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Digital holography is an imaging technique that enables recovery of topographic 3D information about an
object under investigation. In digital holography, an interference pattern is recorded on a digital camera.
Therefore, quantization of the recorded hologram is an integral part of the imaging process. We study the
influence of quantization error in the recorded holograms on the fidelity of both the intensity and phase of
the reconstructed image. We limit our analysis to the case of lensless Fourier off-axis digital holograms.
We derive a theoretical model to predict the effect of quantization noise and we validate this model using
experimental results. Based on this, we also show how the resultant noise in the reconstructed image, as
well as the speckle that is inherent in digital holography, can be conveniently suppressed by standard
speckle reduction techniques. We show that high-quality images can be obtained from binary holograms
when speckle reduction is performed. © 2011 Optical Society of America
OCIS codes: 090.1995, 110.2970, 110.4280, 070.0070.

1. Introduction

The idea of recording and reconstructing holograms
digitally was proposed in early studies by Goodman
and Lawrence [1], Konrod et al. [2], and Yaroslavskii
[3]. In later years, it was further developed by
Schnars and Juptner [4]. In digital holography, a
coherent reference wave is incident on a two-
dimensional (2D) image sensor, where it forms an in-
terference pattern with coherent light reflected or
transmitted through an object of interest. The result-
ing interference pattern, called the digital hologram
(DH), contains encoded information about the three-
dimensional (3D) topographic features of the object.
The DH can be transmitted remotely to another
place and the 3D object can be reconstructed and dis-
played remotely. This information can be analyzed
with numerous digital processing methods. The ad-
vantage of numerical processing has helped digital
holography become a fast growing field with numer-
ous applications including aberration-compensated
phase-contrast microscopy [5,6], shapemeasurement

[7], and 3D display [8]. Recently, the resolution of
CCD/CMOS sensors has increased significantly and
with it, so, too, has the computational requirement of
a digital holographic imaging system. The band-
width needed for transmission of holograms from
one point to another has also increased, and hence
compression of digital holograms has been an active
area of research [9–18]. In this context, the quantiza-
tion of the hologram and the effect on the recon-
structed images has been studied before.

Reducing the number of quantization levels to
represent the hologram has various advantages. It
directly reduces the memory requirement of the ho-
logram, and combined with suitable processing and
hardware, can decrease the computational require-
ment of the digital imaging system [9]. A quantized
hologram also can be compressed effectively. How-
ever, as a side effect, the quantization introduces a
quantization noise in the hologram and the recon-
structed image. This can have an adverse effect on
the quality of the reconstructed intensity for 3D
display applications, and on the fidelity of the phase
information, in the case of digital holographic micro-
scopy. The advantages and disadvantages of quanti-
zation in digitally recorded holograms in various
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recording architectures have been discussed by a
number of authors. Naughton et al. [10] have demon-
strated the effectiveness of quantization in combina-
tion with lossy and lossless compression techniques
for transmission and storage of digital holograms. A
networked “real time Fresnel field transmission sys-
tem” was developed by the authors in [11] to test dif-
ferent compression algorithms. They obtained the
complex wavefield by phase shifting, and then quan-
tized and compressed the real and imaginary parts
separately. In [12], quantization of the real and
imaginary parts of the complex hologram values (ob-
tained from phase shifting) was studied in combina-
tion with lossless and lossy compression techniques.
In [13], reconstruction from pure phase objects
was studied, and perceptible reconstructions were
achieved by using a 1bit (binary) representation le-
vel. Various other quantization schemes were
developed and studied by Shortt et al. [14–16]. An
in-depth simulation and experimental study on the
effect of quantization in phase-shifting digital holo-
graphy was performed by Mills and Yamaguchi
[17], in which the individual phase-shifted interfero-
grams were quantized before calculation of the com-
plex wavefield. They found the use of 4 bits for
hologram quantization to be adequate for “visual re-
cognition” of the reconstructed images. They also
mentioned that using 2 bits per pixel (4 levels)
gives noisy reconstructions. In phase-shifting digital
holography, Darakis et al. studied the effect of
compression in the individual interferograms, the
complex hologram, and the reconstruction [18,19].
Also see [20] for a survey on quantization in
holography.

The lowest quantization one can achieve directly is
1 bit per pixel, the binary hologram. This rate intro-
duces appreciable noise in the reconstructed image.
If the noise in the reconstructed image can be re-
duced, there are several advantages of using binary
holograms for display and projection applications.
Ferroelectric binary spatial light modulators (SLMs)
have very fast switching rates (up to 10000 fps) and
can display holograms at a fast frame rate. Binary
holograms occupy considerably less memory (90%
less than an 8 or 12 bit per pixel hologram). Also,
in principle, it is faster to acquire binary holograms.
Such advantages of optical setups employing binary
SLMs have been shown in [21,22]. Another imaging
strategy employing binary sensors and compressive
sensing was recently shown in [23].

In the 1960–70s, various authors studied the
influence of quantization arising from the finite
printer resolution in computer generated holograms
and their efficiency [24–26]. In [27], Powers and
Goodman derive the probability of error in holo-
graphic memory employing computer-generated ho-
lograms when there is a quantization error in the
hologram plane. Binary holograms were carefully
studied [28] because of the ease of printing, and
new methods were developed for synthesis of binary
CGHs [29].

