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Abstract*Digital holographic microscopy is a quantitative 
phase measurement technique that can provide nanometer 
resolution of the thickness or surface profile of an object. 
We analyze the influence of additive noise in the hologram 
plane on the accuracy of phase measurement. We analyze 
Gaussian distributed and Poisson distributed shot noise in 
the camera plane and we develop a model for quantifying 
the phase error in the reconstructed phase. 
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1. Introduction 
 
Digital holographic microscopy (DHM) is a powerful 
method for single-shot quantitative phase contrast 
microscopy. It is highly applicable in imaging biological 
specimens in a non-invasive manner1-3 and in surface profile 
measurement4. Using a dual wavelength technique, it has 
been shown that sub-nanometer accuracy can be achieved5. 
An important advantage of DHM is that the aberrations 
resulting from imperfect optics can be completely 
compensated6, 7. The digital holographic imaging system is 
a hybrid opto-digital system in which the wavefield from an 
object is captured on an image sensor by interference and 
processed numerically to extract the phase of the wavefield. 
This is susceptible to various sources of noise. Sources of 
noise in holographic imaging include quantization noise, 
shot noise, thermal noise, vibrations and sometimes even 
speckle.  At low exposures, the prevalent and the limiting 
noise is shot noise8.  For many applications, it is of interest 
to perform digital holography at low exposures. In biology, 
for the visualization of fast surface changes of cells and in 
metrology for vibration measurement, a fast frame rate is 
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needed. In Ref. 9, the authors presented a method based on 
heterodyne holography where they have demonstrated 
recording and reconstructing images at extremely low 
signal levels. Yamamoto et.al have recently demonstrated 
the possibility of object reconstruction under very weak 
illumination (43 photons per second)10.  In such cases, the 
issue of shot noise is particularly important. 
The influence of shot noise in DHM was first studied by 

Charrière et al11, 12. They have experimentally investigated 
the influence of the parameters like the gain of the CCD, 
power in the recording beams and the beam ratio on the 
standard deviation in the phase error. They also showed 
methods of reducing shot noise by combining multiple 
exposures. In Ref. 11, the authors used a SNR metric based 
on statistical decision theory, which is suitable for 
biological microscopy specimens, to study the influence of 
recording parameters on the reconstructed holograms in 
presence of shot noise. 
In this paper, we attempt to provide a statistical measure of 

the phase error in (DHM). In section 2, we show that a 
noise source in the hologram plane results in a complex 
noise in the reconstruction plane for off-axis Fresnel DHM. 
We show that both the Fourier filtering and the Fresnel 
propagation lead to the Gaussian statistics in the 
reconstruction plane. This complex noise is shown to have 
real and imaginary parts which are Gaussian distributions, 
the variance of which is related to the variance of the 
original noise source in the hologram plane. In section 2.3, 
we proceed to show how we can develop this concept 
further to develop a theoretical model to predict the phase 
error in DHM resulting from a noise source in the hologram 
plane. In section 3.1 we focus on the case where the original 
noise source in the hologram plane is described by a 
Gaussian noise. Such noise sources include thermal noise. 
In section 3.2, we focus on the case where the original noise 
source in the hologram plane is generated by a Poisson 
process and finally give a brief conclusion. 
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2. Noise in digital holography 
 
In DHM, noise occurs in the capture plane at the image 
sensor. This is always real in nature since it occurs due to 
the square law detection. The hologram is then 
reconstructed to extract the phase information of the object. 
The reconstruction in DHM is generally obtained by firstly 
filtering the hologram in the Fourier domain to remove the 
twin image and zero order terms and secondly by 
computing the Fresnel transform. This gives rise to a second 
type of noise in the reconstruction plane. Here we show that 
both the filtering process and the propagation process tend 
to make the real noise in the hologram plane as a complex 
Gaussian noise. For our study we use a hologram acquired 
from a commercial Digital holographic microscope 
(Lyncee-Tec DHM-T1000). This has transmission off-axis 
Fresnel architecture. The object we used is a micro-lens 
array. The hologram is captured under good recording 
conditions with an exposure time of 314μ s. The 
wavelength used in this system is λ=682nm and the pixel 
pitch is 6.45μ m. The hologram has a size of 1392x1040 
pixels.  We reconstruct a region of 1024x1024 pixels from 
the original hologram and the size of the mask is 450x450 
pixels in the Fourier domain. Fig. 1(a) shows the hologram. 
Fig. 1(b) shows the DFT before application of the filtering 
mask. Fig. 1(c) shows the amplitude in the reconstruction 
and Fig. 1(d) shows the phase of the microlenses structure. 
 

