
www.inViVoVision.com

1

A Framework for the Maintenance and Evolution of ePolicy-guided
Web Applications

S. Bergin
Department of Computer Science
National University of Ireland, Maynooth
Email: susan.bergin@may.ie

J.G. Keating
Department of Computer Science
National University of Ireland, Maynooth
Email: john.keating@may.ie

M. Masullo
InViVoVision, Inc.
Connecticut, USA
Email: drmasullo@invivovision.com

A. Benoit
Department of Computer Science
National University of Ireland, Maynooth

INFORMS
Institute for Operations Research and the Management Sciences
Group Decision and Negotiation 2005
University of Vienna
Vienna, Austria
July 10 – 13, 2005

Abstract

In this paper we present an “ePolicy framework” that can be used to develop transactional-based
ePolicy-guided Web applications. This framework incorporates a non-proprietary component
based architecture, a well-defined standards-based user interface, a structured representation of
ePolicies, ePolicy operations and user input data, and incorporates a maintenance management
component. Each component is self-contained and can therefore be independently maintained.
ePolicies and associated ePolicy operations are not embedded in the system software but are
stored centrally in an external store (Policy Repository) and are dynamically loaded as required.
Executable code (marshalled from XML) is automatically generated from the ePolicies and the
ePolicy operations and used in policy-guided evaluation. The Policy Repository, accessible by
suitably privileged components, removes ePolicy duplication and from a maintenance perspective,
this approach reduces the possibility of errors being introduced by data duplication. Updates to
ePolicies are seamlessly applied the next time an ePolicy is loaded. ePolicies are represented in a
standard uniform format and as all components use this uniform format, maintainers do not need
to understand or handle multiple data formats. They are represented using a policy hierarchy
composed of three layers: meta-ePolicies, ePolicy-groups and ePolicies. Each of the components
is designed using Object-Oriented principles. Our ePolicy framework will work in a centralized or
distributed environment. We believe that using our framework to develop ePolicy-guided
evaluation systems will reduce data maintenance and expedite software evolution.

Keywords: ePolicy, ePolicy-guided evaluation, maintenance, evolution

1. INTRODUCTION

Web systems can be classified as web sites and web applications. Web sites refer to online
document repositories while web applications refer to information systems working through a web
interface [1]. Web applications can be further categorized according to their content, for example,
information driven applications (online books, digital libraries etc.), interactive applications (games,

www.inViVoVision.com

2

customized presentations etc.), transaction-based applications (electronic shopping, banking etc.),
workflow applications (inventory management, scheduling systems etc.), collaborative work
environment applications (distributed authoring tools, collaborative design tools etc.), online
community applications, (marketplaces, chat groups etc.) and web-portal applications (electronic
shopping malls, online intermediaries etc.) [2]. Architecturally, web applications tend to involve a
web server, a network, the HTTP protocol and a web browser, and can be medium-to-large in
scale, involve sophisticated interactions between users and databases, and often require frequent
and fast updates [3]. In addition, they often employ numerous presentation formats for the user
interface, and also multiple communications channels and multiple data formats at the server-side.
As a result, web application development and maintenance requires a good understanding of a
variety of heterogeneous tools, technologies and concepts. These include HTTP protocol
handling, persistent storage, security technologies, session management, dynamic content
creation, presentational abstraction and flexible legacy system wrapping [6]. Given that web
applications often require numerous swift updates, the application should be based on a careful
design and a flexible architecture, or it quickly becomes very difficult to maintain [7] [8]. As web
applications are typically not built using sound engineering principles [9] [10] we can expect that
their maintenance and evolution can often be difficult.

Our earlier research was concerned with designing web-applications to reduce the maintenance
effort as well as modelling the maintenance effort involved in changing a web application to reflect
changes in the real-world [4]. In this paper we describe an ePolicy framework that we believe will
greatly reduce the maintenance effort involved in web applications. This framework is particularly
suitable to transactional-based web applications, such as online trading stores. In the rest of this
paper, we present our ePolicy-guided framework, provide an overview of the current architecture
and suggest development technologies. We present a critique of our framework and finally provide
a supporting example, using a typical online trading example.

2. ePOLICY FRAMEWORK

A framework is a system that can be customized, specialized or extended to provide more
specific, more appropriate or slightly different capabilities [11]. Application-specific frameworks
cover precise domains, are highly reusable and significantly reduce the amount of development
required to deploy further customized applications [12]. We propose an “ePolicy framework” that
can be used to design transactional-based web applications that incorporate a non-proprietary
component based architecture, a well-defined standards-based user interface, a structured
representation of software processing, software logic, policies and user input data, and
incorporates a maintenance management component.