The main contributions of this paper are:

• We analyze quantization noise in lensless Four-
ier digital holographic imaging. In this architecture,
the reconstruction is obtained by a single discrete
Fourier transform (DFT) of the recorded hologram.
We believe that the results can be extended to
the Fresnel case. To the best of our knowledge, this
is the first time that quantization has been studied
for the lensless digital holography architecture.
Furthermore, our system is off-axis. Off-axis is pre-
ferred over phase-shifting techniques for imaging dy-
namic events, as it involves a single capture.

• We derive a simple theoretical model that pre-
dicts the effect of quantizing the digital hologram on
both the intensity and phase values of the recon-
structed image.

• We confirm the theoretical model, using experi-
mental results that closely agree. In those instances
where they do not agree, we observe, for the first time
in digital holography, the phenomenon of banding
that occurs in highly quantized signals [30].

• Following from our theoretical model, we pro-
pose and experimentally validate a method to reduce
the noise in the reconstructed intensity resulting
from quantization, using a speckle-reduction techni-
que. This method has the added advantage of also
reducing speckle inherent in holographic imaging.

• Additionally, we briefly mention the other noise
sources that can occur in DH imaging, such as chan-
nel noise, shot noise, thermal noise, and computa-
tional noise, and we discuss methods for reducing
their influence using what we refer to as “speckle re-
duction-like approaches.”

In Section 2, we discuss the basics of off-axis lens-
less Fourier digital holography and our experimental
setup. In Section 3 we develop our theoretical model
and compare it with experimental results. Finally, in
Section 4, we reduce this error and the inherent
speckle noise by adding multiple reconstructions
and quantifying the reduction, and give a brief
conclusion.

2. Lensless Digital Fourier Holography

A. Theory

Lensless Fourier digital holography involves the in-
terference of the object wavefield with a spherical re-
ference wave originating from a point source located
at the same distance away from the sensor as the ob-
ject. A lensless Fourier digital hologram can be repre-
sented by a sum of four interference terms. IfO andR
represent the reference wave field and the complex
amplitude of the object wave at the hologram plane
respectively, then the hologram, H can be repre-
sented by

HðxÞ ¼ jOðxÞj2 þ jRðxÞj2 þOðxÞRðxÞ� þ RðxÞOðxÞ�
ð1Þ
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For simplicity, we use a one-dimensional (1D)
representation. The hologram,H, contains the object
information, O, in the third term. When the recon-
struction operation is performed on H, the other
three terms contribute to the zero-order noise and
the twin image. Here we briefly describe the recon-
struction process in Fourier digital holography. For
a thorough evaluation, we refer the reader to [31].

The relationship between the wavefield at the
hologram plane, O, and the object plane, o, is given
by the Fresnel transform under the paraxial
approximation:

OðxÞ ¼ exp
�
jπx2
λd

�
F

�
oðx0Þ

�
exp

jπx02
λd

��
ðxÞ: ð2Þ

The reference wave from a point source displaced
laterally by ξ and placed at a distance d away is re-
presented by R ¼ expðiπðx−ξÞ2λd Þ. The reconstruction can
be written as

FfHðxÞgðx0Þ ¼ FfjOðxÞj2gðx0Þ þ δðx0Þ

þ o�ðξ − x0Þ exp
�
jπðξ − x0Þ2

λd

�

þ oðx0 − ξÞ exp
�
−jπðx0 − ξÞ2

λd

�
: ð3Þ

The Fourier transform of the reference beam is a Dir-
ac delta function, δðx0Þ. As long as oðx0Þ has a finite
extent and ξ is sufficiently large, we can expect
the latter two terms to be spatially separated from
the first two terms, which are known as the zero-
order terms and which occupy an area in the center
of our reconstruction. In this way, the complex object
wavefield oðx0Þ can be recovered. The reconstructed
complex image, aside from a quadratic phase factor,
is thus given by the inverse Fourier transform of the
hologram. This is achieved by calculating the dis-
crete Fourier transform (DFT) using the FFT algo-
rithm. A comprehensive analysis of the extent of
these four terms in Eq. (3) can be found in [31].

When a digital hologram is acquired with a dis-
crete CCD/CMOS sensor and reconstructed digitally,
at least four physical effects impact on the image for-
mation and image quality in the reconstruction
plane. They are:

1. The camera aperture size, which determines
the point-spread function of the imaging system.

2. The averaging effect on the individual pixels
due to their finite area.

a. Averaging in the final complex image, in the
case of a Fresnel holographic imaging system.

b. A sinc amplitude modulation in the recon-
struction plane, in the case of a Fourier or lensless
Fourier imaging system.

3. The sampling rate of the 2D image sensor,
which results in repeating copies of the image in
the reconstruction plane.

4. The quantization of the pixel values, i.e.,
the pixel values are quantized in accordance
with the bit-depth of the memory registers in the de-
tection system. The bit-depth of the camera is typi-
cally 8–12 bits per pixel.

The effects of the first three physical effects on the
reconstructed image have been well studied and ana-
lyzed [32,33]. The fourth effect is studied here.