 
Fig. 1 (a) Hologram of phase object, (b) Fourier transform showing the 
filtered area.  (c) Amplitude of the reconstruction and (d) Phase of the 
reconstruction. 
 
 
2.1 Fourier filtering 
 
Fourier filtering is used to remove the zero-order term and 
the twin image in the hologram. This is accomplished by 
multiplying with a binary mask in the Fourier plane which 
has a passband over the object region. The filtering process 
in the Fourier plane can be viewed as a convolution with a 
complex sinc(x) function or a Bessel function in the case of 

a circularly shaped filter. As we filter the hologram, the 
nature of the noise transforms from uniform real to complex 
Gaussian. To examine this transformation, we consider real 
uniformly distributed zero mean random white noise in the 
hologram plane and study the characteristics of the resulting 
complex filtered noise. Quantization noise is an example of 
such a uniformly distributed zero-mean white noise. We use 
kurtosis as a measure of the ‘Gaussianness’ of the 
distribution of the real and imaginary parts13. 
The kurtosis of a variable x with mean μ and standard 

deviation σ is defined by  
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Uniformly distributed variables have a kurtosis of -6/5 
while perfectly Gaussian variables have a kurtosis of 0. We 
perform Fourier filtering on this noise for different filter 
sizes and calculate the kurtosis of the real and imaginary 
parts of the resulting complex noise as a function of the 
filter size. 
In Fig. 2 it can be seen that the kurtosis of the real part of 

the noise decreases from 0 to -1.2 as the filter size increases. 
While the kurtosis of the imaginary part stays almost 
constant. This is expected as the noise in the hologram 
plane is real and transitions to being complex when 
sufficient frequencies are removed. In the case of Fresnel 
off-axis or Fresnel–infocus digital holography, the filter size 
in the Fourier plane in number of pixels is at least one half 
of the number of pixels in the hologram. For this filter size, 
the noise is complex Gaussian with both real and imaginary 
points having the same variance. 
 

 
Fig. 2 Kurtosis of the real and imaginary part of the complex noise 
resulting from Fourier filtering. 
 
 
2.2 Numerical Propagation 
 
The next step in the reconstruction algorithm is numerical 
propagation of the retrieved complex waveforms by 
simulating the Fresnel transform. In general the Fresnel 
transform is implemented by using the convolution 
approach in which the discrete Fourier transform (DFT) of 
the filtered hologram is multiplied by a discrete quadratic 
phase function and then an inverse DFT is performed14,15 
This further contributes to the final distribution of the 
Gaussian noise in the reconstruction plane. This is 
demonstrated using the equations below for a simple 1D 



3D Res. 02, 01006 (2011)                                                                                                                                                                                    3    
                                                                                               

 
 

case. Let H(n) be the filtered hologram and D represent its 
DFT. 

∑−∑=

∑ −=

−

=

−

=

−

=

1

0

1

0

1

0

)2sin()(1)2cos()(1

)2exp()(1)(

N

n

N

n

N

n

N
knnH

NN
knnH

N

N
kninH

N
kD

ππ

π

      (2) 

Let C represent the discrete quadratic phase factor for a 
wavelength λ and distance d. 
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where n =n’∆x for n’=N/2 to n’=N/2-1 where ∆x is the 
pixel pitch of the camera. 
The final reconstruction of this is given by 

