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Abstract
This paper adopts a technique common in the dynamical climate modelling literature, that of pattern scaling,
and applies it to previously available statistically downscaled station level data for Ireland for two climatically
relevant variables, that of temperature and precipitation. This technique allows for the rapid development of
climate scenarios for additional emissions scenarios not previously available from the GCM modelling
centres. Having derived the end of century (2080s) change in both these variables for four marker emissions
scenarios (A1FI, A2, B2, B1), regional response rates, or the regional rate of warming per �C global warming
at each station, were calculated. The estimated ranges in regional responses at each station were then
compared to regional response rates for the Irish ‘grid box’ derived from a larger sample of 14 GCMs, in
order to determine if the calculated response rates were illustrative of a wider suite of GCMs. A Monte Carlo
(MC) resampling approach was then employed to sample regional response rates for selected stations and for
different estimates of future warming. On the basis of the MC approach, probability distribution functions
(pdfs) of simulated changes in temperature and precipitation were constructed and compared to the original
statistically downscaled data. The methodology and results presented represent a significant contribution to
the traditional approach of statistical downscaling through the development of associated likelihoods, rather
than just a change in the mean value. While the methodology presented should enable the rapid development
of probabilistic based climate projections, based on a limited availability of downscaled climate scenarios,
caution needs to be exercised in the interpretation of the results. While they provide a basis for risk or policy
assessment, estimates of the level of risk are not independent of the method employed.
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I Introduction

Future projections of anthropogenic climate

change arising from increased concentrations

of atmospheric CO2 are subject to a high degree

of uncertainty (Jones, 2000). This uncertainty

arises largely as a consequence of both aleatory

(‘unknowable’ knowledge) and epistemic or
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systematic (‘incomplete’ knowledge) uncertain-

ties (Foley, 2010; Hulme and Carter, 1999;

Oberkampf et al., 2002). Aleatory uncertainties

are considered to be irreducible and result from

an inherent indeterminacy of the system being

modelled (Hulme and Carter, 1999; Oberkampf

et al., 2002). For example, future human beha-

viour and actions are not predictable, therefore

future emissions scenarios must be prescribed

on the basis of storylines or indeterminate sce-

nario analysis (Hulme and Carter, 1999), such

as the Intergovernmental Panel on Climate

Change Special Report on Emissions Scenarios
(SRES) (Nakicenovic and Swart, 2000). These

‘storylines’ represent different rates of future

world development, based on various scenarios

of socio-economic growth, population growth,

uptake of energy efficient technologies or contin-

ued reliance on fossil fuels and regional versus

global development patterns. More recently, an

alternative approach, which identifies important

radiative characteristics rather than the sequen-

tial socio-economic approach of the SRES, has

led to the development of the ‘next generation’

of scenarios (Moss et al., 2010). These scenarios,

entitled representative concentration pathways

(RCPs), have a larger associated range of

atmospheric concentrations being considered

compared to the previous SRES.

While any particular scenario may never be

realized, and hence no associated probabilities

can be attached, they do provide a basis for tenta-

tively exploring potential or plausible future

changes in the climate system arising from

anthropogenic activities. Epistemic or systematic

uncertainties arise primarily from a lack of

complete knowledge of the system and are

considered to be reducible as our understanding

or knowledge of the particular system or environ-

ment increases. For example, the envelope of pos-

sible values of the sensitivity of the climate

system may be narrowed as our understanding

of the key climate processes improves. Conver-

sely, it could also be the case that with additional

research we could find that we did not previously

include a particular process, which could result in

the climate sensitivity envelope increasing.

Consequently, future projections of climate

will always result in a range of future scenarios

being simulated (Hulme and Carter, 1999). If not

adequately accounted for, the various sources of

uncertainties that exist in the modelling process

can result in large uncertainties being associated

with the model outcome. This ‘cascade of uncer-

tainty’ has significant implications, and presents

significant challenges, where impacts models

(e.g. hydrological, agricultural or economic

models), run on the basis of output from a climate

model, are subsequently employed to inform

strategic decision making. This was further

compounded by the fact that, until recently, the

use of a single climate scenario or climate trajec-

tory was common in the literature.

While a number of approaches have been

developed to address some of the issues that are

associated with uncertainties in climate model

projections, such as adoption of a ‘best guess’

framework or taking the mean or median value

from a range of scenarios, such ‘top-down’ or

‘predict and provide’ approaches are not consid-

ered particularly useful for subsequent use in

risk analysis, due to an inability to attach

probabilities or likelihoods to the selected cli-

mate scenario. In addition, without a clear state-

ment on the uncertainties that have, or have not,

been incorporated into the research, decision

makers need to exercise extreme caution as any

subsequent decisions may not encompass the

full range of associated risks. Such policy

decisions may give rise to maladaptation

(over-, under- or inappropriate adaptation). An

additional weakness of employing the ‘predict

and provide’ approach in policy formulation is

that it tends to dismiss the possibility of local

adaptation (‘dumb farmer’ hypothesis) or only

assumes an arbitrary level of adaptation (‘clair-

voyant farmer’) (Dessai and Hulme, 2003).

Critically, this approach is predicated on the

requirement that climate models provide accu-

rate, reliable and precise ‘predictions’ of future
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climate, a requirement which ultimately repre-

sents a key limiting factor in the development

of robust (‘no regrets’) adaptation (Dessai

et al., 2009).

While climate impact studies that employ the

‘predict and provide’ approach are abundant in

the scientific literature, substantive evidence

to support the translation of the scientific

outputs from these studies into meaningful

adaptation is much less obvious (Wilby and

Dessai, 2010; Wilby et al., 2009). As an alterna-

tive, sensitivity analyses have been employed to

assess the sensitivity, or vulnerability, of a sys-

tem to incremental changes in climate (e.g.

impose an arbitrary +10%, +20%, +30% or

+1�C, +2�C, +3�C change on the system

being modelled) and constitute a bottom-up

approach to informing climate adaptation policy

(Dessai and Hulme, 2003). In order to test the

sensitivity of a system to changes, a single input

is varied while holding all other inputs constant.

More recent developments in sensitivity analy-

sis try to account for simultaneous changes in

a number of variables and can also take into

account uncertainty in inputs (Katz, 2002).

