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 Introduction

Obesity is defined as an excessive accumulation and
rage of fat in the body and is a leading cause of

orbidity, disability and premature death and increases
e risk for a wide range of chronic diseases (WHO, 2009;
tonanzas and Rodriguez, 2010; Konnopka et al., 2011).
wley and Meyerhoefer (2012) estimate that total
edical costs of obesity for the full non-institutionalised
pulation of adults aged 18 and older in the U.S. was
90.2 billion in 2005. In 2012 the American Medical
sociation put a resolution to its delegates asking that
esity be recognised as a disease in the hopes that doing

 would change the way the medical community tackles

this complex health issue. In the ensuing debate the
Council on Science and Public Health (2012) published a
report outlining the advantages and disadvantages of
such a move. In particular they expressed concerns with
existing diagnostic tests of obesity and noted that ‘‘if
obesity is to be considered a disease, [then] a better
measure of obesity than BMI is needed to diagnose
individuals in clinical practice.’’1 In this paper we draw
on work from other areas of biostatistics to propose a new
way of evaluating alternative tests for obesity and use our
results to make recommendations for the diagnosis and
management of obesity.

The traditional and most popular measure of obesity is
based on an individual’s body mass index (BMI). Despite its
widespread use there is a body of research that argues that
BMI is, at best, a noisy measure of fatness since it does not
distinguish fat from muscle, bone and other lean body
mass (Johansson et al., 2009; Burkhauser and Cawley,
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A B S T R A C T

Reliable measures of body composition are essential to develop effective policies to tackle

obesity. The lack of an acceptable gold-standard for measuring fatness has made it difficult

to evaluate alternative measures of obesity. We use latent class analysis to characterise

existing diagnostics. Using data on US adults we show that measures based on body mass

index and bioelectrical impedance analysis misclassify large numbers of individuals. For

example, 45% of obese White women are misclassified as non-obese using body mass

index, while over 50% of non-obese White women are misclassified as being obese using

bioelectrical impedance analysis. In contrast the misclassification rates are low when

waist circumference is used to measure obesity. These results have important implications

for our understanding of differences in obesity rates across time and groups, as well as

posing challenges for the econometric analysis of obesity.
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008; McCarthy et al., 2006; Smalley et al., 1990). Because
f these shortcomings in BMI, a World Health Organisation
xpert consultation on Obesity drew attention to the need
r other indicators to complement the measurement of

MI (WHO, 2000). Consequently, a number of alternative
easures have been proposed. These include percent body
t estimated using bioelectrical impedance analysis (BIA),
easures based on waist circumference (WC), Waist to Hip

atio (WHR) and the ABSI index of body shape2. Different
pproaches to measuring fatness not only yield different
ates of obesity (Burkhauser and Cawley, 2008), have
ifferent impacts on outcomes (Johansson et al., 2009;
rakauer and Krakauer, 2012; WHO, 2011; Song et al.,
013), but also give rise to different trends in obesity over
me (Elobeid et al., 2007; Burkhauser et al., 2009; Ford et
l., 2014).

When evaluating alternative measures of fatness the
ndency to date has been to settle on a specific, preferred
easure as a gold-standard and use this measure to

enchmark other diagnostic tests (Smalley et al., 1990; Mei
t al., 2002; Burkhauser and Cawley, 2008). For example,
sing BIA measures as the gold standard Burkhauser and
awley (2008) find that 61.25% of women classified as non-
bese by BMI are false negatives, with no false positives,
hile for men 14.20% of those classified as obese by BMI

re false positives and 33.5% classified as non-obese are
lse negatives.

In this paper we take a different approach to comparing
e accuracy of alternative measures of obesity, motivated

y the fact that, a-priori, there is no strong basis for
hoosing any single measure of obesity as a gold standard.

 their survey of alternative measures of obesity
reedman and Perry (2000) note that ‘‘The lack of an
cceptable gold-standard limits the assessment of the
alidity of field methods that can be used to estimate body
t.’’ Hu (2008) provides a detailed discussion of the

trengths and weaknesses of alternative approaches to the
easurement of body composition. Recently developed

igh-tech imaging options, such as computed tomography
nd magnetic resonance imaging, offer excellent accuracy
nd allow researchers to distinguish between visceral and
ubcutaneous fat, a distinction that is important in helping
nderstand the consequence of obesity. However, Hu
008) notes that their cost, technical complexity and lack

f portability prohibit their routine use in large scale
tudies. To date the use of these advanced approaches have
een limited to small-scale studies3.

Rather than specifying a gold-standard ex-ante we
llow all measures to be potentially imperfect indicators of
tness. When one test is specified as a gold standard

valuating all other possible tests is straightforward.
owever, in the case where all of the tests are potentially

imperfect the task of evaluating diagnostic tests is more
difficult because the true underlying disease status of each
individual in the study is unknown. However, by treating
the true unknown disease status as a latent variable, it is
possible to use latent class analysis (LCA) to estimate the
true underlying prevalence of the disease along with the
characteristics of each of the tests (Walter and Irwig, 1988;
Biemer and Wiesen, 2002; Biemer, 2011)4. This approach
has been used elsewhere in biostatistics, for example when
comparing alternative skin tests for the presence of
tuberculosis (Hiu and Walter, 1980), comparing diagnosis
of myocardial infarction (Rindskopf and Rindskopf, 1986),
evaluating diagnostic tests of autism (Szatmari et al., 1995)
and malaria (Gonçalves et al., 2012). However, to my
knowledge, LCA has not been used before to evaluate
alternative measures of obesity.

Using data from a representative sample of US adults I
show that that while obesity rates based on BMI and BIA
misclassify large numbers of individuals, this is not the
case for measures based on WC. The error rates for WC
measures of obesity are of the order of 3% compared to
error rates as high as 45–70% with BMI and BIA. In
particular we show that BMI suffers badly from a high rate
of false negative diagnoses while BIA suffers from a high
rate of false positives. These results have important
implications for differences in obesity rates across time
and groups, as well as for traditional econometrics analysis
of obesity.

In Section 2 of the paper we discuss latent class
modelling in diagnostic testing, while Section 3 discusses
the NHANES data used throughout the analysis. Section 4
presents and discusses my key results and Section 5
examines the robustness of these findings. Section 6
concludes.