B. Experimental Setup

A schematic for the experimental setup for lensless
Fourier digital holography is shown in Fig. 1. We
use a Mach–Zehnder interferometer employing a
diode-pumped solid state laser (λ ¼ 785nm) to record
off-axis lensless Fourier digital holograms. The sphe-
rical reference beam is generated by placing a lens
(focal length of 10 cm) in the path of a plane-colli-
mated reference beam such that the lens generates
a point source at the same distance as the object is
from the camera. We use a 12 bit camera (AVT Fire-
wire) with pixel pitch 6:45 μm and size 1040 ×
1392pixels for recording. Using this experimental
setup, we record a lensless Fourier hologram of a
2D object, a USAF resolution chart. Since we are
studying quantization, we intentionally use the full
dynamic range offered by the camera by adjusting
the power in the beams. This results in some satu-
rated pixels. The percentage of saturated pixels is
0.5%, and thus has little effect on the reconstructed
image. This hologram is quantized at 12 bit precision
by the camera and is our benchmark hologram
for comparing the effect of further quantization.
Figure 2(a) shows the original 12 bit hologram;
Fig. 2(b), the histogram of the pixel values in the
hologram; Fig. 2(c), the reconstructed image; and
Fig. 2(d), a section of the reconstructed image.

Fig. 1. (Color online) Setup for Fourier digital holography.
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3. A Model for Quantization Noise in Fourier Digital
Holography

A. Noise Due to Quantization in the Hologram Plane

The image acquired by any digital image sensor is in
a quantized format. It can be further quantized com-
putationally to suit the needs of the application, e.g
compression. In this paper, we base our experimental
results on digital holograms that are obtained by di-
gitally requantizing our benchmark 12 bit hologram
to a reduced number of quantization levels. We use
the following notation, which is illustrated in Fig. 3,
throughout this paper.

• H represents the ideal 2D hologram and h re-
presents its ideal reconstruction. Hl represents the
requantized 2D hologram. hl represents its recon-
struction. l denotes the number of bits used to quan-
tize the hologram.

• Ql represents the noise in the hologram plane
due to quantization with l bits. It is a 2D matrix re-
presenting the quantization error per pixel. ql repre-

sents the resulting quantization noise in the
reconstruction plane. ql is the DFT of Ql.

When an optical wavefield with a particular varia-
tion in irradiance (of dark to bright) is incident onto
the image sensor, the image sensor captures this var-
iation in accordance with the quantization rate. Dur-
ing the digital capture process, the camera pixels
convert the charge acquired into a voltage, and this
voltage is digitized and quantized into a pixel value
that is directly indicative of the intensity of light in-
cident on that pixel. The interval betweenMx andMn
is uniformly divided into 2l levels and all the pixels
are “binned” into their closest level. The quantizing
interval thus is

Δl ¼
Mx −Mn

2l
; ð4Þ

and the quantized hologram thus has 2l levels. Quan-
tization results in some loss of information and
causes noise in the reconstructed image in both
the phase and amplitude. This is depicted in Fig. 4,
which shows the degrading effect of uniform quanti-
zation on the reconstructed image quality. In
Fig. 4(a), we show the histogram ofH12, the hologram
recorded using the full 12 bit range of the camera. In
Fig. 4(b), we show the intensity of the resulting nu-
merical reconstruction. In Fig. 4(c), we show the his-
togram of H8, the case where the 12 bit hologram is
requantized to 8 bit; in this case, there are 16 times
fewer levels than in the 12 bit case. Thus, we see
that the number of pixels in each bin increases. In
Fig. 4(d), the intensity of the resulting numerical re-
construction is shown. There is no apparent reduc-
tion in quality compared with the 12 bit case. In
Figs. 4(e) and 4(f), the holograms and the recon-
structed image are shown for the 2 bit case where
there are just 4 levels. Although the noise has in-
creased, the object is still perceptible. Finally,
Figs. 4(g) and 4(h) show the limiting case for quanti-
zation, the binary case where the object is immersed
in a high amount of quantization noise.

Quantizing in the way described above means that
the value of the quantized pixel will deviate from its
correct value by�Δl=2. Thus, we canmodel the quan-
tization noise, Ql, by assuming that it is an additive
white noise sequence with values uniformly distrib-
uted between −Δl=2 and þΔl=2, where Δl is the
quantization interval [34]. In the hologram plane,
the quantized hologram can be written as

Hl ¼ H þQl: ð5Þ

For such a uniform white noise sequence, the mean
value is 0, as the noise is fluctuating randomly
between −Δ=2 and þΔ=2, and the variance can be
derived as

Fig. 2. (Color online) (a) Original hologram. (b) Histogram show-
ing the grayscale value and the corresponding number of pixels.
(c), (d) Reconstructed image.

Fig. 3. (Color online) Illustration of the notation used between
the hologram plane and the reconstruction (Fourier) plane. Ql

stands for the quantization noise in the hologram plane and ql
stands for the quantization noise in the Fourier domain. ql is com-
plex and the reconstruction is the complex sum of the ideal recon-
struction h and the noise ql.
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σ2Ql
¼

ZΔl=2

−Δl=2

x2
�

1
Δl

�
dx ¼ Δ2

l

12
: ð6Þ

Thus, for a quantizer with intervalΔ, the standard
deviation in the error is

σQl
¼ Δlffiffiffiffiffiffi

12
p ¼ Mx −Mn

2l
ffiffiffiffiffiffi
12

p : ð7Þ

We calculate the quantization errorQl for different
values of l in the following way. The acquired 12 bit
hologram, H12, is requantized down to l bits to gen-
erate the lower quantized hologram, Hl. Ql is signal
independent and additive and Hl can be written as
Hl ¼ H þQl. SinceH12 ≈ H, this givesQl ¼ Hl −H12.
We can thus calculate the quantization noise for
various values of l by computing Hl and subtracting

it fromH12. In Fig. 5, the theoretical and actual stan-
dard deviation in the quantization noise, Ql, for dif-
ferent values of l (from 12 bits to 1 bit) is shown. The
standard deviation closely follows Eq. (7). The curves
closely match except for the 1 bit case where there is
a small deviation from the predicted value. This led
us to discover that at very low bit levels, the quanti-
zation noise carries with it the same structure as
that of the hologram, H. This concept is illustrated
in Fig. 6, where a simple sinusoidal signal is quan-
tized to 32 levels (5 bits), four levels (2 bits) and
two levels (1 bit). The quantized signal and the quan-
tization noise are shown for the three cases and it can
be seen that when the signal is quantized to the bin-
ary case, the quantization noise carries the same

Fig. 4. (Color online) Histograms for various quantization levels
and the corresponding reconstructed images. (a) and (b) 12bits, (c)
and (d) 8bits, (e) and (f) 4bits, (g) and (h) 1 bit (binary) cases.