In our framework, a policy or more precisely an electronic policy (ePolicy) should be understood
as rules, guiding principles, rules-of-thumb and other similar decision-making tools. These
ePolicies may be used to make electronic decisions based on electronic transactions. For
example, in an online store ePolicies could be applied to a customer order to determine if a
particular sale should be allowed or not. The decision making process is composed of several
stages. Firstly, a user (for example, a customer) will provide the necessary input data to the
system. This input data acts as a trigger that initiates a decision-making process. A component in
the framework will retrieve the ePolicy or ePolicies relevant to the decision. A framework
component will carry out the evaluation process and reach a decision. This decision will be
enforced by the system and the user will be notified of the result.

www.inViVoVision.com

3

Our framework is composed of several interconnected components. Each component is self-
contained and can therefore be independently maintained. In our framework, the ePolicies and
associated ePolicy operations are not embedded in the evaluation software but are stored
centrally in an external store and are loaded as required. This repository, accessible by suitably
privileged components, removes ePolicy duplication and from a maintenance perspective, this
approach reduces the possibility of errors being introduced by data duplication. If an ePolicy
changes, an update is only required once and at a centralized location. This update is seamlessly
applied the next time the ePolicy is loaded. ePolicies are represented in a standard uniform
format and as all components use this uniform format, maintainers do not need to understand or
handle multiple data formats.

ePolicies are represented using a policy hierarchy composed of three layers: meta-ePolicies,
ePolicy-groups and ePolicies. A meta-ePolicy outlines the ePolicy groups (named logical sets of
ePolicies) relevant to a particular decision and each ePolicy-group in turn outlines the particular
ePolicies that should be applied when making a decision. In small systems, ePolicy-groups may
not be necessary in the hierarchy and meta-ePolicies can reference ePolicy instances directly.
Additionally, a meta-ePolicy can provide other relevant ePolicy information, for example, it can
specify where a relevant ePolicy group(s) is stored in a distributed architecture and it also can
specify a priority level for an ePolicy instance or an ePolicy group. This priority level is used when
ePolicies conflict during the evaluation process. An ePolicy with a higher priority will be successful
in a conflict.

The structure of ePolicy operations, currently including, and, or, not, equal, greater than, less than,
elementOf, subsetOf, isFirst, isLast, isValidDate, to be applied in the evaluation of ePolicies are
also stored externally and loaded into the relevant evaluation component as required.
Consequently, if an ePolicy operation changes, modification is only required in a single centralized
location and the ePolicy-guided evaluation process does not any further modification. If a new
ePolicy operation is introduced and its structure is not currently defined in the system, then the
respective ePolicy-guided evaluation component would have to be modified to handle this new
structure. However, our framework is sufficiently flexible so that new evaluation components can
be dynamically loaded and unloaded without affecting any other components.

Meta-policies, ePolicy groups, ePolicies and ePolicy operations may be distributed across a
network since policies can often originate from different jurisdictions: legal policies, social policies,
organizational policies, etc. The syntactic structures of meta-policies, ePolicy groups, ePolicies
and ePolicy operations are represented by well-defined, structured grammars. In addition, the
user-input data is translated into a well-defined user request grammar. Well-defined structures
also help to reduce the maintenance effort as the maintainer only needs to understand a standard
syntax and does not need to translate changes to any other formats or languages.

Our ePolicy framework will greatly reduce the maintenance effort involved in web applications
given its, standard structured grammatical representation, separation of independent role-based
components, separation of ePolicies, ePolicy operations and supporting software, highly-
organized policy hierarchy and standard representation of input data. ePolicies and ePolicy
operations can be easily created, updated and removed and new components can be seamlessly
integrated into the framework without requiring the existing ePolicy and ePolicy operations
structure to change.

www.inViVoVision.com

4

3. Framework Overview

In this section we present a technical overview of the current architecture for our ePolicy
framework for web applications. We describe each of the components in detail and outline the
interaction between each component. We present a critique of our framework and describe the
maintenance effort involved in changing a system designed using the framework to reflect
changes in the application domain.