Imposed changes may be informed by the

output from a climate model or climate models.

However, such bottom-up approaches have

been the subject of criticism in the past. While

sensitivity analysis could be used to generate

response surfaces from which risk thresholds

can be identified (e.g. Jones, 2000), such as

‘dangerous’ climate change, their ability to

assess uncertainties in multiple inputs required

large computing power (Beven, 2001). Addi-

tionally, sensitivity analysis may not necessarily

produce consistent and plausible scenarios of

future changes (Jones and Mearns, 2003).

Increasingly, the incorporation of probabil-

ities in climate change impact assessments is

becoming more widespread. As researchers

move from employing single trajectory, top-

down approaches towards the use of multiple

scenarios from multiple GCMs in climate impact

assessments, characterizing uncertainties in the

associated scenarios has become increasingly

feasible. From a policy development perspective,

the identification and communication of uncer-

tainties, and their ranges, may have a useful

application in strategic decision making (Burton

et al., 2002). For example, if in the case of a

regional climate projection of precipitation, a

variable which is inherently difficult to simulate

reliably, two models produce scenarios with

similar magnitude changes but opposite in sign

(Giorgi and Francisco, 2000), i.e. 10% increase

and 10% decrease in regional precipitation, can

a policy maker then assume that there is going

to be 0% change (ensemble mean) in precipita-

tion? Adaptation measures required for a 10%
increase in precipitation (improved flood

defences) are likely to be significantly different

to those required for a decrease in precipitation

(such as additional reservoir capacity). While

such inter-model differences may, or may not,

be reduced through increased scientific under-

standing, the quantification, and subsequent

communication, of uncertainties is considered

more desirable than assuming a perfect model

in adaptation development.

More recently, Prudhomme et al. (2010) and

Wilby and Dessai (2010) propose alternative

scenario neutral approaches to adaptation which

address the sensitivity of adaptation options or

pathways to a range of plausible, but uncertain,

future climates. Importantly, Wilby and Dessai

(2010) also include the potential of non-

climatic pressures in influencing a systems

response or vulnerability. The scenario neutral

approach offers a significant methodological

advancement over traditional approaches,

through the potential to incorporate probabilis-

tic climate scenarios with existing knowledge

of the sensitivity of the system under study, in

developing robust or ‘no regrets’ adaptation.

Fundamentally, the scenario neutral approaches

as espoused by both Prudhomme et al. (2010)

and Wilby and Dessai (2010) argue for the repo-

sitioning of climate change information from

the start of the climate risk assessment process
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to further down the risk assessment chain. This

approach shifts the requirement for accurate

and reliable predictions (i.e. most likely or

probable outcome), and arguably an impossible

constraint, to one where a range of (uncertain)

future projections (i.e. plausible or possible

outcomes) are considered for use in assessing

the robustness of, rather than developing,

different adaptation options or pathways.

Critically, the scientific imperative to further

our understanding of the dynamics of the climate

system, which seeks to reduce epistemic or

systematic uncertainties in climate simulations,

remains, but it no longer acts to constrain or

supersede the development of robust adaption,

a societal imperative. A key benefit to separat-

ing the scientific from the societal imperative

is that scientific developments (e.g. increased

understanding of the systems under study, new

scenarios or improved models) can be readily

incorporated into the scenario-neutral approach.

Additionally, the incorporation of probabilistic

based climate distributions into the scenario neu-

tral approach offers the potential to transition

from a wholly deterministic based approach to

decision making to one which recognizes the

inherent, and potentially irreducible, uncertain-

ties required for robust adaptation.

II Challenges for quantifying
uncertainties at the regional scale

In spite of their apparent complexity, climate

models ultimately represent a simplification of

what are complex, and often non-linear, climate

processes. Differences in model structure,

representation of physical and dynamical

processes and parameterization schemes all

contribute to differences evident between

models, and between models and observations,

at the global, regional and grid scales. For

example, while most climate models agree that

the globally averaged surface temperature will

increase as a consequence of increasing

atmospheric concentrations of greenhouse

gases, significant divergence is evident between

models in both the spatial and temporal

projections of precipitation. Such differences

are most pronounced at the regional scale, with

differences not just in the magnitude but also the

direction of projected precipitation changes

between GCMs.

Due to computational limitations, the typical

spatial resolution of many AOGCMs

(atmosphere-ocean global climate models) is

currently in the order of greater than 100 square

kilometres (e.g. model horizontal resolution T63

*180 km; T159 *125 km; T106 *110 km).

While this has been demonstrated as adequate

to capture low-frequency, large-scale variations

in the climate system (e.g. Stephenson and

Pavan, 2003), many important processes occur

at much smaller spatial scales, such as those

processes associated with convective cloud for-

mation and precipitation, and thus are too fine

to be resolved in the dynamic modelling process.

As a consequence, a number of techniques

have been developed to ‘downscale’ coarse reso-

lution GCM output to finer spatial and temporal

scales. Dynamical regional climate models

(RCMs) and empirical statistical downscaling

(SD) are the primary means by which regional-

or local-scale information is derived from a

parent GCM(s). However, the incorporation of

an additional downscaling ‘layer’ to generate

high-resolution scenarios will act to both propa-

gate and contribute to uncertainty within the

modelling framework (e.g. Dibike et al., 2008;

Gachon and Dibike, 2007; Hingray et al.,

2007b; Khan et al., 2006; Rowell, 2006), result-

ing in significant regional variations between

downscaled model projections, even when

forced with the same GCM and emissions

scenario (Haylock et al., 2006). In spite of these

shortcomings, employing either dynamical or

statistical downscaling has been considered to

‘add value’ to climate projections, when com-

pared to GCM output at the grid scale (e.g. Fealy

and Sweeney, 2007; Feser et al., 2011; Katz,

2002; Rowell, 2006). However, Dessai et al.
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(2009) caution against confusing accuracy with

precision; while higher-resolution climate

projections may represent higher precision than

the parent GCM, this should not be confused with

increased accuracy of projection. In addition, the

notion of added value has been questioned by a

number of authors (e.g. Castro et al., 2005; Pielke

and Wilby, 2012; Rockel et al., 2008). However,

Katz (2002) argues that some downscaling tech-

niques have the potential to be useful, even if

they do not offer an improvement over the GCM

employed, through enabling uncertainty analysis

to be undertaken (e.g. Fowler et al., 2007;

Hashmi et al., 2009; Wilby and Harris, 2006).