Fig. 5. (Color online) Standard deviation of the quantization
noise in the hologram plane versus the theoretical prediction.

Fig. 6. (Color online) Quantization of a sinusoidal signal and the
corresponding quantization noise for three different cases. (a) and
(b) 5bits (b) and (c) 2bits and (d) and (e) 1bit. It can be seen that for
5bits the quantization noise is almost randomly varying as in (b),
and for the 1bit case in (e), it has the particular characteristic fre-
quency of the original signal.
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characteristic frequency and the shape as that of the
signal. Thus the noise is no longer a random white
noise but has the characteristic frequency of the sig-
nal. This is analogous to the phenomenon of color
banding in computer graphics which occurs when
there are very few bits per pixel available for repre-
senting color. The concept of dithering in signal pro-
cessing is related to reducing such effects in highly
quantized signals [30]. In Fig. 7, we plot the histo-
grams of the quantization noise, Ql for l values of
(a) 8 bits, (b) 6 bits (c) 4 bits and (d) 1 bit. The histo-
gram for the 1 bit case is not uniformly distributed
and thus Ql will contain many of the same frequency
components of H for low values of l. This is again
clearly demonstrated when we calculate the DFT
of Ql for l values of 8, 6, 4, and 1 bit. As we have dis-
cussed above, the result of quantizingH at a very low
quantizing rate results in an error signal, Ql, that in-
herits frequencies of H. The DFT of H is the recon-
structed image and therefore we can expect the
DFT of Ql, which we denote as ql to have resemble
the reconstructed image. In Fig. 8, it can be seen that
for the low value of l ¼ 1bit, the object can be seen in
the reconstruction of the noise. The “nonwhite noise”
occurs only at low quantization rates (around 2 bits
and less). For other cases, the assumption that the
quantization noise in the hologram plane is a white
noise sequence holds strongly and we proceed with
this assumption for the rest of our analysis. We refer
the reader to [35] for a discussion on the conditions
for quantization noise to be uniform and white.

B. Noise Due to Quantization in the Reconstruction Plane

In the previous subsection it was shown that the
noise in the hologram plane can be described as a
uniformly distributed white noise with a standard
deviation of Δl=

ffiffiffiffiffiffi
12

p
. We are interested in studying

the properties of ql, the resulting noise in the recon-
structed image. In lensless Fourier digital hologra-
phy, the reconstruction is obtained by applying a

DFT to the acquired digital hologram. The discrete
Fourier transform is a linear operation, therefore,
the noise in the reconstruction plane is the Fourier
transform of the noise in the hologram plane. We
now proceed to show that the noise in the reconstruc-
tion plane shares the same first-order statistical
properties as those of speckle. In the case of coherent
light incident on a rough surface, the resulting
speckle pattern can be treated as a random walk
and the first-order statistical properties can be de-
rived under the assumptions that the amplitudes
and phases of the random walk components at each
point are statistically independent from phasors at
other points and also that the amplitudes and phases
are independent of each other. A further assumption
is that the phases are uniformly distributed between
−π and π. In the case of lensless Fourier digital holo-
graphy, quantization noise in the Fourier plane is the
DFT of the noise in the hologram plane. A DFT of
white noise can also be considered as a random walk
arising from the phases at which the DFT is calcu-
lated which are uniformly distributed between −π
and π. Thus in the Fourier holographic system, the
noise in the reconstruction plane has the same first
order statistical properties as that of speckle.We pro-
ceed to explicitly derive the statistical properties of
this noise:

hl ¼ DFTðHlÞ ¼ DFTðH þQlÞ ¼ hþ ql: ð8Þ
The statistical properties of the DFT of a discrete

random signal can be calculated. We derive here the
mean and variance of ql which is a sequence of

Fig. 7. (Color online) Normalized histograms of the quanti-
zation noise in the hologram plane. (a) 8 bits. (b) 6bits.
(c) 4bits. (d) 1bit.

Fig. 8. For low bit quantization like 1bit, the quantization noise
in the hologram plane is not uniform andwhite. This can be seen in
the reconstruction from the quantization noise for four different
cases. (a) 8bits, (b) 6bits, (c) 4 bits, (d) 1bit. The reconstruction
of the noise for 1bit is not random and the object can be seen
in it.
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complex numbers with the real and imaginary parts
given by

qlðkÞ ¼ RlðkÞ þ iIlðkÞ; ð9Þ

RlðkÞ ¼
1ffiffiffiffiffi
N

p
XN−1

n¼0

QlðnÞ cos
�
2πkn
N

�
; ð10Þ

IlðkÞ ¼
1ffiffiffiffiffi
N

p
XN−1

n¼0

QlðnÞ sin
�
2πkn
N

�
: ð11Þ

The mean of the real and imaginary parts of the
noise, E½Rl� and E½Il�, can be found to be