2. Methods: Latent class models in diagnostic testing

To understand latent class models in diagnostic testing
let Ci denote the unobserved or latent variable denoting
true obesity status for person i and let T1, T2, and T3 denote
three alternative tests designed to measure outcome C. In
our application Ci is a dichotomous indicator of the
presence or otherwise of true underlying obesity, while T1i,
T2i, and T3i are the obesity classification of person i based
on each of the three tests. Considering the cross-
classification table for the variables C, T1, T2, and T3, let
(c, t1, t2, t3) denote the cell associated with C = c, T1 = t1,
T2 = t2, and T3 = t3 and let pc;t1 ;t2 ;t3

denote the probability of
an observation falling into this cell. Let pc = Pr(C = c) for

2 For an overview of these and other alternative approaches to

easuring obesity see Hu (2008) and Madden and Smith (2014). The ABSI

dex was developed by Krakauer and Krakauer (2012) using residuals

om a regression of waist circumference on height and weight as the

asis for an adjusted WC measure.
3 Furthermore, even these advanced approaches may suffer from

4 As an alternative to LCA one could consider using factor analysis on

the continuous measures. The use of the LCA analysis rather than factor

analysis is in keeping with previous work in the area of disease

diagnostics and has the advantage of directly evaluating existing and

widely adopted thresholds for alternative obesity measures. Nevertheless

the use of factor analysis could offer a useful complement to the work

presented in this paper. With the LCA approach the thresholds are

imposed on the individual measures prior to analysis, whereas with the

factor analysis approach the determination of thresholds must be made

on the estimated latent distribution after the initial analysis has been
mitations. For example dual energy X-ray absorpitometry cannot

ccurately distinguish between visceral and subcutaneous fat.

completed. We examine the robustness of our results to alternative

thresholds later in the paper.
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 1,0 and pt2 jA ¼ PrðT2 ¼ t2jAÞ for some event A. For
ample pt2 jt1 ;c

¼ PrðT2 ¼ t2jT1 ¼ t1; C ¼ cÞ.
Using the law of conditional probabilities

;t1 ;t2 ;t3
¼ P C ¼ cð ÞP T1 ¼ t1 C ¼ cjð ÞP T2 ¼ t2 T1 ¼ t1; C ¼ cjð Þ

T3 ¼ t3 T2 ¼ t2; T1 ¼ t1; C ¼ cj Þ ¼ pcpt1 cj pt2 t1 ;cj pt3 t2 ;t1 ;cj

Therefore, the probability that an individual is classified
to the cell (T1 = t1, T2 = t2, and T3 = t3) is given by

1 ;t2 ;t3
¼
X

c

pcpt1 cj pt2 t1 ;cj pt3 t2 ;t1 ;cj

Let Y = (Y111, Y110, Y100, Y000, Y011, Y101, Y001, Y101) be the
ndom vector representing the distribution of our sample
ross the eight possible cells. So for example Y111 is
sociated with all three tests returning a positive obesity
ading. Y is governed by a multinomial distribution:

jp � multinomial ðN; ðp111; p110; p100; p000; p011; p101;

01; p101ÞÞ

If we let yt1 ;t2 ;t3
denote the realised number of

servations in cell (T1 = t1, T2 = t2, and T3 = t3) then the
rnel of the likelihood of observing the full table {T1,
,T3} is

T1; T2; T3 Þ ¼
Y
t1

Y
t2

Y
t3

p
yt1 ;t2 ;t3
t1 ;t2 ;t3

In total we have eight possible cells, but since the
mber in each of the cells must add up to the total sample
e N, we only have seven free pieces of information.
fortunately in this model there are fifteen parameters to

timate:

In order to proceed we must impose some restrictions
 the model. The standard identifying restrictions in this
proach assumes that the three tests are independent
nditional on true status. This is known as the local
dependence assumption (LIA) and specifies that the
rors in the three tests are mutually independent. While
A need not be true in general we will argue that it may

 reasonable in the context of our analysis5. For
ample, one might be concerned that the dependence of
th BMI and BIA on measured weight might violate local
dependence. However, this need not be the case. This
ould be a problem if the source of error in both BMI and
A originated from mismeasured weight—as might be

the case if the measures were based on self-reported
weight. However, throughout our analysis, weight is
determined by a trained expert, so we are less inclined to
view mismeasured weight as a major source of error for
these tests. Instead the major source of error in BMI is
more likely to stem from its failure to distinguish fat and
fat free mass, a feature which BIA directly addresses. In
contrast the sources of error in BIA are likely to be
associated with natural variation in body water content
or incorrect placement of electrodes. Since the likely
source of errors in the two measures is different, local
independence may be a reasonable assumption, despite
the common dependence of the two measures on weight.

LIA implies that pt2¼ j t1¼1;c¼1j ¼ pt2¼ j t1¼0;c¼1j and pt2¼
j t1 ¼ 1; c ¼ 0j ¼ pt2¼ j t1¼0;c¼0j which eliminates two param-

eters and also that pt3¼j t2¼1;t1¼1;c¼1j ¼ pt3¼j t2¼0;t1¼1;c¼1j ¼
pt3¼j t2¼0;t1¼0;c¼0j ¼ pt3¼j t2¼1;t1¼0;c¼1j and pt3¼j t2¼1;t1¼1;c¼0j ¼
pt3¼j t2¼1;t1¼0;c¼0j ¼ pt3¼j t2¼0;t1¼0;c¼0j ¼ pt3¼j t2¼0;t1¼1;c¼0j ,

which eliminates a further six parameters. These zero
restrictions reduce the number of parameters to seven,
which allows us to identify the remaining parameters. With
these restrictions, pt1 ;t2;t3

¼
P

cpcpt1 cj pt2 cj pt3 cj .

In epidemiology, the parameter ptj¼1 c¼1j is known as the
sensitivity of test j and is the probability that test j records a
positive outcome when the individual truly has the latent
characteristic. pt j¼0 c¼0j is known as the specificity of test j and
is the probability that test j records a negative outcome when
the individual truly does not have the disease. The seven
parameters to be estimated are the overall true prevalence p1

and the sensitivity and specificity of each of the three tests6.

With three or more tests there is no closed form
solution for the maximum likelihood estimates (Hiu and
Walter, 1980) but estimates can be obtained using a
numerical algorithm such as Newton–Raphson or
expectation maximisation. Alternatively Joseph et al.
(1995) propose a Bayesian framework for estimation of
this model, which allows additional information about
the unknown parameters to be incorporated in the form
of prior distributions, Pr(p). Branscum et al. (2005)
provide a useful overview of Bayesian approaches in this
context.

1; pt1¼1 c¼1j ;pt1¼1 c¼0j ;pt2¼1 t1¼1;c¼1j pt2¼1 t1¼1;c¼0j pt2¼1 t1¼0;c¼;0j pt2¼1 t1¼0;c¼1j
pt3¼1 t2¼1j ;t1¼1;c¼1pt3¼1 t1¼1;t2¼1;c¼0j pt3¼1 t2¼1;t1¼0;0j pt3¼1 t¼0;t1¼0;c¼0j

pt3¼1 t2¼0;t1¼1;c¼1j pt3¼1 t2¼0;t1¼1;c¼0j pt3¼1 t2¼0;t1¼0;c¼1j pt3¼1 t2¼1j ;t1¼0;c¼1

Models that allow for conditional dependence between tests typically

uire results from at least four different tests for identification. Such

dels can be identified within a Bayesian context if one is able to impose

ong priors on a sufficient number of the parameters (see for example

6 It is straightforward to show that the reparameterisation p̃t j¼1 c¼1j ¼
1 � pt j¼0 c¼0j and p̃t j¼0 c¼0j ¼ 1 � pt j¼1 c¼1j yields the same value of

likelihood function as the original parameterisation. To distinguish

between these two parameters sets we impose the monotonicity
ndukuri and Joseph, 2001; Branscum et al., 2005). Such strong priors

 not reasonable in our analysis.