In recognition of the uncertainties that occur

in the modelling framework, a number of

methods have been developed that seek to

characterize or quantify uncertainty in climate

projections at the regional scale. One approach

is to employ a number of different GCMs in the

development of multi-model ensembles. This

typically involves averaging (equal weighting)

across a number of climate scenarios or

subsequent impact model outputs to produce a

mean or averaged ensemble or by selecting the

median response. A critique of this approach is

that differences in model reliability are not

addressed when constructing such climate

ensembles. An additional weakness is that it may

be inappropriate where significant divergence

occurs between models or scenarios. For exam-

ple, if the resultant ensemble gets the ‘right’

answer, relative to an observed series, solely due

to error cancellation between divergent climate

scenarios, it is unlikely that any confidence could

be placed in the derived future climate ensembles.

The issue of GCM reliability is likely to have

important implications at the regional scale. In

an analysis of uncertainty in RCM formulation,

Rowell (2006) found that while the RCMs

employed (derived from the EU PRUDENCE

project; Christensen et al., 2002) contributed a

relatively small, but non-negligible, impact on

projected seasonal mean climate for the UK, the

greatest contribution was found to arise from the

parent GCMs. Giorgi and Mearns (2002)

demonstrated a procedure for calculating model

average, uncertainty range and collective

reliability of a range of regional climate projec-

tions from ensembles of different AOGCM

simulations. The Reliability Ensemble

Averaging (REA) method weights GCMs based

on individual model performance and criteria

for model convergence. This procedure

acknowledges that models have different levels

of skill associated with modelling different

aspect of the climate system and weights models

accordingly. However, the use of model conver-

gence as a criterion for model reliability has

been subject to critique, as similarities, or a lack

of independence, in model structure may result

in two or more models producing similar out-

puts and therefore ascribed a higher weight than

a truly independent model.

To address this, Murphy et al. (2004)

proposed a Climate Prediction Index (CPI), an

objective means of measuring model reliability,

which can be used to weight different GCMs

according to their relative ability to simulate

the observed climate based on broad range of

observed variables. This technique has been fur-

ther refined by Wilby and Harris (2006) for use

in impacts assessments. Their method is applied

to a narrower suite of GCM outputs relevant to

statistical downscaling to produce an Impacts

Relevant Climate Prediction Index (IR-CPI).

The application by Wilby and Harris (2006)

attributes weights to each GCM based on the

root-mean-square difference between the stan-

dardized modelled and observed climatological

means. However, Stainforth et al. (2007) con-

sider the practice of weighting models as ‘futile’

and argue that it can potentially give rise to

misleading assumptions about the reliability of

a particular model(s).

An alternative approach to quantifying uncer-

tainties was proposed by Hulme and Carter

(1999) who employed a probabilistic framework

to examine the uncertainties that affect regional

climate change for two locations in the UK. The
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authors employed a Bayesian Monte Carlo

approach to sample from the standardized

response of 14 GCM simulations, based on seven

GCMs, which they treated as members of a

pseudo-ensemble. Their results demonstrated the

wide range in the regional response as simulated

by the different GCMs. In a similar analysis,

New and Hulme (2000) applied a similar

approach in a sensitivity analysis of annual river

flow to future changes in temperature and

precipitation in the UK. While both Hulme and

Carter (1999) and New and Hulme (2000) sought

to quantify uncertainties at various stages in the

modelling framework, they assumed all GCMs

were equally skilful.

In an application of the probabilistic frame-

work proposed by Hulme and Carter (1999), a

number of authors have undertaken probabilistic

based assessments of climate change projections

based on scaling the outputs from a number of

RCMs with various probability distribution func-

tions of future warming, drawn from a number of

GCMs (e.g. Ekström et al., 2007; Hingray et al.,

2007a, 2007b). Due to computational limitations,

RCMs are constrained to producing climate

projections for a limited number of emissions

scenarios, most commonly the A2 or B2

scenario, or for specific time periods. To over-

come these limitations, a pattern scaling tech-

nique, originally postulated by Santer et al.

(1990), has developed as a technique which has

found widespread use in the climate modelling

community (e.g. Hulme et al., 2002; Hulme and

Carter, 2000; Kenny et al., 2000; Mitchell et al.,

1999). The application of a simple scaling meth-

odology has seen renewed use in recent years due

to the widespread availability of regional climate

model (RCM) output, based on a limited number

of emissions scenarios, through projects as EU

PRUDENCE (Christensen et al., 2002) and EU

ENSEMBLES (van der Linden and Mitchell,

2009) for Europe, RMIP (Fu et al., 2005) for

Asia, CLARIS (Boulanger et al., 2010) for South

America, and NARCCAP (Mearns et al., 2009)

for North America.

The pattern scaling technique allows for the

rapid development of numerous climate scenar-

ios, based on different GCM-emissions scenario

combinations which sample a subset of the

uncertainty range. For example, if the regional

temperature change for the 2070–2099 period,

from a particular GCM and emissions scenario,

is known, then a normalized ‘response pattern’

can be calculated by dividing by the global

mean temperature change for that GCM-

emissions combination (DTA2). Employing a

simple climate model, such as MAGICC, the

global mean surface temperature change for the

A1 scenario could be calculated for a particular

model. Employing the ratio of the global mean

surface temperature change for the A1 scenario

to the global mean surface temperature change

for the A2 scenario (<DTA1/DTA2>), the

projected temperature change for the

2070–2099 period based on the A2 emissions

scenario can be rescaled to produce a scaled

temperature change for A1 scenario (DTA1):

DTA1 ¼
DTA1

DTA2

� �
DTA2

Fundamentally, this approach is contingent

on the assumption that the geographical pattern

of change is independent of the forcing, and that

the amplitude of response is linearly related to

the global mean surface temperature (Ruostee-

noja et al., 2003). The assumption of a linear

response, proportional to the global mean

surface temperature, appears to hold in many

cases, particularly for temperature, but less so

for precipitation (Mitchell, 2003; Mitchell

et al., 1999) as highlighted by Murphy et al.