E½Rl� ¼
1ffiffiffiffiffi
N

p
XN−1

n¼0

E

�
QlðnÞ cos

�
2πkn
N

��

¼ 1ffiffiffiffiffi
N

p
XN−1

n¼0

E½QlðnÞ�E
�
cos

�
2πkn
N

��
¼ 0; ð12Þ

E½Il� ¼
1ffiffiffiffiffi
N

p
XN−1

n¼0

E

�
QlðnÞ sin

�
2πkn
N

��

¼ 1ffiffiffiffiffi
N

p
XN−1

n¼0

E½QlðnÞ�E
�
sin

�
2πkn
N

��
¼ 0; ð13Þ

where E represents the expectation or the mean
value. The real and imaginary parts of the complex
quantization noise in the reconstruction plane thus
have zero mean.

The variance of Rl can be derived to be

σ2Rl
¼ E½R2

l � ¼
1
N

XN−1

n¼0

XN−1

m¼0

E½QlðnÞQlðmÞ�

× E

�
cos

�
2πkn
N

�
cos

�
2πkm
N

��
: ð14Þ

For n ≠ m, E½cosð2πknN Þ cosð2πkmN Þ� ¼ E½cosð2πknN Þ�
E½cosð2πkmN Þ� ¼ 0, and only the n ¼ m terms contribute
to the sum. Therefore,

σ2Rl
¼

XN−1

n¼0

1
N

E½QlðnÞ2�E½cos2 ϕn�

¼ 1
N

XN−1

n¼0

E½QlðnÞ2�E
�
1
2
þ 1
2
cos2ϕn

�

¼ 1
N

XN−1

n¼0

E½QlðnÞ2�
2

¼ σ2Ql

2
: ð15Þ

Similarly σ2Il ¼
σ2Ql
2 where σ2Ql

is the variance of Ql. The
statistical distributions of the amplitude and the in-
tensity of the complex noise can also be derived. A

complete derivation of these statistical distributions
with the necessary assumptions and conditions can
be found in [36–38]. These distributions are summar-
ized in Table 1 for the case of a hologram having a
quantization interval of Δl, defined in Eq. (4).

The amplitude of ql, denoted by Al, is Rayleigh
distributed and the intensity Intl is exponentially
distributed. We validate this theoretical model by
calculating a requantized digital holograms with
4 bits, H4 from H12 by uniformly quantizing. We can
reconstruct these two digital holograms,H4 andH12,
using a FFT to obtain the complex reconstructions
h12 and h4. In Eq. (5), we showed that hl ¼ hþ ql
where h was an ideally reconstructed digital holo-
gram. We can write ql as the difference between
the reconstruction of the quantized hologram, hl,
and the noise free reconstruction, h. If we assume
that for the 12 bit case, Q12 ≈ 0 and H12 ≈ H, we
can further assume that h12 ≈ h and q12 ≈ 0. There-
fore, we can calculate ql using the equation

ql ¼ h12 − hl: ð16Þ

We can thus determine the error in the reconstruc-
tion for any quantization rate. In Fig. 9, we show
the theoretical and experimental histograms of the
various parts of the complex noise for the quantiza-
tion rate of 4 bits. As it can be seen in Fig. 9, the sta-
tistics of quantization noise match the theoretically
predicted values. We have found similar agreement
between the theoretical model and the experimental
results for quantization at other rates (l ¼ 4 bits
to 11 bits).

In the previous sections, we examined the charac-
teristics both of quantization noise in the hologram
plane and the resulting noise in the reconstruction
plane. The reconstruction, however, is the complex
sum of both the complex reconstruction and the com-
plex quantization noise. In the sections that follow,
we look at the properties of this complex sum.

C. Effect of Quantization Noise on Reconstructed Phase
for Phase Objects

The phase of the reconstructed image is important in
digital holographic microscopy. For quantitative
phase-contrast microscopy of transparent samples,
information about the three dimensional structure
is encoded in the phase variations of the recon-
structed image. Skydan et al. [39] have studied the
influence of quantization on the phase error in fringe

Table 1. Probability Densities of Different Parts of
Quantization Noise in the Fourier Domain

Real Part (Rl)
pðRlÞ ¼ 12

πΔ2
l
expð−12Re2lΔ2

l
Þ

Imaginary Part (Il) pðIlÞ ¼ 12
πΔ2

l
exp

�
−12Im2

l

Δ2
l

	

Amplitude (Al) pðAlÞ ¼ 24Al

Δ2
l
exp

�
−12A2

l

Δ2
l

	
Phase (θl) pðθlÞ ¼ 1

2π
Intensity (Intl) pðIntlÞ ¼ 12

Δ2
l
expð−IntlΔ2 Þ
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pattern analysis. In fringe pattern analysis, the
phase measurement is performed on the recording
plane whereas in digital holography, the phase mea-
surement is performed on a Fourier or Fresnel trans-
form plane. Digital holographic methods have been
shown to give subwavelength axial resolution of a
samples thickness and this is dependent on the accu-
racy of the phase measurement [6].