condition, pt j¼1 c¼1j þ pt j¼0 c¼0j > 1, j = 1,2,3. For a discussion of this

condition in a related context see Hausman et al. (1998).
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In the Bayesian approach to diagnostic evaluation
ncertainty about the parameters is typically modelled
sing independent beta prior distributions:

pc� beta apc ; bpc

� �

t j¼1 cj ¼1� beta a1;j; b1;j

� �
; j ¼ 1; 2; 3

t j¼0 c¼0j � beta a0;j; b0;j

� �
; j ¼ 1; 2; 3

The choice of the as and bs determine the degree of
rior information on each of the parameters. In the results
elow we set all as and bs equal to .5 which can be
terpreted in the context of Jeffrey’s uninformative

riors.
The posterior distributions of the parameters are

iven by Pr p yjð Þ ¼ Pr y pjð ÞPr pð Þ
Pr yð Þ . Any feature of the posterior

istribution is legitimate for Bayesian analysis. However
his typically involves taking posterior expectations
f functions of p. Such integrals rarely have closed
rm solutions, so alternative approaches are required.
onte Carlo integration is one popular solution. If we can

raw random samples from the posterior of interest then
he population expectations can be estimated using
ample means. Markov Chain Monte Carlo (MCMC)
rovides a means of sampling from the full posterior
istribution given a likelihood and priors (Gilks et al.
996).

The key to MCMC is finding a transition kernel,
r ptþ1 ptjð Þ, such that the chain converges to the
istribution of interest Pr p yjð Þ. The Metropolis–Hastings
lgorithm guarantees such a chain (Gilks et al. 1996). The
ibbs sampler used in this paper is a special case of

he Metropolis–Hastings algorithm. At a given iteration,
ne simulates N random variables sequentially from N
nivariate conditional distributions, rather than a single
-dimensional vector in single pass from a joint
istribution. This vector then serves as the conditioning
ector at the next iteration. This process is repeated a
rge number of times, say T, and the first m, of these
erations are discarded. This burn-in period m, captures

he period needed for the chain to have converged to
s stationary distribution. The remaining T–m iterations

 the chain are taken as random draws which can be
sed to evaluate the posterior distribution of the
arameters7.

. Data

For this analysis we use the National Health and
utrition Examination Survey (NHANES III). The NHANES
I is a nationally representative survey of 33,994
dividuals in the U.S. aged two months of age and older.

he interviews were carried out over the period from
988 to 1994. The NHANES data have been used in
revious studies looking at the impact of obesity of labour
arket outcomes (e.g. Cawley, 2004). Burkhauser and

Cawley (2008) describe the NHANES III as the ‘‘Rosetta
Stone’’ for measures of fatness.

In this paper we focus on three alternative measures
of fatness; BMI, WC and BIA8. In the NHANES survey
all the health measurements were performed in specially
designed and equipped mobile centres by a team of
physicians and health technicians. BMI is the most
widely-used measure of obesity and is defined as weight
in kg/height in m2. Individuals are classified as over-
weight if their BMI is between 25 and 30 and are
classified as obese if their BMI exceeds 30 (WHO, 2000).
Throughout our analysis we use clinically measured
height and weight when determining BMI. This allows us
to abstract from reporting errors typically associated
with self-reported BMI (e.g. O’Neill and Sweetman,
2013; Biener et al., 2014). WC measures of obesity are
based on a numerical measurement of the waist.
According to the World Health Organisation’s data
gathering protocol, the waist circumference should be
measured at the midpoint between the lower margin
of the last palpable rib and the top of the iliac crest,
using a stretch-resistant tape that provides a constant
100 � g tension. Men are classified as being at ‘‘high
risk’’ of obesity if their waist circumference exceeds
102 cm, while for women the threshold is 88 cm (Lean
et al., 1995; NHLBI, 2000; Lear et al., 2010). Finally BIA
determines the opposition to the flow of an electric
current through body tissues which can then be used
to estimate body fat. Fat-free mass contains mostly
water, while fat contains very little water. Thus fat-free
mass will have less resistance to an electrical current.
By determining the resistance to the current one can
estimate how much fat-free and fat is present. The
Valhalla Scientific Body Composition Analyzer 1990 B
is the instrument used for the measurement of whole
body electrical resistance in NHANES. Electrodes were
attached to the right wrist, hand, ankle and foot of
the respondents and an electrical current is passed
through the body. We follow the approach adopted
in Burkhauser and Cawley (2008) to derive a measure
of percent body fat (PBF) from the bio-electrical
resistance data. This approach involves first rescaling

7 For methods of sampling from full-conditional distributions see Gilks

8 In principle one can extend the LCA approach to include other

available measures of obesity such as skinfold thickness and Waist to

Height (WHt) or Waist to hip (WHp) ratios (see for example Ashwell et

al., 2012). However, we choose not to include these additional measures

for a number of reasons. Although WC is a well-accepted measure of

abdominal fat the biological meaning of WHp or Wht is less clear (Han

et al., 1997; Hu, 2008). Furthermore the correlation between WC and

height is very low in our data; of the order of .03 for white women (see

also Johansson et al., 2009). This means that obtaining appropriate

identifying variation in height may be difficult. In addition the inclusion of

these alternative measures in addition to WC is likely to violate the local

independence assumption required to identify the parameters. While

skinfold thickness is associated with subcutaneous fat it is only weakly

correlated with deep lying visceral fat (Despres et al., 1991). In addition

skinfold measures are particularly difficult to measure, more prone to

interobserver variations, and are less reproducible than other anthropo-

metric methods (Ulijaszek and Kerr, 1999; Hu, 2008). When we re-

estimated the three test LC model using BMI, WC and Skinfold, the results
996). The WinBUGS software (Lunn et al., 2000) used in this paper uses

 form of adaptive rejection sampling (Gilks and Wild, 1992).

confirmed the superiorty of WC. The misclassification rates with BMI and

skinfold measures were of the order of 26–34% compared to 6% with WC.
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e NHANES BIA resistance scale in order to use the Fat
ee Mass prediction equations developed by Sun et al.
003)9. These equations allow us to predict Fat Free
ass (FFM) using BIA resistance measures. Once we
ve estimated FFM we can then calculate total body fat
BF) as the difference between weight and fat free mass.
rcent body fat is given by PBF ¼ TBF