(2004). While the technique can produce a wide

range of scenarios, which are useful for examin-

ing the range in projected climate response at

the regional scale, the resultant scenarios are

considered as being equally plausible and have

no associated likelihood of occurrence.

Murphy et al. (2004) employed a pattern

scaling technique from a single GCM to
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estimate regional climate uncertainty according

to a range of possible changes in averaged glo-

bal surface temperatures. They show, in one

instance, that the pattern scaling approach cap-

tured less than 10% of the variance in tropical

precipitation and concluded that a single projec-

tion from even the most sophisticated GCM will

be of limited use for impact assessment. The

authors suggest that only multi-model ensem-

bles, sampling as wide a range of model uncer-

tainties as possible, can reliably show the spread

of possible regional changes, a finding con-

firmed by Lopez et al. (2009) and others. Simi-

larly, Ruosteenoja et al. (2007), in a study

comparing seasonal based GCM temperature

and precipitation projections with RCM output

for five European regions derived from the EU

PRUDENCE project, employed linear regres-

sion to relate the regional GCM response to the

global mean temperature simulated by a simple

climate model. The resultant ‘super-ensemble’

was found to be advantageous when only a lim-

ited number of experiments were available from

an individual GCM (A2 and B2) due to the

reduction of random noise within the ensemble.

The use of probabilities is a well-established

technique in short- and medium- range weather

forecasting where uncertainty in model output is

represented by the dispersion of an ensemble

(Räisänen and Palmer, 2001). The incorporation

of probability distribution functions (pdfs) or

cumulative distribution functions (cdfs) in

impact assessments is a logical development

when dealing with multi-model ensembles from

GCMs in order to characterize or quantify

uncertainties of future climates at the regional

scale. Additionally, Katz (2002) argues that the

characterization of uncertainty in the form of

probabilities has the added value of ‘knowing

how little you know’ (Katz, 2002, cited in Mor-

gan and Henrion, 1990).

The next section of this paper will outline

a methodology to produce probabilistic based

regional climate scenarios, based on previously

available statistically downscaled data for

Ireland, taking into account a number of key

uncertainties. The methodology employed is

adapted from Hulme and Carter (1999), Jones

(2000) and New and Hulme (2000), and applied

to two impacts relevant climate variables, that

of seasonal mean temperature (�C) and precipi-

tation change (%), for a selection of GCMs. The

proposed methodology has previously been

applied directly to both GCM and RCM output,

but is refined here for application to statistically

downscaled data.

III Data and methods

1 Application of a pattern scaling approach
to statistically downscaled data for Ireland

Seasonal means of temperature and precipita-

tion were derived for 14 synoptic stations in Ire-

land for the 2080s (2070–2099) from previously

available statistically downscaled daily data

(Fealy and Sweeney, 2007, 2008). This data set

provides the basis for the remaining analysis.

The 30-year period centred on the 2080s was

selected as the signal-to-noise ratio is likely to

be greatest for this period, compared to early-

or mid-century projected changes (Jones,

2000). However, the statistically downscaled

data was only available for three GCMs, namely

the Canadian Centre for Climate Modelling and

Analysis (Canada) version 2.0 (CGCM2), the

Commonwealth Scientific and Industrial

Research Organization (Australia) Atmospheric

Research Mark 2 (CSIRO Mk2) and the Hadley

Centre’s (United Kingdom) HadCM3, and two

emissions scenarios, that of the A2 and B2

(Table 1). These GCMs were selected by the

previous authors (Fealy and Sweeney, 2007,

2008) due to their ready availability at the time

their study was undertaken and, importantly, the

models contributed to the Third Assessment

Report (IPCC, 2001) and were widely employed

in a range of climate impact studies.

Due to the limited availability of relevant sta-

tistically downscaled data for a range of emis-

sions scenarios (e.g. A1FI, B1), a pattern
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scaling method was employed to generate sea-

sonal mean values for projected changes in tem-

perature and precipitation for the A1FI and B1

emissions scenarios for the three GCMs listed

above. In a modification of the pattern scaling

methodology, the approach employed here

applied the technique to statistically down-

scaled data as opposed to the more widespread

approach which utilizes global or regional

climate model output.

The method was applied as follows. The ratio

of global mean temperature change (�C) between

the individual GCMs and emissions scenarios

(Table 1) was employed to scale the statistically

downscaled A2 scenario projections for all sta-

tions, for both temperature and precipitation for

the 2080s, according to the following equation:

D TA1FI�GCM ¼
DTA1FI�GCM

DTA2�GCM

� �
D TA2�SD

where DTA1FI ¼ projected downscaled change

for the A1FI scenario for GCMi, <DTA1FI/

DTA2> ¼ ratio of global mean temperature

change for GCMi (Table 1), and DTA2 ¼ pro-

jected downscaled change in temperature for the

2080s period for the A2 scenario from GCMi.

This method assumes that a linear relation-

ship exists between the downscaled emissions

scenarios for the stations (or grids when applied

to regional or global climate model data)

employed in the analysis. As both the A2 and

B2 downscaled scenarios for temperature and

precipitation were available, this assumption

could be tested by scaling the downscaled A2

scenario, at each station, by the ratio of the A2

and B2 global mean surface temperature change

for each GCM, to derive a scaled B2 emissions

scenario. If a linear relationship was found to

exist between the statistically downscaled B2

and pattern scaled B2 scenario, then the

assumption was taken as valid.

Figure 1 illustrates the relationship, on a

seasonal basis, between the statistically down-

scaled and pattern scaled B2 values, for both

temperature and precipitation change, by the

method outlined above, for the 2080s. While the

assumption of a linear (spatial) response was

found to be valid between driving emissions

scenarios, the slope of the equation was found

to vary seasonally. Therefore, seasonal regres-

sion equations were derived to account for the

difference between the statistically downscaled

B2 and pattern scaled B2 projections.

Table 1. List of GCMs employed in the initial analysis and change in global mean surface temperature (�C) for
the A1FI, A2, B2 and B1 emissions scenarios for the 2071–2100 period. Emissions scenarios in italics are
those that were available as statistically downscaled projections. The GCMs employed by Fealy and Sweeney
(2007, 2008) all participated in the Third Assessment Report (IPCC, 2001). Data from Mitchell et al. (2002).