)]()([)( nCnDIDFTkO =                                                   (4) 
thus giving 
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where IDFT is the inverse discrete Fourier transform. For 
ease of notation, we have ignored some constant phase 
factors. It can be seen that each value in the final 
reconstruction O is the result of a weighted sum of the 
values of the previous DFT. Since the filtering process and 
the numerical Fresnel transform are both linear and since 
we assume the noise to be additive, we can say that noise is 
also `propagated' using the same algorithm and each value 
of the noise in the output plane results from the sum of a 
large number of random values taken from the input plane. 
The noise term at each point in the reconstruction plane is 
therefore given by a large sum of randomly weighted 
phasors, the angles of which are uniformly distributed 
between –π and π. 
We can use the central limit theorem to conclude that the 
noise in the reconstruction plane after Fourier filtering and 
Fresnel propagation has Gaussian statistics. The statistical 
properties of the complex noise are similar to that of 
speckle16. The real and imaginary parts are Gaussian 
distributed while the amplitude is Rayleigh distributed and 
the phase of the noise is uniformly distributed in the range 
[-π, π]. 
Let σI

2 represents the variances of the real additive noise in 
the input plane and Re

2
Oσ , Im

2
Oσ represent the variances of 

the real and imaginary parts of the resulting noise at the 
output plane respectively. By using Parseval's theorem, we 
can say 

IOO
222
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Assuming the energy to be evenly distributed between the 
real and imaginary parts we can assume 
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We assume that the noise energy is evenly distributed 
throughout the frequency domain. If there is a bandpass 
filter in the frequency domain with a passband of 2f . i.e. 
the spatial frequency bandwidth of the transmitting mask in 
the DFT plane is f times the bandwidth of the hologram in 
both dimensions, then by once again using Parseval's 
theorem, we can conclude that the final variance becomes 

If 22σ . 
Thus the real and imaginary parts of the noise in the 

reconstruction plane have Gaussian distributions both with 
a variance given by 2/22

If σ . 
 
 
2.2 Statistics of the error in phase 
 
If we consider the reconstructed signal, Se to be given by 
the sum of the noise free signal, So and the error inducing 
noise term, E. i.e Se=So + E. Therefore the phase error can 
be defined as the difference between the phase of the 
original noise free signal (∠So) and the phase of the noisy 
signal (∠Se); 

oeerr SS ∠−∠=θ                                                               (8) 
Letting the reconstruction So =Aexp(i∠So), where A is the 
uniform amplitude in the reconstruction. Since we are 
subtracting the phase of So from Se to find the phase error, 

errθ  can be written as 
 So)]exp(i [S = eerr ∠∠θ                                                      (9) 

since Se = So + E, we can write this as 
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This shows that the phase error in the reconstruction plane 
has the same form as that of the phase distribution in the 
sum of a uniform background of amplitude, A and a speckle 
pattern. We restate here that our assumption that the object 
has uniform amplitude in the reconstruction, i.e A is 
uniform. Such an assumption is valid for phase only objects. 
In this case the probability distribution of the phase error, 

errθ  can be interpreted as the distribution of phase in the 
sum of a constant phasor and a random speckle like noise. 
This is similar to the phase distribution in the coherent sum 
of a uniform background with the speckle field emitting 
from a rough surface. The probability distribution of the 
phase in such a sum has been shown 16, 17 to be 
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where Rσ  is the standard deviation of the real part(or 
imaginary part) of the complex noise in the reconstruction 
plane. From our previous analysis in section 2.1, this is 
equal to Rσ  =f Iσ  / 2   where Iσ is equal to the standard 
deviation of the noise in the input (camera) plane and 
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Equation 11 is also used to model the noise in MRI data18 
and in the general case of the phase error when Gaussian 
noise is added to a complex sinusoidal signal19. 
When RA σ>> , Equation 11 can be approximated as a 
Gaussian of the form 
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3. Additive noise in the Hologram plane 
 