Weight� 100. Men are
pically classified as obese if their PBF exceeds 25%,
hile for women the threshold is 30% (NIDDK, 2001;
rkhauser and Cawley, 2008; Oreopoulos et al., 2011). We
e these obesity thresholds throughout our analysis.
Each method of measuring body fat has its strengths

d weaknesses (Freedman and Perry, 2000). BMI does not
stinguish fat from fat free-mass such as muscle and bone,
A readings are affected by a range of factors such as
ctrode placement, body position, dehydration, exercise
d ambient temperature, while WC tells you the location

 your body fat but not the absolute percentage of body fat
d may be prone to measurement problems arising from
correct placement of measuring tape and differences in
bject posture during measurement. Despite the
vances that have made in measuring fatness, there is
tle evidence that more recent measures of body fat are
ore accurate than simple combinations of height and
eight (Freedman and Perry, 2000). Rather than taking one
easure of obesity as a gold standard we treat all measures

 fat as a-priori imperfect measures of underlying latent
tness and use the latent class approach outlined earlier to
cover the underlying characteristics of each of the tests,

 well as a measure of latent obesity.
As noted in Section 2 estimation of the latent class

odel with 3 tests and one population requires identifying
sumptions in the form of local independence. This
sumption implies that the observed associations be-
een the three tests are fully explained by the disease
tus. This assumption need not be valid in general and

appropriate specification of the dependence structure
tween tests may lead to invalid inferences (Albert and
dd, 2004). For instance LIA may fail when two or more of

e tests are based on the same biological basis or when
fferent tests are subjected to a common source of
ntamination due to similar storage conditions. These
ctors are unlikely to be a problem in our context. For
stance dehydration or body fluid near the electrodes may

 a major source of error for BIA but less of a problem for
easurement of waist circumference or BMI. Since all
easurements were taken by the same physician it is
ssible that common physician error in reading tests or in
librating the equipment could lead to dependent errors.
wever, while it may be possible that calibration errors

ay lead to misclassification in a given test, it is less likely
at the calibration errors on very different pieces of
uipments would lead to systematic errors across tests.
We carry out our analysis separately for six groups; White

omen, White men, Black women, Black men, Hispanic
omen and Hispanic men. We restrict attention to individuals

aged between 18 and 64 and for women we exclude those
who were pregnant at the time of the examination. When
we exclude those with missing values on at least one of our
three tests the final sample sizes are 2142 (White women),
1924 (White men), 1852 (Black women), 1628 (Black men),
1416 (Hispanic women) and 1662 (Hispanic men).

4. Results and discussion

Table 1 provides the prevalence rates for obesity for each
of our groups using the three different diagnostics. There are
clear and substantial differences in the prevalence rates
using different measures10. The BMI measure tends to return
the lowest obesity rate of all three tests, while BIA returns the
highest rate. However, the difference between these two
tests varies across groups, with the BIA prevalence being 3–4
times higher for women relative to that based on BMI, but
approximately twice the rate for men. The relationship
between obesity using WC and the other measures also show
some differences. For White and Hispanic men and women
and Black women the prevalence rate using WC lies between
the BMI and BIA rates. However, for Black men, prevalence
based on WC is lower than both the other measures.

To apply LCA we need to consider the joint distribution
of the three tests. Table 2 provides the cross-classification
of the three tests for each of our six groups. Looking down
the rows in this table allows us to examine the level of
agreement across the three tests. The level of agreement
across the three tests (sum of first and last row) is 49.68%
for White women, 63.64% for White men, 59.39% for Black
women, 77.94% for Black men, 44.5% for Hispanic women
and 59.9% for Hispanic men.

The data in Table 2 provide the raw input for our latent
class analysis. Before looking at the results in detail Figs. 1 and
2 provide information on the history of the simulations to
help assess convergence of the Markov chain. For each
parameter we ran one long chain with 25,000 iterations in
total. The first 5000 iterations were used for the burn-in
period leaving us with 20,000 draws from the assumed
stationary distribution. Fig. 1 provides a history trace of the
simulations for every parameter, along with the median and
the 95% credible interval11. These plots simply show the value
of pt chosen at each iteration t of the chain. The plots provide
no evidence of drift and the mixing is good for each
parameter. Furthermore, if the chain has converged to its
stationary distribution then we would expect the distribution
of draws to be the same over different ranges of the chain.
Fig. 2 plots the density of the estimated parameters for the
first 10,000 iterations and the second 10,000 iterations, along
with the density based on the full chain. The similarity of all
three distributions supports convergence of the chains12.

Although, no hispanics were included in the samples used by Sun et

10 Burkhauser and Cawley (2008) report similar differences in raw

reported obesity rates across different measures.
11 Since the plots were similar for all demographic groups we only

report the results for white females.
12 We have also carried out a formal Geweke test for convergence. This

test splits the chain into two parts and tests for equality of the means in

the two subsamples. We follow previous work and compare the first 10%
 (2003), I use their prediction equations for all the race-ethnicity groups

our analysis.

of the chain with the last 50%. In none of our analysis do we reject equality

of the means.
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Table 3 reports the mean of the posterior distribution
r each parameter, along with the 95% credible interval. A

umber of interesting features emerge from this analysis.
ooking first at the characteristics of the three tests we see
 number of important differences. The specificity rate of
e BMI based test is relatively high for all six groups,
plying that this test returns very few false positives; it is

ery unlikely that BMI records someone as obese when
ey are not truly obese. The false positive rate is higher for
en than for women, which might be expected given that
en tend to have more muscle and fat free mass than
omen. However, even for men the probability of a false

ositive is still only 1–2%. While the specificity rate of BMI
 high, the same is not true of the estimated sensitivity

ate. The rate is less than 70% for White men, White women
nd Black women, reaching a low of approximately 55% for

hite and Hispanic women. Only for Black and Hispanic
en does the sensitivity rate exceed 80%. The problem
ith BMI therefore is not that it misclassifies non-obese

eople as obese but rather that it fails to truly detect
besity when it is present. The failure of BMI to detect true
besity is likely to be associated its failure to distinguish
etween muscle mass and fat. It is well established that
ging is associated with substantial loss of muscle mass, a
rocess known as sarcopenia (Hu, 2008). Thus as people
ge low body mass is more and more likely to reflect lower
uscle mass and not necessarily low fat mass, leading to

nderestimation of obesity, particularly in the elderly. We
xplore this issue in more detail later in the paper.

The relatively high specificity rate and low sensitivity
ate of BMI is consistent with previous work using different
pproaches. For example Smalley et al. (1990) report a
ensitivity rate of 55.4% (44.3%) for all women(men) and

 specificity rate of 98.2% (90.1%) using densitometric

analysis based on underwater weighing as a reference
point. Underwater weighting is generally perceived as one
of the more accurate means of measuring body fat.
However, it is not typically used nor is it widely accessible
in publically available data sets. The similarity of our
results with those of Smalley et al. (1990) is nevertheless
encouraging.