As outlined in the previous section our ePolicy framework employs a separate component for each
role in the decision-making process. Each of the components are designed using Object-Oriented
principles [5]. Techniques such as inheritance, abstraction and polymorphism are used to facilitate
code reuse, ensuring minimal code development by system maintainers. Our framework is
composed of one or more of the following components: a Request Handler (RH) component,
which accepts user requests and delivers dynamic responses; a Policy Enforcement Point (PEP)
component, responsible for invoking the ePolicy-guided evaluation process and enforcing the
outcome; a Policy Evaluation Logic (PEL) component which carries out the evaluation process
using the user input data, the ePolicies and the ePolicy operations; a Policy Repository (PR)
component, which stores the meta-ePolicies, ePolicy-groups, ePolicies and ePolicy operations; a
Policy Distribution Point (PDP) component which keeps track of distributed PR’s and a Policy
Maintenance Management (PMM) component which can be used to carry out maintenance on
framework components, ePolicies and ePolicy operations.

A Policy Maintenance Manager (PMM)
component carries out maintenance tasks on
PR’s, PEL’s and PEP’s in its jurisdiction. A
PMM interacts exclusively with its own PR. If a
PMM requires an update to a PR in a different
jurisdiction it can contact the controlling PMM
and register an update request. The PMM is
specifically responsible for: handling all
updates (creation, removal and modification) of
ePolicies, meta-policies, ePolicy-groups and
ePolicy operations; receiving requests from
and sending requests to other PMM’s for
updates to PR’s and finally, facilitating
requests when appropriate and responding
accordingly to a calling PMM. The general role
of a PMM is shown in Figure. 1. The typical
interaction in a decision-making process
between a user, an RH, a PEP, a PEL and a
 PR is shown in Figure. 2 and is not elaborated
further in this paper. Figure 1. Role of a PMM

Our ePolicy framework will work in a centralized or distributed environment. In a distributed
environment an RH can communicate with many PEP’s, a PEP can communicate with many
PEL’s and a PEL can communicate with many PR’s. A PMM will only ever communicate with PR’s
in its own jurisdiction directly, where necessary it will request changes on another PR via that PR’s
controlling PMM. We promote the design of a user friendly GUI-driven PMM to assist a maintainer
with maintenance tasks. Meta-policies, ePolicy groups, ePolicies and ePolicy operations are never

www.inViVoVision.com

5

permanently removed or overwritten during the development and maintenance process. They are
time-stamped and stored in an archive repository. This facilitates version control and auditing of
ePolicies and ePolicy operations.

When an ePolicy is archived, relevant ePolicy groups (or meta-ePolicies in smaller system) are
updated to use the new updated ePolicy. A Policy Distribution (PD) component can be included in
large or complex distributed systems that use many local and remote PR’s. The role of a PD
component is to keep track of PR locations. Each of the components is self-sufficient and as such
can be maintained independently. Each component makes its behaviour available through a
publicly accessible interface while the implementation of this behaviour is deployed separately.
This means that clients do not need to be informed when the internal implementation of a
component changes.

We have developed a supporting
architecture for our ePolicy
framework. Like ebXML [14], UBL
[14] and other similar ebusiness-
focused projects we make use of
the Extensible Mark-Up Language
(XML) [13] in our framework. Indi-
vidual ePolicies, meta-ePolicies
and ePolicy operations are
represented using XML and their
syntactical structure is represented
using XML Schemas [13]. This is
important from a maintenance
perspective as it means that all
applications only need to
understand a single uniform
format.

HTTPS is used to provide a secure
channel for sending and receiving
information between a users
Internet browser and the RH. The
RH delivers XHTML 1.0 compliant
web content and presentation is
provided through W3C validated
Cascading Stylesheets (CSS) [13].
Session management and dynamic
content creation are achieved
using Java Servlet Technology
[15]. The RH converts the user
input information into an XML
instance that complies with a
Interaction strictly defined XML
schema, the input data is then
known as an eTransaction.
 Figure 2. Policy Framework

www.inViVoVision.com

6

We use XML as it is exportable, interchangeable and standard-based. The RH component is
written in Java and uses Apache’s Tomcat Servlet engine [16].

The PEP and the PEL are written in Java. Framework components use Java’s Socket Technology
to send and receive requests (except user requests, which use HTTPS. We have further defined
the PEL into two separate components, a Policy Group Checker (PGC) and a Policy Checker
(PC). The PGC interacts with the PR to get each of the ePolicies. It sends each of the ePolicies to
the PC to be evaluated and the PC returns an outcome for each ePolicy to the PGC. The PGC
uses the priority levels

associated with each of the ePolicies to reach an overall outcome. The PR uses the Castor Java-
XML data-binding framework [17], to map the XML documents (eTransaction, ePolicies, meta-
policies, ePolicy groups and ePolicy operations) to Java representations. XML documents are
unmarshalled to Java objects and XML schemas are unmarshalled to Java classes. The Java
objects are used in the evaluation process. When a new XML Schema is introduced our
framework uses Castor to automatically generate Java classes to represent the elements in the
schema. Each class generated includes suitable accessor and mutator methods and a default
constructor. This can significantly reduce the amount of effort associated with introducing new
data structures.