Model Institution/Country Reference Scenario DTglobal

CGCM2 CCCma, Canada Flato et al., 2000 A1FI 4.38
A2 3.55
B2 2.46
B1 2.02

CSIRO Mk2 CSIRO, Australia Hirst et al., 1996, 2000 A1FI 4.86
A2 3.94
B2 3.14
B1 2.59

HadCM3 UKMO, UK Gordon et al., 2000 A1FI 4.86
A2 3.93
B2 3.07
B1 2.52
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Figure 1. Comparison of statistically downscaled (SD) and scaled B2 temperature (a–c) and precipitation
(d–f) based on pattern scaling the statistically downscaled A2 scenario for each GCM. Regression equations
and explained variance for each season illustrate the relationship between the statistically downscaled station
data and scaled B2 scenarios. These seasonally calculated equations were applied as a correction factor for
calculating all scaled scenarios. Scatterplots on the left are in �C, while the scatterplots on the right are %
change. (See colour version of this figure online).
Source: Data after Fealy and Sweeney (2007, 2008).
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Having tested the assumption of a linear

response pattern, the method was then applied

to the statistically downscaled A2 scenarios for

all stations and the three GCMs (Table 1) to cal-

culate station level changes for the A1FI and B1

emissions scenarios, based on the respective

global temperature response (DTglobal) from the

parent GCM. The results from the application of

this method are outlined in Table 2, for tempera-

ture (�C), and Table 3, for precipitation change

Table 2. GCM scaled temperature change (�C) for selected stations for the 2070–2099 period from three
GCMs and the A1FI and B1 emissions scenarios (SRES). Emissions scenarios in italics are those that were
available as statistically downscaled projections. The A1FI and B1 scenarios were derived by scaling the sta-
tistically downscaled A2 scenario according to the ratio of DT from the parent GCM and relevant emissions
scenario for each season.

GCM SRES
Valentia Malin Head Casement Kilkenny

DTDJF DTJJA DTDJF DTJJA DTDJF DTJJA DTDJF DTJJA

CGCM2 A1FI 5.1 3.6 4.3 3.1 5.9 4.2 5.7 4.5
CGCM2 A2 3.0 3.1 2.5 2.6 3.5 3.6 3.4 3.8
CGCM2 B2 2.9 2.0 2.3 1.7 3.3 2.4 3.2 2.4
CGCM2 B1 2.4 1.6 2.0 1.4 2.8 1.9 2.6 2.0
CSIRO A1FI 4.4 2.1 3.7 1.9 5.0 2.4 5.0 2.7
CSIRO A2 3.7 2.1 3.1 1.8 4.2 2.4 4.2 2.8
CSIRO B2 2.9 1.5 2.5 1.3 3.3 1.7 3.3 1.9
CSIRO B1 2.4 1.3 2.1 1.1 2.8 1.4 2.8 1.6
HadCM3 A1FI 1.2 2.5 1.1 2.4 1.4 3.1 1.4 3.3
HadCM3 A2 1.4 2.5 1.2 2.4 1.6 3.1 1.6 3.3
HadCM3 B2 0.7 1.6 0.7 1.6 0.9 2.0 0.9 2.1
HadCM3 B1 0.6 1.4 0.5 1.3 0.7 1.7 0.7 1.8

Table 3. Scaled percent change in precipitation (%) for selected stations for the 2070–2099 period from
three GCMs and the A1FI and B1 emissions scenarios (SRES). Emissions scenarios in italics are those that
were available as statistically downscaled projections. The A1FI and B1 scenarios were derived by scaling the
statistically downscaled A2 scenario according to the ratio of DT from the parent GCM and relevant emis-
sions scenario for each season.

GCM SRES
Valentia Malin Head Casement Kilkenny

DPDJF DPJJA DPDJF DPJJA DPDJF DPJJA DPDJF DPJJA

CGCM2 A1FI –3.8 –29.2 4.5 –22.3 24.5 –47.7 18.7 –19.4
CGCM2 A2 –4.5 –17.4 2.0 –14.3 18.0 –25.7 13.3 –13.0
CGCM2 B2 –2.8 –14.5 5.5 –4.2 13.0 –23.0 10.7 –6.7
CGCM2 B1 –0.7 –8.3 3.1 –5.1 12.3 –16.8 9.7 –3.7
CSIRO A1FI 0.1 –24.8 5.5 –13.3 35.1 –31.0 26.6 –19.6
CSIRO A2 1.8 –25.9 6.3 –16.5 30.9 –31.0 23.8 –21.6
CSIRO B2 –0.8 –17.3 4.6 –6.7 22.7 –20.2 16.3 –5.7
CSIRO B1 –0.9 –10.1 2.0 –4.0 17.8 –13.4 13.2 –7.3
HadCM3 A1FI 9.9 –24.3 10.5 –10.1 21.6 –24.6 22.1 –23.9
HadCM3 A2 9.1 –29.0 9.7 –9.8 21.8 –29.3 22.3 –28.5
HadCM3 B2 8.1 –18.4 4.9 –7.0 16.3 –14.0 15.7 –17.4
HadCM3 B1 5.8 –14.0 6.1 –6.7 11.9 –14.1 12.2 –13.8
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(%), for the selected stations of Valentia, Malin

Head, Casement and Kilkenny for the winter

(DJF) and summer (JJA) seasons for the 2080s

period. These stations were selected as they repre-

sent a mix of coastal and interior stations that are

dispersed throughout the island and therefore

likely to be illustrative of different climatological

regimes. The lower temperatures associated with

the HadCM3 for the Irish grid box are consistent

with previous studies that have employed this

model for this region (e.g. Fealy and Sweeney,

2008; Mullan et al., 2012) (Table 2).

2 Derivation of regional response rates

The next stage in the methodology was to calcu-

late regional response rates (i.e. the regional rate

of warming per �C global warming) for each sta-

tion. As a number of GCMs were included in the

analysis, the derived regional response rates

should represent a sample from the total

regional response rate space, which in turn

reflect uncertainties in the driving GCMs and

emissions scenarios.