It is also interesting to compare these estimated
misclassification rates to those reported by Burkhauser
and Cawley (2008). Like me, they report a false positive
rate for BMI of zero for women and a false negative rate of
approximately 33% for men. However, their estimated false
negative rate for women (61.25%) is much higher than our
estimates or those of Smalley et al. (1990). Part of the
reason for this is that in contrast to the underwater
weighing approach used by Smalley et al. (1990),
Burkhauser and Cawley (2008) use BIA based measures
of PBF as a gold-standard. However, as noted by Freedman
and Perry (2000) ‘‘[BIA] has not consistently been found to
provide more accurate estimates of adiposity than has
anthropometry’’ pg. S41. This is a view shared by NHI who
state that ‘‘Neither bioelectric impedance nor height–
weight tables provide an advantage over BMI in the clinical
management of all adult patients, regardless of gender.’’
NHLBI (2000), p. 1. The specific problems associated with
the BIA are evident in column three of Table 3. Although
the estimated sensitivity of BIA is of the order of 90% or
higher for all our groups, the specificity rate is much lower,
particularly for women, where it is only of the order of 30–
50%. This is in contrast to the 100% specificity rate assumed
when BIA is used as a gold standard. In contrast to BMI
measured obesity, the problem with BIA is the very high
probability of a false positive. This can partly explain why
the false negative rate reported by Burkhauser and Cawley
(2008) for women seems so high; many of those classified
as truly obese based on BIA may not in fact be obese. The
relatively poor performance of BIA for women in our
analysis is consistent with some previous work. Gleichauf
and Roe (1989) and Dehghan and Merchant (2008) both
discussed the impact of menopause and the menstrual
cycle when using BIA to measure obesity. Dehghan and
Merchant (2008) note that increased progesterone plasma
levels after ovulation, along with the change in hydration
status, can lead to the within-subject variability of
impedance to be higher in women, while Gleichauf and
Roe (1989) recommend the average of several BIA

able 1

besity prevalence rates using alternative measures of body composition.

BMI Waist

circumference

BIA

White women 23.30 42.16 72.50

White men 19.85 29.63 48.86

Black women 36.07 54.97 74.62

Black men 20.69 19.95 28.99

Hispanic women 31.21 54.17 85.73

Hispanic men 22.62 24.91 54.45

able 2

ross-classification of BMI, WC and BIA tests.

Test outcome White

women (%)

White

men (%)

Black women (%) Black

men (%)

Hispanic

women (%)

Hispanic

men (%)
BMI WC BIA

+ + + 22.7 16.94 35.15 13.3 30.3 17.8

+ + � 0 1.5 .10 2.82 0 1.5

+ � + .51 .78 .81 2.70 .01 2.5

� + + 18.86 8.84 18.68 2.14 23.8 4.5

+ � � 0 .57 0 1.84 0 .01

� + � .51 2.28 1.0 1.66 0 1.1

� � + 30.3 22.29 19.88 10.8 30.7 29.7

� � � 26.98 46.7 24.24 64.64 14.2 42.1
100 100 100 100 100 100



m
es

tio
m

Fig

ful

D. O’Neill / Economics and Human Biology 17 (2015) 116–128122
easures during a menstrual cycle be considered when
timating body composition.
These results have important consequences for tradi-
nal econometric analysis of obesity. It well known that

easurement error arising from self-reported BMI can

seriously bias standard estimators, causing researchers to
draw misleading inferences concerning the relationship
between obesity and outcomes such as health, employ-
ment and wages (O’Neill and Sweetman 2013). The results
presented above show that having access to clinically

.3
8

.4
.4

2
.4

4
.4

6
P

re
va

le
nc

e

0 5000 10000 15000 20000
Order

.5
.5

5
.6

.6
5

S
en

si
tiv

ity
 B

M
I

0 5000 10000 15000 20000
Order

.9
4

.9
6

.9
8

1
S

en
si

tiv
ity

 W
C

0 5000 10000 15000 20000
Order

.9
85

.9
9

.9
95

1
S

en
si

tiv
ity

 B
IA

0 5000 10000 15000 20000
Order

.9
85

.9
9

.9
95

1
S

pe
ci

fic
ity

 B
M

I
0 5000 10000 15000 20000

Order

.9
5

.9
6.

97
.9

8
.9

9
1

S
pe

ci
fic

ity
 W

C

0 5000 10000 15000 20000
Order

.4
2.

44
.4

6.
48

.5
.5

2
S

pe
ci

fic
ity

 B
IA

0 5000 10000 15000 20000
Order

Fig. 1. History plot of Markov Chain Monte Carlo simulations: White women.
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easured BMI (or BIA) is not sufficient to rid standard
easures of obesity of measurement error. Although

eporting error may no longer be an issue, one still has
 contend with the false positive and false negative

iagnoses associated with clinically measured BMI and
IA. Furthermore, our results show that such errors will
nd to be non-classical and differ across different
easures (such as BMI and BIA), causing even further

roblems. In short all the well-known problems typically
ssociated with measurement error may still be present
ven with clinical measures of height and weight.

In contrast to the BMI and BIA measures, the results in
able 3 suggest that the classification of latent obesity
ased on waist circumference exhibits high degrees of
ccuracy both in terms of sensitivity and specificity. The
robability of both false negatives and false positives is of
e order of 3% for White men and for all the female

ubgroups. Only in the case of the sensitivity measure for
lack and Hispanic men does the error rate exceed 5%.
hese results suggest that waist circumference may
rovide a cheap and effective measure of latent obesity.

 is interesting to consider this finding in the light of recent
ork relating alternative measures of body composition to

ealth and economic outcomes. In their study of obesity
nd labour market success in Finland, Johansson et al.
009) found that only waist circumference had a negative

ssociation with wages for women, while Mosca (2013)
und that among older Irish adults the negative employ-
ent elasticity associated with waist circumference is
rger than the elasticity associated with BMI. Janssen et al.
004) found that that WC outperformed BMI at predicting

ealth risk associated with obesity. A recent review by
eidell (2010) noted that WC provided a better indicator of
ll-cause mortality than BMI and that waist alone could
eplace WHT and BMI as a single risk-factor for all cause

ortality, while Chan et al. (2003) concluded that ‘‘WC
 the anthropometric index that most uniformly predicts
e distribution of adipose tissue. . .there apparently being

ttle value in measuring WHT (Waist to hip ratio) or
MI.’’13

The fact that our latent class analysis identifies WC as
n effective measure of fatness has important implications
r our understanding of the growth in obesity over the last

0 years. The Centre for Disease Control and Prevention
stimate that in 1990 obese adults made up less than 15%
f the population in most U.S. states. By 2010, 36 states had
besity rates of 25% or higher and 12 of those had obesity
ates of 30% or higher. These concerns about the increase in
besity have for the most part been based on increasing
MI. However, there is also evidence that the nature of
xcess body weight has been changing over this time. In
articular a number of authors (e.g. Elobeid et al., 2007;
ord et al., 2014) have shown that over the last 50 years

C values have increased beyond those expected from
MI increases. Since our analysis suggests that the true
revalence rate is reflected in WC measures of fatness, this
ould suggest that the growth in obesity and associated

costs may in fact be even more serious than that
documented by rising BMI14.

While our results support the use of WC based
measures in determining obesity rates, it is important to
note that our analysis is based on clinically measured BMI,
BIA and WC. Although, our results establish the accuracy of
WC in this setting, there is some evidence that measure-
ment error in self-measured WC may be larger than that in
self-measured BMI (Ulijaszek and Kerr, 1999 and Verweij
et al., 2013). The intra class reliability of height, weight and
WC were all high (above .97), while the interobserver
reliability for WC was lower (of the order of .94). However,
there is also evidence that proper guidance and the use
of well-designed instruments can significantly reduce
measurement error in self-measured WC. For example
Han and Lean (1998) examined the consequences of using
a special colour coded measurement tape along with step
by step photographic instructions on proper measurement.
Using clinical WC measurements as the reference point
they found that the sensitivity and specificity rates of
WC, with guidance, were over 95%, compared to sensitivity
rates as low as 58% without guidance. We view proper
guidance and assistance in the measurement and inter-
pretation of WC as a crucial component of any policy
initiative based on WC15.