The PR uses Xindice [18] to store all the ePolicy and associated documents. Xindice is an open
source project for storing XML documents. The PMM is a GUI-based component that interacts
securely with the PR. The PR uses Java’s Reflection package to dynamically determine the
methods to invoke to send an ePolicy, ePolicy-group or meta-ePolicy. The GUI allows maintainers
to easily retrieve and modify policies from the PR. As previously outlined, the original files are
never overwritten or removed. When a maintainer needs to alter an ePolicy document, a copy of
the document is made and dated and sent to an archive repository for version control and future
auditing. In our prototype system we use the same Xindice server to store archived documents.
When a maintainer submits files an updated document it is parsed to detect if it complies with its
schema. If an error is found the maintainer is informed and requested to resubmit a correct
document. This eliminates the possibility of an error or potential bug being passed to other
components in the system.

We have identified the likely changes that would be required to web applications developed using
our ePolicy framework to reflect changes in the application domain. We have determined that the
types of change typical in our ePolicy framework are: a new ePolicy is introduced and the system
must be updated to include this new ePolicy; an ePolicy operation associated with a particular
ePolicy changes and the system must be updated to reflect the changed operation; a new ePolicy
operation is introduced and the system must be updated to include this new operation; an ePolicy
is moved to a Policy Repository in the same jurisdiction and an ePolicy is moved to a Policy
Repository in a different jurisdiction.

When a new ePolicy is introduced into the framework the relevant meta-ePolicy must be updated
to reference this change. No changes are required to any of the components (PEP, PEL, RH, PR,
PMM). The PEL will automatically adapt to include the new ePolicy when the meta-ePolicy is next
loaded. As ePolicies are highly organized structures and are very clearly defined, creating new
ePolicies is a straightforward task and the level of human errors introduced by the maintainer
should be reduced. As the PR will automatically check the structure of a recently added ePolicy
the possibility of an error being passed to any other part of the system is eliminated. When an

www.inViVoVision.com

7

operation associated with a particular ePolicy changes the ePolicy must be modified to refer to the
new operation. This is straightforward as ePolicy operations conform to a well-defined systematic
structure. No other component or ePolicy structure requires updating. The PEL will adapt to the
new operation when the ePolicy using this operation is next evaluated.

Introducing a new ePolicy operation requires the most maintenance, in that a PEL using this
operation must be modified, however, it will not require any new ePolicies to be created. A new
ePolicy operation will have to be defined and any applicable PEL’s will have to be updated to
handle this new operation. As the PEL is designed using Object-Oriented techniques such as
inheritance, the PEL can be easily extended to handle this new operation. As the PEL is a fully
independent component no other component must be made aware of the changes. When an
ePolicy is moved to a PR in the same jurisdiction the meta-Policy must be updated to reflect the
new ePolicy location. In larger systems where a PD component is in place, it will need to be
updated to reflect the new location. Finally, when an ePolicy is moved to a PR in a different
jurisdiction the meta-ePolicy must be updated to reflect the new ePolicy location. In larger systems
where a PD component is in place, it too will need to be updated to reflect the new location. The
PMM will not require any change. The PMM only ever attempts to update ePolicies located in its
own PR’s. If it cannot find an ePolicy in one of it’s local PR’s it sends a request to the PMM at the
location specified in the ePolicies meta-ePolicy and request’s it to carry out an update.

Each of the above scenarios shows that our framework is sufficiently flexible to handle change.
The ePolicy framework can be easily and efficiently used to develop and customize similar
systems. The architecture is well defined and easy to deploy. The components can be
independently developed and integrated. As the components are designed using functional
decomposition techniques, the long-term maintenance effort required is reduced. ePolicies are
stored in a centralized ePolicy store; therefore a developer does not need to be concerned with
deploying multiple distributed policies. There is no need for a developer to understand many
heterogeneous technologies or have any knowledge of proprietary languages in order to develop
similar systems. As the PEL only uses a standardized interchangeable technology, such as XML,
multiple communication formats do not need to be handled.

