en-
vironments. Whilst YAPS, in its present form, cannot be
used to strengthen communications to publicly-accessi-
ble SSL-enabled servers, it is ideally suited to the secu-
rity needs of an extranet/VPN environment.

However, before being deployed in a real-world ex-
tranet environment, further YAPS development is re-
quired in the area of use-condition certificate distribution.
The current system uses a local use-condition database. A
more realistic approach would be to have users publish
use-conditions to a directory and to integrate directory
access logic into the YAPS server proxy for this purpose.
To improve system performance and reliability, a load
balancing solution can be put in place.

6. Conclusion and further research

We have designed and implemented the platform-in-
dependent YAPS architecture to transparently provide

secure transport and authorisation services to existing
Internet applications in a way that requires no modifi-
cation to the applications. We have described YAPS in
terms of its architecture and we have discussed its op-
eration in the context of an intranet/extranet environ-
ment. In summary, the YAPS project has achieved its
goals at the expense of introducing some new issues
regarding routing, performance and the proxying of
UDP-based applications.

Whilst YAPS uses proxies to provide secure transport
and authorisation services, the proxy architecture could
be exploited further to provide additional high-level
security services. The YAPS proxies could also be ap-
plied to the provision of content-filtering services. The
protocol handler components could be used at both the
client and server sites to filter application-specific data
for inappropriate content, application-level attacks,
and/or virus infection.

There is scope for further work in the area of trust
policy and security configuration. Whilst YAPS uses
ACs to representing access privileges in a standardised
manner, the YAPS security policy is maintained using
custom representations for ACLs, trusted CAs and
trusted AAs. A standardised mechanism for represent-
ing security policy would provide even greater intero-
perability benefits. Corporate security policies could be
formally specified using an appropriate syntax by the
responsible authorities and the correct security config-
uration could be generated from the policy encoding.

Further work regarding the standardisation of au-
thorisation frameworks is underway in IETF working
groups (Farrell et al., 1999). Work is also underway
regarding the development of a generic authorisation
API for applications (Ryutov and Neuman, 1999;
DASCOM). This work will play a positive role in the
further development of the YAPS architecture. A stan-
dardised authorisation framework will allow the com-
munication and externalisation of access rights between
YAPS proxies and third party applications, whilst a
generic authorisation API will provide a platform for
developers to write YAPS protocol handlers for both
standard and proprietary application protocols.

References

Arrowpoint Communications. CS-800 Content Smart Web Switch.
http://www.arrowpoint.com/index.html.

Berk, E. JLex: A Lexical Analyzer Generator for Java. Version 1.2.3.
http://www.cs.princeton.edu/~appel/modern/java/JLex.

C2Net Software Inc. SafePassage SecureTunnel. http://www.c2net.
com.

C2Net Software Inc. SafePassage WebProxy. http://www.c2net.com.

Claessens, J., Vandenwauver, M., Preneel, B., Vandenwalle, J., 1998.
Setting up a secure web server and clients on an Intranet. In IEEE:
Seventh International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Stanford University,
CAlifornia, June, pp. 295-300.

118 A. Dowling, J.G. Keating | The Journal of Systems and Software 58 (2001) 107-118

Dierks, T., Allen, C., 1999. The TLS protocol version 1.0. IETF
Transport Layer Security Working Group RFC 2246, January.

DASCOM. IntraVerse Authorisation API. http://www.dascom.com.

Dowling, A., 1999. A proxy-based security architecture for internet
applications. MSc. Thesis (Mode I), National University of
Ireland, Maynooth, July.

European Computer Manufacturers Association (ECMA), 1996.
Standard ecma-219. Authentication and privilege attribute security
application with related key distribution functions — Part 1, 2, and
3, March.

Farrell, S., 1998. TLS extensions to AttributeCertificate based autho-
rization. IETF Transport Layer Security Working Group Internet
Draft, August.

Farrell, S., 1999. An internet AttributeCertificate profile for authori-
zation. IETF Public Key Infrastructure (PKIX) Working Group
Internet Draft, October.

Ferraiolo, D.F., Kuhn, R., 1992. Role based access controls. In: 15th
NIST-NSA National Computer Security Conference, Baltimore,
MD, October, pp. 554-563.

Freier, O., Karlton, P., Kocher, P., 1996. The SSL protocol version
3.0. IETF Internet Draft, November.

Farrell, S., Vollbrecht, J., Calhoun, P., Gommans, L., Gross, G., de
Bruijn, B., de Laat, C., Holdrege, M., Spence D., 1999. AAA
authorisation requirements. IETF Authentication, Authorisation
and Accounting Working Group Internet Draft, October.

Housley, R., Ford, W., Polk, W., Solo, D., 1999. Internet X.509 public
key infrastructure certificate and CRL profile. IETF Network
Working Group RFC 2459, January.

IETF Authenticated Firewall Traversal Working Group, 1999. http://
www.socks.nec.com/mail/aft/index.html.

Institute for applied information processing and communications
(IAIK), Graz University of Technology, Austria. Java Security
Libraries: JCE v2.5.1 and iSaSilK v2.5. http:/jcewww.iaik.
tu-graz.ac.at.

ITU Recommendation X.509, 1997 E. Information Technology —
Open Systems Interconnection — The Directory — Authentication
Framework, June 1997.

Jamison, B. BYACC/JAVA version 0.91.http://www.lincom-asg.com/
~rjamison/byacc/.

Johnston, W., Mudumbai, S., Thompson, M., 1998. Authorization
and attribute certificates for widely distributed access control. In:
IEEE: Seventh International Workshops on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises, Stanford Uni-
versity, CA, June.

Johl, J., Neumann, C., 1993. The Kerberos network authentication
service (V5). IETF Common Authentication Technology Working
Group RFC 1510, September.

Kaijser, P., Parker, T., Pinkas, D., 1994. SESAME - the solution to
security for open distributed systems. Comput. Commun. 17 (7),
501-518.

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L., 1996.
SOCKS protocol version 5. IETF Authenticated Firewall Traversal
Working Group RFC 1928, April.

NEC Networking Systems Laboratory. SOCKSCap. http:/
www.socks.nec.com.

RSA Laboratories, 1999. PKCS 12 v1.0 — Personal Information
Exchange Standard, June.

Ryutov, T., Neuman, C., 1999. Generic authorization and access
control application program interface C-bindings. IETF Common
Authentication Technology Working Group Internet Draft, June.

Tanenbaum, A.S., 1996. Computer Networks, third ed. Prentice-Hall,
Englewood Cliffs, NJ.

Yeong, W., Howes, T., Kille, S., 1995. Lightweight directory access
protocol. IETF Network Working Group RFC 1777, March.

Mr. Andy Dowling is a lecturer in the Department of Computer Sci-
ence, National University of Ireland, Maynooth, Ireland. He com-
pleted his B.Sc. and M.Sc. degrees in 1998 and 1999, respectively, both
in the area of Computer Science. His main interest is in the field of
information and application security. Andy has worked on informa-
tion security projects for several multi-national companies, including
Siemens and Baltimore Technologies.

Dr. John Keating is a senior lecturer in the Department of Computer
Science, National University of Ireland, Maynooth, Ireland. He
completed his B.Sc. and Ph.D. degrees in 1986 and 1990, respectively.
He has co-ordinated several funded national and international pro-
jects, and has published research papers mainly in the areas of Neural
Networks and Information Processing.