The last column of Table 3 reports our estimated true
prevalence of latent obesity derived from LCA. From this
we see that Black and Hispanic women have the highest
estimated prevalence of obesity (of the order of 55%), while
Black men have the lowest estimated obesity rate (22%). It
is interesting to compare these estimates to the estimates
based on other measures. In particular we follow
Burkhauser and Cawley (2008) and examine Black–White
racial differences in obesity rates. For reference we first
consider the raw obesity rates in Table 2. The Black–White
racial patterns we report using the raw data are consistent
with the results reported in Burkhauser and Cawley
(2008). When one defines obesity using BMI the obesity
rate among Black women is about 12 percentage points
higher than among White women, while there is less than
a 1 percentage point difference in the rates between White
men and Black men. However, the Black–White gap in
obesity changes dramatically when one classifies people
using PBF. While the female Black–White racial gap is
significantly reduced substantial racial differences emerge
for men. However, since both these measures appear to
suffer from misclassification bias neither of these racial
gaps reflect actual racial differences in obesity. To
determine actual racial differences we turn to the

14 If one is willing to assume that the sensitivity and specificity rates of

BMI have remained constant over time one can combine these estimated

rates with observed time-series on BMI to a create a time series for

the true underlying prevalence of obesity using the fact that at any

point in time the true underlying prevalence is given by

pC ¼
pBMI� 1�pBMI¼0 0jð Þð Þ

pBMI¼1 1j � 1�pBMI¼0 0jð Þð Þ. This approach potentially allows us to recover

true prevalence rates for time periods when only BMI is observed. See for

example Komlos (1987), Carson (2009), Hiermeyer (2010) and Bodenhorn

(2010) for an analysis of BMI in the US during the 19th century.
15
3 For a recent review of this literature, see Huxley et al. (2010).

For a discussion on the appropriate protocol for measuring waist

circumference, see WHO (2011).
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timated true prevalence rates reported in Table 3. Our
timated true prevalence rates imply a Black–White racial
p for women that is similar to the gap using BMI (of the
der of 12 percentage points). However our estimated
tes imply significantly lower obesity levels among Black
en. Though statistically significant, the gap of 6
rcentage points is smaller than that based on PBF (20
rcentage points).

 Sensitivity analysis

. Alternative priors

In this section we examine the robustness of our results
 alternative prior distributions in the estimation
ocedure. In particular, we consider robustness to the
rameters of the beta prior distribution used in the
evious section and robustness to the use of an alternative
ior distribution. As noted earlier the Beta(.5,.5) distribu-
n, used up to now, can be interpreted in the context of

ffrey’s uninformative priors. By varying the parameters
 the prior distribution we can shift prior weight to either
d of the parameter range. We consider two alternative
ramterisations; Beta(.5,1) and Beta(1,.5). The first
stribution is skewed to the right and places much
avier prior weight on parameter values close to zero,

hile the second is skewed to the left and places heavier
eight on parameters values close to one. In addition we
nsider the consequences of using an uninformative
iform distribution U(0,1) rather than the Beta(.5,.5)

stribution used in Section 416.
The results using these alternative priors are given in

ble 4. As the findings for all groups are similar, we only
port the results for White women. The first row,
produces the results from our earlier analysis. The
cond, third and fourth rows show the results for each of
e alternative prior distributions. It is clear from these
sults that our findings are robust to the choice of prior;
e results are almost identical across rows. BMI suffers
m a low sensitivity rate and BIA suffers from a low

ecificity rate, while the misclassification rate for WC is
ry low, irrespective of which prior distribution is used.

. Simulations

The results from the analysis so far shows that both the
ror rates for obesity based on WC are low compared to

those using BMI or BIA. It may be tempting to believe that
the LCA approach used in this paper identifies WC as the
most accurate measure simply because the observed
obesity rate using WC falls between the other two
measures. However, this is not the case. The obesity rate
for any single measure is constructed using only the
marginal distribution for that test. In contrast the error
rates derived from the LCA analysis are identified from the
joint distribution of the three tests. To illustrate this
further I simulated a true underlying distribution of
obesity by drawing 10,000 observations from a uniform
distribution and assigning the top 20% of the distribution
to the obese state. I then constructed three diagnostic tests.
For simplicity I generate the tests such that all three have a
specificity rate equal to 100%; that is there are no false
positives. The three constructed tests differ only in terms
of their sensitivity rates. The first test is chosen to have a
sensitivity rate equal to 100%. This, combined with the
assumption of a 100% specificity rate, implies that test 1 is
a perfect predictor of obesity, with zero errors. In contrast
test 2 is constructed to have a sensitivity rate of 70%; that
is the results of test 2 were altered so that 30% of those
who are truly obese had their result changed from a
positive diagnosis of obesity to a negative one. Test 3 is
constructed to have a sensitivity rate of .417. As a result
measured obesity using test 1 is 20%, 14% (.7 � .2) using
test 2 and 8% (.4 � .2) using test 3. Thus the observed
obesity rate for test 2 lies between the rates for test 1 and
test 3 even though test 1 is the gold standard.

The estimated joint distribution of our three tests from
our simulation is then used in conjunction with the LCA
approach to estimate the parameters of each test, along
with the true underlying obesity rate. Since we know
the true DGP it is possible to compare the estimated
parameters to the true parameters. The results are
presented in Table 5. Looking at the last column we see
that the LCA accurately estimates the true underlying
obesity rate which is 20%. More importantly for the
purposes of this section we see that the LCA approach also
accurately estimates the error rates for all three tests. The
specificity rates for each test is very close to the true rate of
100%, while the estimated sensitivity rates are close to
their true values of 100%, 70% and 40% for test 1, test 2 and
test 3, respectively. The LCA approach clearly identifies test
1 as the superior diagnostic despite its reported obesity
rate being the highest of all three tests. These simulated

ble 3

ent class analysis of obesity measures: mean of the posterior distribution with 95% credible interval in parentheses.