 
3.1 Application to additive white Gaussian noise 
 
Gaussian noise is a general model that is often used in 
digital signal processing to describe the noise from various 
sources. The combined effect of all the noises due to 
quantization, thermal noise, shot noise and readout noise 
can be described as a zero mean additive white Gaussian 
noise (AWGN). We numerically generate AWGN with 
different standard deviations and add them to our sample 
hologram. The noisy holograms are reconstructed using the 
convolution method for simulating the Fresnel transform. 
The phase of the reconstruction is calculated and the 
standard deviation in the phase error is calculated by least 
squares fitting the observed distribution to a non-
normalized Gaussian. This value is compared with the 
predicted value given by Equation 14. Any aberrations 
resulting from the setup are suppressed by capturing the 
interference patterns when there is no object and 
reconstructing it. The phase of this reconstruction is then 
subtracted from the reconstruction of the object. Our 
acquired holograms has some noise like microscopic dust 
particles, spurious reflections and other noise sources like 
readout noise, quantization noise etc but since we are 
measuring the error in phase upon introducing computer 
generated noise, the hologram we acquire is treated as a 
benchmark noise free hologram and we compare the noisy 
reconstructions against this hologram.  
 

 
Fig. 3 Standard deviation of the phase error vs. the standard deviation in 
the camera plane of the hologram for Gaussian noise. 
 
Fig. 3 shows the standard deviation in the phase error vs. 
the standard deviation of the noise in the input plane for 
both small errors. We see an approximately linear 
relationship. The phase error starts deviating when the noise 
standard deviation increases beyond a certain extent and 
this is because of the departure from the assumption 
that RA σ>> . The standard deviation of the original 
hologram pixel values is 11.9 and at a relatively high 
additive noise of 5.3=Iσ , the deviation in the predicted 
and actual values is 12% .  In the case of even high noise, 
the noise in the capture plane dominates the phase signal. 
The phase of the reconstructed signal is immersed in noise 

and the values tend to become uniformly distributed 
in ],[ ππ− . This can be seen in Equation 11. In the limit of 

RA σ/  going to zero, the phase error signal becomes 
uniformly distributed with a probability density of 

π2/1 between ],[ ππ−  and thus with a variance of 3/2π . 
Thus the standard deviation in the measured error 
becomes 3/π . 
At low exposures, the influence of noises like thermal 

noise and quantization noise can be reduced by cooling the 
CCD chip and by using a higher bit rate camera respectively. 
The ultimate noise limitation is due to the fundamental shot 
noise at low light imaging. 
 
 
3.2 Application to Poisson noise 
 
In this subsection, we investigate the phase error in DHM 
when the noise in the hologram plane is generated from a 
Poisson distribution. 
Our theoretical model complements the experimental 

investigations done in 11, 12. Poisson noise is a data 
dependent noise which occurs due to the random and 
discrete nature of the photons and photoelectrons involved 
in the digital image formation process. It can be treated as 
additive in nature20. This noise is a fundamental limitation 
to imaging8 and is particularly influential at low lighting 
conditions. 
Since the amount of shot noise depends only on the signal 

and not on any other external factors, we can provide an 
estimate for the phase error based on the power of the signal 
itself. We can estimate the standard deviation of the shot 
noise in the following way. An important characteristic of a 
Poisson distributed variable is that the variance is equal to 
the mean. The variance of Poisson noise is equal to the 
mean of the signal µ . Thus the standard deviation is given 

by µ . When this hologram is amplified by a factorα , the 
amplitude in the reconstruction becomes Aα and the mean 
becomes αµ .Once again A represents the amplitude in the 
reconstructed phase area of the ideal noise free hologram. 
Substituting these values in Equation.14 gives the standard 
deviation in phase error to be 
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This shows that as the hologram is amplified by 
increasing α , the standard deviation in the phase error 
decreases by a factor α . The filter factor f is a constant 
for the system. It should be noted here that the amplification 
factor is applied to the holographic signal before the 
recording is made. This can be increased by increasing the 
power of the illuminating beams or by increasing the 
exposure time of the camera. It should also be noted that 
amplification by increasing the gain of the CCD only 
increases the sensitivity of the photo-detectors but does not 
decrease the photon shot noise. 
To verify the theoretical model, we numerically introduce 

Poisson distributed noise into the hologram in order to 
simulate the presence of shot noise in our capture and then 
reconstruct using the convolutional approach. Poisson noise 
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is signal dependent and to generate different noises, the 
mean value of the signal is varied by multiplying with a 
factorα . Each pixel of the scaled hologram is treated as the 
mean of a Poisson distributed random variable and is 
replaced by a integer randomly selected from a generated 
distribution. There are various algorithms for generating 
Poisson distributed variables21. 
 