The value at every point in our reconstructed im-
age is the complex sum of the ideal reconstruction, h
and the complex quantization noise, ql. The addition
of these two vectors is illustrated in Fig. 10. The re-
sulting phase of the two vectors is different from the
original phase. As seen in the Table 1, the phase of
the noise in the Fourier domain, θl is uniformly dis-
tributed between −π and π and the amplitude of the
noise, Aml is Rayleigh distributed. As seen in Fig. 10,
the maximum error in the phase occurs when the
noise vector is perpendicular to the signal vector,
and the minimum, when the noise vector is parallel
to the signal vector. It is of considerable interest to
evaluate the influence of quantization error in phase
angle measurement in a statistical manner. We as-
sume that the amplitude of the transmission func-
tion of the object under investigation is uniform.
For pure phase objects, this is a reasonably good as-
sumption. We denote this amplitude as A. Since we
measure the error in phase by subtracting the origi-
nal phase distribution from the erroneous one, this
problem is completely analogous to the phase distri-
bution in the resulting sum of a speckle pattern and a
coherent background [38], and in the case of coherent
noise in MRI data [40]. In the case of speckle on a
coherent background, the background is coherent
and uniform, the speckle adds to this coherent back-
ground, and the resulting phase is given by the dis-
tribution above.

The phase error can be defined as the difference
between the phase of the original signal (So) and
the new noisy signal (Sn). The phase error can then
be described as

θerr ¼ ∠Sn − ∠So: ð17Þ

If So ¼ A expði∠SoÞ, then Sn ¼ So þN, and θerr can
be written as

θerr ¼ ∠Sn − ∠So ¼ ∠½Sn expð−i∠SoÞ�
¼ ∠½AþN expð−i∠SoÞ�: ð18Þ

In our case, the background is the noise-free recon-
struction of the phase and is not uniform. But since
we calculate the phase error by subtracting the
noise-free phase reconstruction from the noisy one,
our situation is similar to the one of the speckle
against a coherent background.

The probability density for such a phase distribu-
tion can be derived to be [41]

pðθÞ ¼ 1
2π exp

�
−A2

2σ2R

��
1þ A

σR
ffiffiffiffiffiffi
2π

p
cos θ

× exp
�
A2 cos2 θ

2σ2R

��
1 −Φ

�
A cos θ
σR

���
; ð19Þ

where

ΦðxÞ ¼ 1
2π

Z∞

x

expð−x2=2Þdx; ð20Þ

and σR is the standard deviation in the real part, R.
The probability density function is symmetric
around the origin as the error can fluctuate in both
the directions. For A ¼ 0, the phase is distributed
uniformly between −π to π. For high values of A,
the error becomes Gaussian and centered around 0
with standard deviation of σR=A and Eq. (17) density
can be approximated as

Fig. 9. (Color online) Theoretical and experimental probability
distributions for various parts of the complex quantization noise
in the Fourier plane for 4bit quantization. (a) histogram of quan-
tization noise in hologram plane. (b) distribution of real part of
complex noise. (c) distribution of imaginary part of complex noise.
(d) distribution of phase (e) distribution of amplitude. (f) distribu-
tion of intensity.

Fig. 10. (Color online) Complex quantization noise, ql, is distrib-
uted with a Rayleigh distribution and adds on to the original am-
plitude vector. The net phase detected is the angle subtended by
the complex vector sum of the original signal and the complex
noise vector.
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pðθerrÞ ¼
Affiffiffiffiffiffi
2π

p
σR

exp
�
−θ2errA2

2σ2R

�
: ð21Þ

This can be expected as the magnitude of the cor-
rupting phasors becomes small relative to the origi-
nal signal magnitude. For a high number of bits per
pixel representation, the error will be small. From
Eq. (19), the standard deviation in the error in terms
of the quantization interval can be written as

σθerr ¼
Mx −Mn

2l
ffiffiffiffiffiffi
24

p
A

¼ σQlffiffiffi
2

p
A
; ð22Þ

whereMx andMn as defined previously are the max-
imum and minimum values in the recorded digital
hologram and A is the average amplitude value in
the reconstructed object area. A is directly propor-
tional to the product of object and reference powers
ðORÞ in the hologram plane.

We experimentally verify Eq. (22) by recording a
hologram of a lens using the same experimental set-
up as shown in Section 2. This time the illumination
is without a diffuser. The object beam passes through
a aperture of a small lens. The recorded off-axis ho-
logram and the reconstructed phase are shown in
Fig. 11. Figure 11(a) shows the recorded phase holo-
gram. Figure 11(b) shows the reconstructed image.
The spatially separated areas carrying the object and
the twin image can be clearly seen. Figure 11(c)
shows the amplitude in a section of that area and
Fig. 11(d) shows the phase value in that section.
We are interested in the error which occurs in this
phase section when the hologram is quantized to low-
er number of levels. We requantize the recorded ho-
logram and the phase of the new noisy reconstruction
is calculated and subtracted from the original phase
of h12 to give the phase error. The phase error varies
between (−π to þπ). The distribution of the phase er-
ror for four different cases: (a) 8bits, (b) 6 bits,
(c) 4 bits, and (d) 1 bit is shown in Fig. 12. As can
be seen, the phase error can be modeled as a Gaus-
sian density function for all these cases.

In our case, the mean amplitude value in the object
area in the reconstruction, A is 953, and the fluctua-
tion around this value due to the various experimen-
tal issues such as spurious reflections, etc., is less
than 20%. This value is directly proportional to
the mean amplitude in the reconstructed object area.
In order to compare the theoretical probability pðθerrÞ
in Eq. (19) with the histogram obtained from the ex-
perimental data, the theoretical value of standard
deviation in the phase error is plotted with the ex-
perimentally obtained value for different levels of
quantization in Fig. 13. The curves show a close
agreement. The standard deviation in the phase er-
ror decreases by a factor of 2 for every bit added. For
8 bits of quantization, the standard deviation in the
error is σθerr ¼ 0:00247 rad. This corresponds to ap-
proximately 0:0004λ error in surface height measure-
ment in air for a reflection geometry. For the 1 bit
case, the σθerr ¼ 0:3165 rad and this corresponds to

approximately 0:05λ error in surface height measure-
ment in air.