Following the method of Hulme and Carter

(1999), in order to calculate the regional response

rate at each station, the seasonal projected (statis-

tically downscaled and pattern scaled) changes

in temperature (DTstation) and precipitation

(DPstation) for each four selected emissions sce-

narios were normalized by the parent GCM/emis-

sions scenario combination change in the global

mean surface temperature change from Table 1.

For example, to calculate the regional response

rate for the CGCM2 GCM for the A1FI scenario

for winter at Valentia, the projected A1FI

DTValentia of 5.1�C (from Table 2) is normalized

by the global DT (DTglobal) change from the

CGCM2 A1FI of 4.38�C (from Table 1). The

resultant normalized value of 1.16�C represents

a regional or station response rate of 1.16�C/�C
global warming, i.e. for an increase in global

mean surface temperature of 1�C, winter seasonal

mean temperatures at Valentia are projected to

increase by 1.16�C (DTGlobal�DTstation), indicat-

ing an above ‘average’ warming rate at Valentia

for that GCM/emissions scenario combination.

Minimum and maximum regional response rates

Table 4. Minimum and maximum temperature response (�C)/�C DTglobal for the 14 synoptic stations in Ire-
land derived from three GCMs and four emissions scenarios, based on the statistically downscaled and scaled
station level warming. Stations in italics represent stations referred to in the text.

Temperature (oC)
DJF MAM JJA SON

Min Max Min Max Min Max Min Max

Valentia 0.23 1.19 0.38 0.93 0.44 0.86 0.48 1.01
Shannon 0.26 1.33 0.44 1.01 0.51 0.99 0.56 1.15
Dublin 0.21 1.02 0.42 0.86 0.47 0.89 0.55 1.17
Malin Head 0.21 0.99 0.35 0.85 0.38 0.75 0.47 0.94
Roche’s Point 0.22 1.10 0.36 0.74 0.49 0.80 0.47 0.97
Belmullet 0.22 1.11 0.37 0.93 0.48 0.83 0.48 1.01
Clones 0.27 1.35 0.46 1.03 0.55 1.03 0.58 1.17
Rosslare 0.22 1.12 0.35 0.62 0.42 0.70 0.48 1.00
Claremorris 0.27 1.36 0.44 1.07 0.56 1.01 0.57 1.18
Mullingar II 0.27 1.36 0.47 1.05 0.54 1.04 0.59 1.21
Kilkenny 0.28 1.31 0.46 0.99 0.56 1.08 0.60 1.27
Casement 0.28 1.36 0.45 0.96 0.50 1.01 0.59 1.22
Cork 0.24 1.23 0.40 0.87 0.54 0.94 0.52 1.08
Birr 0.28 1.39 0.46 1.05 0.57 1.06 0.59 1.25
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for the 14 synoptic stations for both temperature

and precipitation are shown in Tables 4 and 5.

These values reflect the minimum and maximum

values from the three GCMs and four emissions

scenarios.

The derived regional response rates were

assumed to be illustrative of the likely total

range in regional response rates if a wider range

of GCMs had been included. To assess this con-

tention, data from 17 GCMs (Table 6), all of

which contributed to the Fourth Assessment

Report (IPCC, 2007), were employed to derive

regional response rates for the model grid

box(es) representing Ireland. Differences in

DT (�C) between specific models and emissions

scenarios identified in Table 1 and Table 7 are

attributed to availability of different experimen-

tal runs of the model (e.g. DT (�C) for some

emissions scenarios in Table 1 were calculated

using MAGICC). Additionally, the reported

DTglobal (�C) in Table 1 represent the period

2071–2100, while the statistically downscaled

data cover the period 2070–2099. These differ-

ences are considered to have a negligible impact

on the findings highlighted here. As the GCM

data existed on differing resolutions, the data

from each GCM was regridded to a common

resolution of 3.75� � 3.75� employing a simple

spatial interpolation procedure, consistent with

the resolution of the GCMs employed above.

Monthly data for both temperature and precipi-

tation rate for both the 1961–1990 (20C3M) and

2070–2099 periods was then extracted from the

resultant grid cell representing Ireland for

the three available emissions scenarios, namely,

the A1B, A2 and B2 (Table 7). Seasonal mean

values for temperature and precipitation were

then calculated to determine the projected

change in these variables between the control

(20C3M) and future (2070–2099) scenario runs

for the three emissions scenarios. On the basis

of this derived data, regional response rates

were calculated, as above, for the grid box

representing Ireland for each of the 17 GCMs

and three scenarios.

While a direct comparison between GCM

grid box, representing Ireland, and point scale

(station level) regional response rates is not fea-

sible, regional response ranges derived from a

selection of the GCMs for the Irish grid box are

Table 5. Minimum and maximum precipitation response (%)/�C DTglobal for the 14 synoptic stations in Ire-
land derived from three GCMs and four emissions scenarios, based on the statistically downscaled and scaled
station level warming. Stations in italics represent stations referred to in the text.

Precipitation (%)
DJF MAM JJA SON

Min Max Min Max Min Max Min Max

Valentia –1.28 2.64 –5.89 2.34 –7.38 –3.91 –6.33 –2.32
Shannon 0.66 4.43 –10.22 2.66 –7.72 –4.43 –4.09 –0.24
Dublin 5.59 10.01 –6.59 2.28 –11.07 –5.34 –4.73 –1.20
Malin Head 0.57 2.47 –9.24 2.94 –5.09 –1.53 –1.62 2.20
Roche’s Point 1.37 4.42 –2.78 2.20 –10.58 –4.83 –7.41 –2.81
Belmullet –0.93 2.32 –6.77 2.44 –4.49 –1.80 –2.83 0.00
Clones 4.42 7.64 –9.08 2.98 –6.55 –2.26 –3.96 –0.17
Rosslare 2.35 4.89 –5.45 2.03 –8.07 –2.37 –4.56 –1.99
Claremorris 3.51 5.84 –7.38 2.87 –4.88 0.81 –4.59 –0.19
Mullingar II 4.20 7.58 –9.12 2.61 –8.26 –3.73 0.53 3.70
Kilkenny 3.76 6.05 –8.01 2.39 –7.25 –1.82 –6.16 –2.10
Casement 4.45 7.85 –7.21 2.35 –10.89 –4.55 –3.40 –0.81
Cork –0.22 4.27 –4.40 2.13 –7.92 –1.81 –6.44 –1.38
Birr 5.07 8.57 –8.26 2.56 –8.24 –3.78 –2.82 0.29
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shown in Table 8 for illustrative purposes. To