4. WORKED EXAMPLE

To provide an initial prototype for our framework we used a typical online application: an online
wine distribution company operating in the USA. This scenario demonstrates different types of
policies typical of this kind of trading: organizational policies, legal policies and social policies. For
example, although various shipping methods may be available, the organizational ePolicy might
only allow the use of insured courier; while legal policies might dictate that shipments can only be
made to certain states or countries and a social ePolicy indicates that we should not allow a visibly
intoxicated person to sign the delivery note. The online wine distribution company used in the
prototype sells wine internationally and subsequently must take account of international policies.

Some examples of the ePolicies associated with the wine distribution company are outlined below.
A consumer can purchase a minimum of two cases and a maximum of eight cases of the same
bottle of wine per transaction.
Under national and overseas law, wine cannot be sold to a minor. By placing an order on-line the
purchaser is confirming that they are above the minimum age to purchase wine according to their
national law.
The company distributes to the world with a single shipping method.

www.inViVoVision.com

8

The company will not ship to ‘bad’ clients (clients with poor payment records), or clients with
outstanding accounts. Clients have a 30-day credit period.
Shipping costs do not include any local duty or taxes that may be payable to import wine.
The company operates a replacement ePolicy based on credit per bottle returned against next
order.

We have evaluated the maintenance effort required to change our prototype to reflect the five
likely maintenance cases described previously and present a summary of each maintenance case
next.

Case: A new ePolicy is introduced and the system must be updated to include this new ePolicy.
Description: To evaluate this case we introduced a new ePolicy that “ no wine is shipped on
Fridays as the company cannot control the storage of the wine over the weekend (shipping
ePolicy)”.
Discussion: A new ePolicy had to be created to represent this new policy instance. This is
straightforward as an existing ePolicy (we only ship by an insured courier) has exactly the same
structure and can be copied, edited and reused. As ePolicies are highly organized structures and
are very clearly defined, a new ePolicy can easily be created and integrated even if it is not similar
to an existing ePolicy. The meta-ePolicy for an order transaction must be edited to include this
new ePolicy. This requires a new element to be added to the meta-ePolicy that outlines the
location and priority associated with the new ePolicy however, this is easy as existing syntax can
be re-used. No changes are required to any of the components (PEP, PEL, RH, PR, PMM). The
PEL will automatically adapt to include the new ePolicy when the meta-ePolicy is next loaded.
When the PEL requests the new ePolicy from the PR, the PR automatically unmarshalls the
ePolicy to a Java object. This Java object will have the methods generated by Castor from its
schema.

Case: An ePolicy operation associated with a particular ePolicy changes and the system must be
updated to reflect the changed operation.
Description: To evaluate this case we changed the ePolicy “A consumer can purchase a
minimum of two cases and a maximum of eight cases of the same bottle of wine per transaction”
to “A consumer can purchase two and only two cases of the same bottle of wine per transaction”.
Discussion: In this case the operation must change from an elementOf (a list) to equals and the
ePolicy must be updated to reflect an equals operation. As the equals operation is clearly defined
in a schema document this should be a straight forward. The PR will store the updated ePolicy
and the old ePolicy will be archived. No other component or ePolicy structure requires updating.
When the PEL requests the ePolicy from the PR, the PR will unmarshall the updated ePolicy to a
Java object and this object will have the methods automatically generated by Castor that are
associated with an equals operation. The PEL will automatically adapt to the new operation when
the updated ePolicy is next evaluated.

Case: A new ePolicy operation is introduced and the system must be updated to include this new
operation.
Description: To evaluate this case we introduced a new operation isValidDate into our system.
This operation would be used to check if a date is within a valid range and could be used by an
ePolicy that offered promotions or discounts for orders placed within certain dates.
Discussion: Introducing a new ePolicy operation requires the most maintenance effort. A new
ePolicy operation will have to be defined to represent isValidDate and this operation will have to
be added to the ePolicy operations structure. The PEL will have to be updated to handle this new

www.inViVoVision.com

9

operation. As the PEL is designed using Object-Oriented techniques such as inheritance, the PEL
can be easily extended to handle this new operation. In addition as the PEL is a fully independent
component no other component must be made aware of the changes. When an ePolicy that uses
this operation is next loaded the PEL will automatically handle the new operation and no further
modifications will be required.