As seen in Eq. (19), the error in the phase resulting
from quantization can be reduced by having a large
mean amplitude in the reconstruction relative to the
standard deviation in the error introduced due to the
quantizer. The mean amplitude can be easily shifted
by increasing the exposure. Thus it is advantageous
to have a high mean intensity in the reconstruction
to reduce the influence of quantization error on the
phase measurement.

D. Effect of Quantization Noise on Reconstructed
Intensity for 3D Objects

Many applications of digital holography such as 3D
display, pattern recognition, imaging through occlu-
sions [42], and projection on 2D surfaces [43] rely on
the intensity pattern in the reconstruction plane. In
this subsection, we analyze the statistics in the

Fig. 11. (a) Recorded phase hologram of the a lens, (b) Fourier
reconstruction, (c) amplitude in a 200 × 250 section of the recon-
structed object, (d) phase distribution in the same area as (c).

Fig. 12. (Color online) Error distribution in phase −π to þπ for
(a) 8bits, (b) 6bits, (c) 4bits, (d) 1 bit.
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reconstructed intensity when quantization noise ql is
present. The intensity of the hologram is

jhlj2 ¼ jhþ qlj2 ¼ jhj2 þ jqlj2 þ hq�l þ h�ql; ð23Þ

which can be written as

jhlj2 ¼ jhj2 þ jqlj2
þ 2ðReal½h�Real½ql� − Imag½h�Imag½ql�Þ: ð24Þ

This is the sum of four terms, all of which are in-
dependent of each other. Since h and ql are indepen-
dent and the real part and imaginary parts are
uncorrelated with each other [38], the variance in
the sum is equal to the sum of the variances. The to-
tal variance in the complex intensity in the Fourier
plane can be approximately written as

σ2jhlj2 ¼ σ2jhj2 þ σ2jqlj2 þ 4σ2RealðjhjÞσ2ImagðjqljÞ

þ 4σ2ImagðjhjÞσ2RealðjqljÞ: ð25Þ

Since σ2RealðjhjÞ and σ2ImagðjhjÞ are known a priori, we can
use this simple model to calculate the standard de-
viation in the image for any lower number of quan-
tization levels. σ2RealðjhjÞ and σ2ImagðjhjÞ are assumed in

our case to be equal to σ2Realðjh12jÞ and σ2Imagðjh12jÞ, re-
spectively. In Fig. 14, we plot the standard deviation
in a uniform region in the reconstructed image along
with the value calculated using Eq. (23). The ob-
served value matches the predicted value with high
accuracy down to 2 bits. For 1 bit quantization, the
predicted value deviates from the observed value.
At 1 bit, the deviation is 26%. We believe that is
due to the onset of “banding” as explained previously.
In Section 4, we discuss a method to suppress the
noise caused by quantization in the reconstructed in-
tensity for the particular application of 3D display.

4. Suppression of Quantization Noise

Speckle is present in digital holographic imaging of
objects with rough surfaces or diffusely illuminated
objects. The image quality of objects containing
speckle can be considerably improved by performing
speckle reduction [44,45]. In Section 3, we showed
that since the quantization noise occurs in the holo-
gram plane as a white noise, its DFT can be treated
like a random walk and can be assumed to be a
‘speckle like’ distribution. Thus it can be viewed as
an additional “speckle-like” noise occurring in the re-
construction plane. This leads to the possibility of
suppressing the noise in the reconstruction plane
by using a simple speckle reduction technique of
adding independent speckle patterned reconstruc-
tions [46].

This is achieved by moving a diffuser to generate
statistically independent speckle patterns. Since the
speckle pattern is generated by a moving diffuser
with approximately uniform transmittance and the
quantization rate is constant for all the different cap-
tures, the mean value of these intensity patterns is
approximately constant. When N statistically inde-
pendent intensities are added together, the variance
of the sum increasesN times and the standard devia-
tion increases

ffiffiffiffiffi
N

p
times but the mean value of the

sum increases N times. Thus the coefficient of varia-
tion, also called the speckle index [47–49], which is
the ratio of the standard deviation to the mean, in
this case decreases as 1=

ffiffiffiffiffi
N

p
.

We experimentally prove this by capturing a num-
ber of different statistically independent speckle pat-
terns of the object. This is achieved by moving a
diffuser on a translational stage with steps of 1mm.
The resulting holograms are quantized to the binary
level (1 bit per pixel) and reconstructed. The recon-
structed intensities for all the different reconstruc-
tions are added together. Speckle reduction

Fig. 13. (Color online) Standard deviation of the error in recon-
structed phase, θerr for different levels of quantization of the re-
corded phase hologram.

Fig. 14. (Color online) Standard deviation in a uniform section of
the intensity of the reconstruction plane. We can see that the sim-
ple model above can be used to predict accurately the quantization
error upto 2bits (4 levels) of quantization. The deviation at 1bit is
due to the nonwhite nature of quantization noise in the hologram
plane at binary quantization. In this case, the noise term has a
pattern and structure similar to the original signal.
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dramatically increases the quality of reconstruction.
In Fig. 15, the speckle index is plotted with respect to
the number of diffusers added. The results show a
well matched 1=

ffiffiffiffiffi
N

p
dependence. The results are

shown for the extreme 1 bit case where the quantiza-
tion noise is at a maximum. We mention that in the
case of Fresnel geometry, where the twin image oc-
curs as an out of focus noise, speckle reduction can
be used to suppress the twin image [50].