assess if the original three GCMs employed in

the pattern scaling approach above, namely

CGCM2, CSIRO Mk2 and HadCM3, were a

representative sample of the likely response

rates if a larger sample of GCMs had been

included, these three GCMs were excluded from

the results presented in Table 8. Additionally,

only regional response rates for the A2 and B1

emissions scenarios, in common between both

the selected 14 GCMs (Ireland) and the station

level data (Stations), are shown. Broadly, the

minimum and maximum response rates calcu-

lated for temperature for both the Irish grid box

(Ireland), based on 14 GCMs, and synoptic sta-

tions (Stations), based in the statistically

Table 8. Temperature (�C) and precipitation (%) response ranges (minimum and maximum) for the 2070–
2099 period for the land area grid boxes (Ireland) encompassing Ireland derived from 14 GCMs (Ireland),
excluding those models employed previously, and the minimum and maximum response rates derived from
the 14 synoptic stations (Stations) derived from three GCMs. For comparative purposes, response rates are
shown for the two emissions scenarios in common, namely the A2 and B1.

Variable DJF MAM JJA SON

Ireland (14 GCMs) Temperature 0.28 – 0.95 0.28 – 0.98 0.15 – 1.26 0.08 – 1.42
Precipitation –0.7 – þ12.7 –20.8 – –5.6 –30.9 – –12.1 –3.97 – þ6.9

Stations (3 GCMs) Temperature 0.21 – 1.39 0.35 – 1.05 0.44 – 1.08 0.47 – 1.27
Precipitation –1.3 – þ10.0 –10.2 – þ2.9 –10.6 – þ0.81 –7.3 – þ3.7

Table 7. Change in global DT (�C) associated with each of the 17 GCMs outlined in Table 6 for the three
available SRES (A1B, A2, B1) for the 2070–2099 period (data from the IPCC Data Distribution Centre; http://
www.ipcc-data.org). Blank cells indicate that data were not available for that particular GCM/emissions sce-
nario combination. Differences are evident in DT in selected models from Table 1. These differences are
attributed to variant runs or experiments undertaken by the specific modelling centres and the method
employed (MAGICC) to scale the GCM data in Table 1.

Sn Model (GCM) CERA (Acronym) A1B A2 B1

1 BCCR-BCM2.0 BCM2 2.99 3.38 1.98
2 CCSM3 NCCCSM 3.38 4.30 2.11
3 CGCM3.1 (T47) CGMR 2.85
4 CSIRO-Mk3.0 CSMK3 2.20 2.89 1.29
5 CNRM-CM3 CNCM3 3.06 3.77 2.03
6 ECHAM5/MPI-OM MPEH5 3.61 3.74 2.58
7 ECHO-G ECHOG 3.01 3.26
8 GFDL-CM2.0 GFCM20 3.22 3.44 2.39
9 GFDL-CM2.1 GFCM21 2.80 3.21 1.94
10 GISS-ER GIER 2.23 2.73 1.62
11 UKMO-HadCM3 HADCM3 3.40 3.81 2.42
12 UKMO-HadGEM1 HADGEM 4.20 2.78
13 INM-CM3.0 INCM3 3.12 3.74 2.46
14 IPSL-CM4 IPCM4 3.42 3.85 2.60
15 MIROC3.2 (medres) MIMR 3.57 3.90 2.52
16 MRI-CGCM2.3.2 MRCGCM 2.56 2.84 1.87
17 PCM NCPCM 2.85
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downscaled and pattern scaled data (3 GCMs),

are comparable, while the minimum response

rates for precipitation tend to deviate more sig-

nificantly (Table 8). The largest differences are

associated with the minimum response rates for

precipitation in Spring (MAM) and Summer

(JJA), of –20.8%/�C and –30.9%/�C for the Irish

grid box and –10.2%/�C and –10.6%/�C for the

synoptic stations, respectively. The difference

in values between the regional response rates

calculated at the grid box and point scale can

perhaps in part be explained by the difference

in scale, but also by the recognized inability of

GCMs to reliably simulate this variable at

grid/regional scales. This finding also highlights

the significant divergence evident between

GCMs in projecting precipitation which gives

rise to much larger projected precipitation

changes relative to the statistically downscaled

values.

On the basis of a comparison based on the

values outlined in Table 8, the regional response

rates at each station were taken to be representa-

tive of the likely regional response rates if a

larger number of GCMs had been included in

the statistical downscaling of Fealy and Swee-

ney (2007, 2008), taking into consideration the

difference in spatial scales and GCM lineage.

However, to confirm this, statistically down-

scaled data from a wider range of GCMs would

be required. At a minimum, the regional

response rates calculated at the station level

capture a significant portion of the uncertainty

space identified from the larger suite of 14

‘independent’ GCMs.

3 Deriving probabilistic based seasonal
scenarios

In order to generate probability distribution

functions (pdfs) of changes in temperature and

precipitation for individual synoptic stations,

which take into account some of the key uncer-

tainties, including emissions (through the incor-

poration of four marker scenarios) and GCM

uncertainty (through the derived regional

response rates), a Monte Carlo (MC) sampling

technique was employed to sample from the

minimum and maximum ranges in regional

response rates for both temperature (Table 4)

and precipitation (Table 5) for the four selected

synoptic stations and for different estimates of

future warming as represented by DTglobal. The

two estimates of DTglobal were as follows:

1. DT in global mean surface temperature

change (2070–2099) from the three global

climate models employed in the statistical

downscaling approach employed by Fealy

and Sweeney (2007, 2008) (Table 1 – range

inDTglobal from 2.02 to 4.86�C representing

the range in warming associated with the

three GCMs and four emissions scenarios

employed) (Method I);

2. DT in global mean surface temperature

change (2070–2099) from the 17 global cli-

mate models from Table 7. For consistency,

the available minimum and maximum

range in DTglobal (DTglobal range of 1.29 to

4.3�C) was taken from the A2 and B1 sce-

narios (Table 7) as values for these emis-

sions scenarios were also available for the

station level regional response rates,

derived from the statistically downscaled

and pattern scaled approach described pre-

viously (derived from Table 3) (Method II).