Case: An ePolicy is moved to a Policy Repository in the same jurisdiction.
Description: As our prototype only requires a single PR we hypothesis the maintenance effort
involved in this task.
Discussion: The meta-ePolicy must be updated to reflect the new ePolicy location. No other
changes are required.
Case: An ePolicy is moved to a Policy Repository in a different jurisdiction.
Description: As our prototype only requires a single PR we hypothesis the maintenance effort
involved in this task.
Discussion: The meta-ePolicy must be updated to reflect the new ePolicy location. No other
changes are required.

5. CONCLUSIONS

We presented a component-based framework that reduces the maintenance effort involved in
evolutionary systems such as web applications. In our framework ePolicies and associated
ePolicy operations are not embedded in the evaluation software but are stored centrally in an
external store and are loaded as required. If an ePolicy changes, an update is only required once
and at a centralized location. ePolicies are represented in a standard uniform format and as all
components use this uniform format, maintainers do not need to understand or handle multiple
data formats. We have shown how communication takes places between each of the components
and have presented the technologies currently used to deploy this architecture. In addition we
have provided a supporting example of an online trading store and have shown the minimum
amount of maintenance effort to change the system to reflect changes in its domain.

6. REFERENCES

1. Comallen J. Modeling Web Application Architectures with UML. Communications of the
ACM 1999; 42 (10):63–70.

2. Ginige A, Murugesan S. Web Engineering: An Introduction. IEEE Multimedia 2001; 8
(1):14–18.

3. Pressman R. What a Tangled Web We Weave. IEEE Software 2000; 17 (1):18– 21.
4. Bergin S, Keating J. A case study on the adaptive maintenance of an Internet application.

Journal of Software Maintenance and Evolution 2003; 15 (4):245– 264.
5. Booch, G. Object-oriented Analysis and Design with Applications (OBT). Second Edition,

Addison Wesley Professional: Boston, MA, 1994.
6. Zdun U. Reengineering to the Web: A Reference Architecture. Proceedings 6th European

Conference on Software Maintenance and Reengineering, CSMR 2002. IEEE Computer
Society: Los Alamitos CA, 2002; 164–173.

7. Qingshan Li, Jian Chen, Ping Chen. Developing an E-Commerce Application by using
Content Component Model. Proceedings 36th International Conference on Technology of
Object-Oriented Languages and Systems, TOOLS -Asia 2000. IEEE Computer Society:
Los Alamitos CA, 2000; 275–284.

www.inViVoVision.com

10

8. Capilla R, Duenas J.C. Light-weight Product-Lines for Evolution and Maintenance of Web
Sites. Proceedings 37th European Conference on Software Maintenance and
Reengineering, CSMR 2003. IEEE Computer Society: Los Alamitos CA, 2003; 53–62.

9. Warren P, Boldyre C, Munro M. The Evolution of Websites. Proceedings 7th International
Conference on Program Comprehension, 1999. IEEE Computer Society: Los Alamitos CA,
1999; 178 –185.

10. Brereton P, Budgen D, Hamilton, G. Hypertext: The Next Maintenance Mountain. IEEE
Computer 1998; 31 (12):49–55.

11. Gabriel, R. Patterns of Software -Tales from the Software Community. Oxford University
Press Inc: New York, NY 1996.

12. Parsons D, Rashid A, Speck A, Telea A. A framework for Object Oriented frameworks
design. Proceedings Technology of Object-Oriented Languages and Systems, TOOLS
1999. IEEE Computer Society: Los Alamitos CA, 1999; 141– 151.

13. World Wide Web Consortium: Extensible Hypertext Markup Language (XHTML),
http://www.w3.org/MarkUp/; Extensible Markup Language
(XML),http://www.w3.org/XML/Schema; Extensible Markup Language Schema (XML
Schema), http://www.w3.org/XML/Schema; Cascading Style Sheets (CSS),
http://www.w3.org/Style/CSS/.

14. Organization for the Advancement of Structured Information Standards: Extensible
Hypertext Markup Language (XHTML), http://www.w3.org/MarkUp/; Universal Business
Language(UBL),http://www.oasis-open.org/comittees/UBL; Electronic Business using
Extensible Mark-up Language (ebXML), http://www.ebxml.org.

15. Sun MicroSystems: Java Servlet Technology, http://java.sun.com/products/servlet/.
16. The Apache Software Foundation. Apache Tomcat http://jakarta.apache.org/tomcat/.
17. ExoLab Group. Castor. http://www.castor.org/.
18. The Apache Software Foundation. Apache Xindice http://xml.apache.org/xindice/.