Sensitivity BMI Specificity BMI Sensitivity WC Specificity WC Sensitivity BIA Specificity BIA Prevalence

hite women 55.4

(52.1–58.7)

100 (99.5–100) 97.8 (96.3–99.0) 98.1 (96.9–99.1) 99.9 (99.5–100) 47.4 (44.5–50.2) 42 (39.8–44.2)

hite men 67.5 (62.9–72) 98.8 (97.9–99.5) 97.0 (94.2–99.6) 96.8 (95.2–98.4) 91.4 (88.2–94.1) 67.9 (65.3–70.4) 28.2 (25.9–30.6)

lack women 66.2 (63.2–69.2) 99.9 (99.4–100) 97.7 (96.4–98.8) 96.1 (94.1–97.8) 99.6 (99–99.9) 55.3 (51.8–58.7) 54.4 (52–56.8)

lack men 87 (82.1–91.3) 98 (96.8–99.1) 84.0 (78.8–88.6) 98.1 (97–99.1) 82.3 (77.3–86.8) 86.0 (84.0–88) 22.0 (19.7–24.4)

ispanic

women

56.1 (52.5–59.6) 99.7 (98.6–100) 97.2 (95.4–99) 99.4 (97.9–100) 99.9 (99.5–100) 32.0 (28.33–35.71) 55.4 (52.7–58.2)

ispanic men 81.6 (76.5–86.3) 98.4 (97.1–99.4) 89.5 (85.2–93.7) 98.1 (96.6–99.4) 91.9 (88.6–94.7) 58.9 (56.0–61.7) 26.3 (23.8–28.9)

17
The uniform[0,1] is equivalent to a Beta(1,1).

LIA was imposed when misclassifying individuals in the simulated

sample.
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esults clearly show that the low error rates estimated for
C in the previous section should not be attributed simply

 the fact that its observed obesity rate falls between the
besity rate for BMI and that for BIA.

.3. Age variation

We noted in Section 4 that the low sensitivity rate of
MI is likely to be associated with sarcopenia, the loss of
uscle mass associated with aging. As the loss of muscle
ass is more pronounced among the elderly one, would

xpect the sensitivity rate associated with BMI to be lower
mong older people. To examine the sensitivity of our
esults to variation in age we repeat the analysis in Section
, this time splitting the population into two groups; those
ged less than 50 and those aged 50 or over. The results are
iven in Table 618. Although the relatively large credible
tervals make it difficult to draw strong statistical

onclusions across age groups age groups, the point
stimates are consistent with expectations. The sensitivity
ate of BMI is almost 10 percentage points lower for the
lder age group than it is for the younger group, reflecting
e greater loss in muscle mass among the elderly. For both

ge groups the main findings of our paper are still evident:
e BMI measure of obesity suffers from a low sensitivity

ate, the BIA measure suffers from a low specificity rate,
hile the WC measure of obesity performs well in both

imensions.

.4. Alternative thresholds

Finally in this section we consider the robustness of our
ndings to the use of alternative thresholds when defining
besity. The thresholds used in Section 4 for determining
besity are those recommended by leading health
uthorities (WHO, 2000; NHLBI, 2000; NIDDK, 2001) and
ave been used in previous studies evaluating tests for

obesity (Burkhauser and Cawley, 2008). Given the nature
of obesity, determining a universally accepted threshold is
not straightforward. Clearly changing the threshold for a
given test will involve a tradeoff between the two errors;
raising the threshold will improve the specificity of a test
but at the expense of a reduction in its sensitivity.
However, it is not clear a-priori as to what the relative
change in the magnitudes of the two errors will be.
Therefore it is of interest to see to what extent changes in
the thresholds for BIA or BMI affect our conclusions.

In Section 4 we classified a man as obese if his PBF
exceeded 25% and a woman as obese if her PBF exceeds
30%. Lavie et al. (2010) propose PBF thresholds in the range
23–25% for men and 33–35% for women. The proposed
thresholds for women are higher than the 30% threshold I
used in Section 4. To examine the sensitivity of our
findings to the use of a higher threshold for women we
repeat the analysis in Section 4 for White women using a
PBF cut off of 35% rather than 30%. The immediate impact
of the higher threshold is to substantially reduce the BIA
reported obesity rate from 72.50% to 51.01%, which is more
in line with the 42.16% rate recorded using WC. However,
of more interest here is the impact of the higher threshold
on our estimated error rates. The results of the LCA
using the higher PBF threshold are given in the first row
of Table 7. As expected the specificity of the BIA measures
improves using the higher threshold. The substantial
improvement in specificity of BIA from 47.4% with the
old threshold to 79.8% with the new threshold is achieved
with only a modest reduction in the sensitivity of the test.
However, despite the improvements in BIA, the use of
the higher PBF threshold does little to alter our previous
conclusion. Both the sensitivity and specificity of the WC
are above 90%, with this measure being preferred to either
the BMI or BIA measure.

Finally we consider the use of a lower threshold for BMI
in an attempt to improve the sensitivity of this measure. To
examine the sensitivity of our results to the BMI threshold
we reduce the threshold from 30 to 27.5 (halfway towards
the current cutoff for overweight). As expected this
reduction increases the BMI based obesity rate from

able 4

atent class analysis of obesity measures for white women with alternative prior distributions: mean of the posterior distribution with 95% credible interval

 parentheses.

Prior

distribution

Sensitivity BMI Specificity BMI Sensitivity WC Specificity WC Sensitivity BIA Specificity BIA Prevalence

Beta(.5,.5) 55.4 (52.1–58.7) 100 (99.5–100) 97.8 (96.3–99.0) 98.1 (96.9–99.1) 99.9 (99.5–100) 47.4 (44.5–50.2) 42 (39.8–44.2)

Beta(.5,1) 55.4 (52–58.8) 99.8 (99.4–100) 97.8 (96.3–99.1) 98.1 (96.8–99.1) 99.8 (99.3–100) 47.3 (44.6–50.2) 42 (39.7–44.2)

Beta(.1,.5) 55.5 (52.1–58.8) 99.9 (99.5–100) 97.8 (96.3–99.0) 98.1 (96.8–99.1) 99.9 (99.5–100) 47.4 (44.6–50.2) 42 (39.8–44.2)

Uniform(0,1) 55.4 (51.9–58.8) 99.8 (99.4–100) 97.8 (96.3–99.1) 98.1 (96.8–99.1) 99.8 (99.3–100) 47.3 (44.5–50.1) 42 (39.8–44.2)

able 5

imulated results: mean of the posterior distribution with 95% credible interval in parentheses (true parameters: prevalence = 20%, specificity of test

 = specificity test 2 = specificity of test 3 = 100% sensitivity test 1 = 100%, sensitivity of test 2 = 70%, sensitivity of test 3 = 40%).

Sensitivity test 1 Specificity test 1 Sensitivity test 2 Specificity test 2 Sensitivity test 3 Specificity test 3 Prevalence

99.94 (99.25–100) 99.65 (98.39–100) 71.33

(66.44–76.19)

99.99 (99.86–100) 41.61 (37–46.57) 99.99 (99.85–100) 19.48 (17.46–21.30)

8 For brevity we only report the results for white women. The findings

r the other groups are qualitatively similar.
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.30% to 32.5%. The impact of this new lower threshold on
e estimated properties of the three tests is given in the
cond row of Table 7. Once again we see that the
provement in the sensitivity of the BMI test from 55.4%

 73.64% is achieved with only a small reduction in the
ecificity of the test. However the WC based test still
minates the other two with both high sensitivity and
gh specificity rates19.