A single hologram acquired by a typical camera re-
quires 12 bits per pixel which uses the same memory
as that of twelve 1bit holograms. To give another
comparison with respect to memory usage, we show
in Fig. 16 two reconstructions, one from an individual
12 bit hologram and the other the intensity summed
from twelve 1 bit holograms. The summation from
twelve 1 bit holograms gives a better reconstruction
than the case from one 12 bit hologram, even though
both of them utilize the same memory. Of course, it
can be argued that this method of capturing requires
more time and requires moving diffusers but there
are significant advantages like better contrast and
improved detail in the reconstruction for the same
memory of storage of holograms. Since a binary cap-
ture sequence is inherently fast on hardware, the
capture time can be reduced to be the same as that
of a single 12 bit or 8 bit image capture. Another ad-
vantage is that binary ferroelectric SLMs have much
faster switching rates (in KHz) than multiphase
LCOS SLMs, which are around 80 − 90 frames=s.
Thus multiple binary holograms could be captured,
transmitted over network/hardware bus with mini-
mal latency and displayed in a fast amplitude or
phase SLM for 3D display and projection applica-
tions. When a captured hologram is displayed on a
spatial light modulator, this can be used to generate
improved reconstructions. The different speckled ho-
lograms are displayed at a fast frame rate, such that
many holograms are averaged over the integration

time of the eye and a speckle and quantization noise
reduced image is perceived. This technique has been
demonstrated in the area of computer generated ho-
lographic projection where the different holograms
are computed and given a random phase pattern
[43]. We have obtained the same results for reflective
objects as well.

5. Applications to Noise from Other Sources

Quantization noise is only one of many noise sources
in digital holographic imaging. Other important
sources include:

• Shot noise, which is predominant in low-light
level imaging. This noise follows Poisson statistics
and is inherently present due to the random nature
of the photon emission from the laser source. At high
light intensities, this noise is negligible, but it is the
ultimate noise limit in imaging. Charriere et al. [51]
have studied the influence of this noise in detail in
holographic microscopy and Gross et al. [52] have
showed a technique for holographic imaging at low
intensities.

• Thermal noise in camera photodetectors, re-
sulting from random thermal fluctuations in the
photodetectors.

• Pixel nonuniformity noise (PRNU), from slight
variation in response from each pixel [53] and pixel
crosstalk, between neighboring pixels.

• Computational noise due to the hardware im-
plementation and finite bit representation of the nu-
merical algorithms. This noise is extremely low for
modern 64 bit precision computers but is still a noise
source and can depend on the algorithm used for re-
constructing the image.

• Noise due to vibrations, dust particles, coher-
ent reflections, etc.

• Additionally, transmission of digital holograms
on a channel without error correction can lead to
“channel noise,” where the bits can be lost or as-
signed a different value.

These noises can be modeled as additive noises with
their own statistical distributions and the statistics
in the Fourier domain can be derived. Therefore, we
believe that the analysis in this paper can be ex-
tended to any additive noise in the hologram plane
and the influence of all these noise sources can be

Fig. 15. (Color online) Results for speckle reduction on the 1bit
holograms (a) four diffuse holograms added together, (b) 16 pat-
terns, (c) 36 patterns, (d) speckle index in the image.

Fig. 16. (Color online) Comparison of reconstructions from (a) a
single 12bit hologram and (b) reconstructions obtained from 12
1bit holograms. The two reconstructions involve the same amount
of memory usage (in bits).
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reduced by adding multiple differently captured
images.

6. Conclusion

Quantization error is fundamental to any digital sen-
sor. We have shown that in digital holography, quan-
tization error is introduced as uniformly distributed
additive noise in the recording plane (camera plane)
and this manifests itself as a complex noise in the
reconstruction plane with Gaussian distributed real
and imaginary parts, rayleigh distributed amplitude
and uniformly distributed phase. We have shown and
characterized the various statistical properties of
this noise both theoretically and experimentally in
the case of lensless off-axis Fourier digital hologra-
phy. We have also discussed the nonwhite nature
of quantization noise at low bit rate (of binary quan-
tization) in digital holography for the first time. We
have studied the influence on the phase measure-
ment accuracy and the reconstructed intensity quan-
titatively. The standard deviation in the phase
measurement error increases by a factor of 2 for
every bit removed in the quantization process. The
effect of quantization noise on the phase can be sup-
pressed (linearly) by increasing the mean intensity of
the phase hologram during recording. We have also
characterized the noise in the intensity of the recon-
structed images. This complex noise can be treated
as the result of a random walk in the complex plane
and shares the same statistical properties as that of
speckle. We have suppressed this noise by using a
speckle reduction technique and have shown good
quality reconstructions with binary holograms when
speckle reconstruction is performed. We have shown
improved reconstructions while using the same
amount of memory in storing the holograms. Though
we have studied the noise due to quantization, we be-
lieve that the same method can be applied to other
kinds of additive noise in the hologram plane.

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme FP7/2007-2013 under grant
216105, and from Science Foundation Ireland under
the National Development Plan. All of the experi-
mental data, digital holograms, and computer code
used in this analysis can be found at http://www.cs
.nuim.ie/~npandey.
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