 
Fig. 4 (a) Computer generated Poisson noise in the hologram  (b) Noisy 
phase reconstruction (c) Histogram of the phase error with a least squares 
fit to a non-normalized Gaussian curve and (d) Standard deviation of the 
phase error vs. the amplification (α ) of the hologram. 'blue' curve is 
calculated using Equation 13 and the red curve is calculated by using 
computer generated Poisson noises for each value of the amplification 
factor (α ). 
 
We use the imnoise function in Matlab to generate Poisson 

noises for all the holograms with different mean values. 
These holograms are reconstructed and the noisy phase 
values are calculated. A histogram of the phase error is 
calculated and the standard deviation is calculated by least 
squares fitting a non-normalized Gaussian to the histogram 
of the phase error. This value is plotted against the value 
given by Equation 13. Fig. 4(a) shows the shot noise in the 
hologram. Fig. 4(b) the phase reconstruction, Fig. 4(c) the 
histogram of the phase error with least squared fit of a 
Gaussian curve and Fig. 4(d) shows the standard deviation 
in the phase error for amplification factor (α ) from 1 to 
125 along with the predicted value from Equation 15. 
As seen in Fig. 4(d), the standard deviation in the phase 

error follows a α curve closely. Fig. 4(d) also shows the 
least squares fit (red line) to a function of the form 

cxay n += . which gives the value of 49.0−=n  and fit 
parameter R =0.99, confirming the theoretical inverse 
square root dependence. The same dependence was 
observed in experimental studies by the authors in 12. Even 
though the simulation results and the predicted values 
follow the same N dependence, there is a difference in 
between the curves. We believe that this is due to the 
following assumptions. In the case of an appreciable 
modulation of the amplitude in the reconstruction plane, 
uniform noise in the hologram plane also becomes complex 
and Gaussian in the reconstruction plane. However in that 

case the phase error cannot be described by the equations 
here. The model used here relies on noise being added to a 
fixed amplitude phasor which is not the case when there is 
modulation in the amplitude of the signal. In our case there 
is non-uniformity (standard deviation to mean ratio of 0.21) 
in the amplitude due to various sources like spurious 
reflections, imperfections in optics, microscopic dust 
particles and the sample itself being not purely transparent. 
Another assumption is one with the nature of the noise due 

to the Poisson process. It is signal dependent as can be seen 
in Fig. 4(a). Thus the assumption that the noise is 
completely random is not strictly true and thirdly our curve 
fitting is based on an approximation of Equation 11 under 
the assumption that RA σ>> . For low image signal 
intensities, this assumption is not a strong one as the 
standard deviation of the Poisson noise is comparable to the 
signal. 
 
 
4. Conclusion 
 
We have quantified the influence of the additive noise on 
the phase measurement error in the hologram plane in 
digital holographic microscopy under the assumption that 
the object is highly transmissive in nature. We have shown 
that in general, the noise in the output plane of a Digital 
holographic system has Gaussian characteristics. This 
happens due to both the Fourier filtering as well as the 
numerical propagation of the complex wavefield. We have 
described the relationship between standard deviation in the 
error in the camera plane to the standard deviation in the 
error in the reconstructed phase in the case of Fresnel off-
axis geometry. Shot noise which has Poisson statistics is a 
fundamental noise source for holographic imaging. 
According to our simple model, the phase error can be 
decreased linearly by amplifying the image by either 
increasing the exposure time or by adding multiple 
exposures. The reduction in error happens because the 
amplitude of the reconstructed image increases relative to 
the perturbation by the noise phasors in a α fashion where 
α is the amplification of the holographic signal. We have 
studied both Gaussian and Poisson distributed noises in the 
camera plane and have verified the validity of our model 
using numerically generated noise. 
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