 Conclusion

It is generally accepted that obesity rates have
creased substantially over the last 40 years and that
e costs of rising obesity can be significant. However, to
te the lack of an acceptable gold-standard has limited
e assessment of the validity of field methods used to
easure obesity. When competing measures of obesity
ve conflicting results it is challenging to know how to
concile these differences. In this paper we use latent
ss analysis to evaluate alternative measures of obesity

 the absence of a gold standard. Using data from a
presentative sample of US adults we consider three
pular measures of obesity; body mass index, bioelectri-
l impedance analysis and waist circumference. Rather
an giving one of the measures ex-ante preference over
other, we treat all three as potentially imperfect
easures of underlying obesity and use class analysis to
timate the true underlying prevalence of the disease,
ng with measures of the sensitivity and specificity of

ch of the tests.
We show that while measures based on body mass

dex and bioelectrical impedance analysis misclassify

large numbers of individuals, the classification of latent
obesity based on waist circumference suffers from signifi-
cantly less bias. The probability of both false negatives and
false positives with this measure is of the order of 3% for
White men, White, Black and Hispanic women.

While the results from our analysis reinforce earlier
warnings regarding the use of BMI it is important to note
that our findings are derived using weaker assumptions
than those adopted in some previous studies. In addition
our results emphasise the precise problem with BMI;
namely its low sensitivity rate. Although this has been
reported in a very small number of previous studies it does
not seem to have been widely acknowledged, particularly
in popular discussion. These discussions still tend to focus
on the problems posed by BMI for groups such as athletes,
who tend to have significant muscle mass. To the extent
that high muscle mass poses a major problem for BMI it
will manifest itself in low specificity rates, which is not
the case. Arguing that BMI, although imperfect, is often the
only measure available to researchers and therefore is
the best that can be done is not a satisfactory response to
the problems discussed in this paper. The measurement
problems associated with both BMI and BIA and in
particular the non-classical nature of these errors is likely
to result in severe biases for a number of popular
estimators used in econometric analysis. Researchers
undertaking empirical work in obesity need to recognise
this fact. For future research our findings suggest that the
incorporation of a simple additional measurement of
obesity, namely waist circumference, into future health
studies will prove highly valuable.

Our findings also have important policy implications,
both in terms of how we measure the growth in obesity
over time and also in terms of how we evaluate racial gaps
in obesity. Since our analysis suggests that measures based
on WC accurately reflect the true prevalence of obesity
and since WC measures of obesity have grown in excess
of what would be predicted given the growth in BMI it is
quite possible that we are underestimating the extent to
which obesity has grown over time.

ble 6

ent class analysis of obesity measures: white women aged less than 50 and white women aged 50 or more. Mean of the posterior distribution with 95%

dible interval in parentheses.

Sensitivity BMI Specificity BMI Sensitivity WC Specificity WC Sensitivity BIA Specificity BIA Prevalence

hite women

less than 50

60.00 (52.1–58.7) 99.89

(98.25–100)

96.83

(91.78–100)

99.37

(96.62–100)

99.8

(97.4–100)

50.66

(43.06–56.7)

32.69

(28.09–37.8)

hite women

50 or more

50.98

(39.91–61.57)

99.55

(95.44–100)

99.15

(93.45–100)

91.73

(76.68–100)

99.74

(96.18–100)

34.45

(23.22–47.13)

60.21

(51.11–68.98)

ble 7

ent class analysis of obesity measures: alternative thresholds mean of the posterior distribution with 95% credible interval in parentheses.

Sensitivity BMI Specificity BMI Sensitivity WC Specificity WC SensitivityBIA Specificity BIA Prevalence

hite women

PBF � 35

59.23

(52.22–66.63)

99.86

(98.55–100)

97.92

(94.29–99.78)

93.84

(90.13–96.6)

98.66

(95.55–99.88)

79.8

(75.27–83.98)

39.2

(34.35–43.28)

hite women

BMI � 27.5

73.64

(66.13–79.82)

99.91

(98.63–100)

93.67

(89.27–96.6)

98.35

(94.98–99.98)

99.64

(97.96–100)

48.96

(43.88–54.9)

44.05

(39.64–48.08)

I also carried out the analysis using both the new higher threshold for

F and the lower threshold for BMI simultaneously. This sensitivity for

I in this case is similar to that obtained using just the new BMI

eshold and old PBF threshold and the specificity of BIA measure was

ilar to that using just the new PBF cut-off and old BIA measure.

wever, once again the sensitivity and specificity rates of WC were both

er 95%, with the WC measure dominating both of the others.
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Finally our analysis suggests that reliance on a measure
uch as BIA may divert attention away from what appears

 be a serious obesity problem among Black and Hispanic
omen. A simple information campaign illustrating the

ppropriate procedure for measuring waist circumference
ould prove highly effective in helping us understand and
ombat the growth in obesity, particularly among the most
ulnerable groups.
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Gonçalves, L., Subtil, A., De Olivera, R., Do Rosario, V., Lee, P., Shaio, M.-F.,
2012. Bayesian latent class models in malaria diagnosis. PLoS ONE 7,
1.

Han, T., Seidell, J., Currall, J., Morrison, C., Deurenberg, P., Lean, M., 1997.
The influence of height and age on waist circumference as an index of
adiposity in adults. Int. J. Obes. 21, 83–89.

Han, T.S., Lean, M.E.J., 1998. Self-reported waist circumference compared
with the ‘waist watcher’ tape-measure to identify individuals at
increased health risk through intra-abdominal fat accumulation.
Br. J. Nutr. 80, 81–88.

Hausman, J., Abrevaya, J., Scott-Morton, F.M., 1998. Misclassification of
the dependent variable in a discrete response model. J. Econometr. 87,
239–269.

Heshka, S., Allison, D., 2001. Is obesity a disease? Int. J. Obes. 25, 1401–
1404.

Hiermeyer, M., 2010. The height and BMI values of West Point Cadets after
the Civil War. Econ. Hum. Biol. 8, 127–133.

Hiu, S., Walter, S., 1980. Estimating the error rates of diagnostic tests.
Biometrics 36, 167–171.

Hu, F., 2008. Measurements of adiposity and body composition. In: Hu, F.
(Ed.), Obesity Epidemiology. Oxford University Press, New York,
pp. 53–83.

Huxley, R., Mendis, S., Zheleznyakov, E., Reddy, S., Chan, J., 2010. Body
mass index, waist circumference and waist:hip ratio as predictors
of cardiovascular risk—a review of the literature. Eur. J. Clin. Nutr. 64,
16–22.

Janssen, I., Katzmarzyk, P.T., Ross, R., 2004. Waist circumference and not
body mass index explains obesity-related health risk. Am. J. Clin. Nutr.
79, 379–384.

Johansson, E., Bockerman, P., Kiiskinen, U., Heliovaara, M., 2009. Obesity
and labour market success in Finland: the difference between having
a high BMI and being fat. Econ. Hum. Biol. 7, 36–45.

Joseph, L., Gyorkos, T.W., Coupal, L., 1995. Bayesian estimation of disease
prevalence and the parameters of diagnostic tests in the absence of a
gold standard. Am. J. Epidemiol. 141, 263–272.

Komlos, J., 1987. The height and weight of west point cadets: dietary
change in antebellum America. J. Econ. Hist. 47, 897–927.
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