In addition, the DT in global mean surface

temperature change (2070–2099) from a combi-

nation of GCM and emissions scenarios (Table

1 and Table 7) were employed in conjunction

with the regional response rates from one sta-

tion, Casement Aerodrome, located on the east

coast of the island of Ireland, to highlight differ-

ences between the four marker emissions sce-

narios of A1FI, A2, B2 and B1.

As the range in values could not be assumed

to be drawn from a specific distribution, a uni-

form prior (i.e. ascribes an equal probability to

all values) was ascribed to both the regional
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response rates at the station level and the range

in DTglobal derived from the GCMs. For all

methods, the MC simulation was set to produce

10,000 replications or samples.

The Monte Carlo sampling technique was

applied as follows. The regional response range

(minimum and maximum values) for winter

temperature at Valentia for the 2080s is 0.23–

1.19 (�C/�C DTglobal) (Table 4). The MC analy-

sis was set to generate 10,000 randomly

sampled values from this range, based on a uni-

form prior. A parallel set of 10,000 randomly

sampled values was generated based on the

DT in global mean surface temperature change

from the three global climate models (2.02 to

4.86�C) outlined in Table 1, again based on a

uniform prior. The resultant pdfs were then

generated based on the combination of the two

uniform distributions (i.e. DTglobal � DTstation).

IV Results

Tables 9 and 10 show the results for each of the

two different measures of changes in global DT

(Methods I and II) with the regional response

rates at the selected synoptic stations of Valen-

tia, Malin Head, Kilkenny and Casement. The

results from Methods I and II are also compared

to the ensemble of the statistically downscaled

A2 and B2 emissions scenario calculated by

Fealy and Sweeney (2007, 2008) employing the

IR-CPI (after Wilby and Harris, 2006) (Table

11).

Probability distribution functions for changes

in temperature and precipitation, at each station

and season, based on Method I are shown in Fig-

ures 2 and 3, for the 2080s. Projected changes in

both temperature and precipitation are shown to

display a considerable spread in values. For

example, winter temperature at Casement sug-

gests an increase from 0.6 to 6.6�C by the

2080s (2070–2099) period. In fact, winter tem-

peratures at all stations show a greater spread

than in all other seasons. Temperature displays

a consistent direction of change for all seasons,

in spite of the differences in magnitudes. For

precipitation, differences in both direction and

magnitude are projected, with equal likelihood,

at all stations for spring. Winter precipitation at

Valentia and autumn precipitation at Malin

Head also display different directions of change

with equal likelihoods. Results from the statisti-

cal downscaled ensemble (Table 11), while

comparable to the mean changes projected by

Method I, take no account of uncertainties or the

fact that a projected change could differ in

direction. Importantly, the pdfs indicate a clear

direction of change for precipitation for some

seasons, namely summer and autumn, indepen-

dent of GCM and emissions scenario.

Figures 4 and 5 illustrate the derived pdfs for

temperature and precipitation change based on

Method II, which employed an estimate of glo-

bal surface temperatures (1.29 to 4.3�C) from a

range of 17 GCMs (Table 7) rather than from

just three GCMs originally employed by Fealy

and Sweeney (2007, 2008) (Table 1). As only

two emissions scenarios were in common

between both the 17 GCMs and the station level

regional response rates, namely the A2 and B1,

the resultant pdfs tend to display a smaller range

in values when compared to Method I, which

included four emissions scenarios (A1FI, A2,

B2, B1). Similarly, seasonal mean projected

changes are slightly lower for Method II. In

spite of this, the projected seasonal mean

changes in temperature and precipitation at the

four stations are comparable. Similar to Method

I, Method II indicates that projected changes in

precipitation are likely to differ in both direction

and magnitude, particularly in spring, reflecting

large inter-GCM model uncertainties in this

variable at the regional/station level scale.

In a comparison of projected mean changes

in temperature and precipitation by the 2080s

between the original statistically downscaled

ensemble data from Fealy and Sweeney (2007,

2008) and the combined pattern scaling and

MC methods employed here, the probabilistic

approach (Method I) indicates equivalent or
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Table 10. Method II. Seasonal mean change in temperature (�C) and precipitation (%) for Valentia, Malin
Head, Kilkenny and Casement for the 2080s. Also shown are values for minimum (min), maximum (max),
median (med) and quartiles (Q1 ¼ 1st quartile; Q3 ¼ 3rd quartile).

Method II
Temperature Precipitation

Station Season Mean Min Q1 Med Q3 Max Mean Min Q1 Med Q3 Max

Valentia DJF 1.5 0.1 1.0 1.5 2.0 4.1 1.5 –4.4 –0.6 1.4 3.4 9.8
MAM 1.4 0.2 1.1 1.4 1.7 3.3 –3.8 –19.8 –8.0 –3.7 0.6 8.3

JJA 1.4 0.2 1.1 1.4 1.6 3.2 –12.1 –25.7 –14.2 –11.9 –9.8 –1.6
SON 1.6 0.3 1.3 1.6 1.9 3.6 –9.3 –22.3 –11.4 –9.0 –6.9 –0.9

Malin Head DJF 1.3 0.2 0.8 1.2 1.7 3.4 3.3 0.3 2.2 3.2 4.2 8.3
MAM 1.3 0.2 1.0 1.3 1.6 2.8 –6.8 –30.6 –13.0 –6.6 –0.3 9.8

JJA 1.2 0.2 1.0 1.2 1.4 2.7 –7.1 –17.5 –9.0 –6.9 –5.0 –1.3
SON 1.5 0.2 1.2 1.5 1.8 3.3 0.6 –5.3 –1.4 0.6 2.6 7.4

Kilkenny DJF 1.7 0.2 1.1 1.6 2.2 4.6 10.5 1.8 8.8 10.4 12.1 21.8
MAM 1.6 0.2 1.2 1.5 1.9 3.7 –6.1 –27.2 –11.3 –5.9 –0.5 8.4

JJA 1.8 0.3 1.4 1.7 2.1 3.9 –9.7 –27.4 –12.5 –9.4 –6.6 –1.1
SON 2.0 0.3 1.6 2.0 2.4 4.9 –8.9 –23.7 –11.0 –8.6 –6.5 –1.3

Casement DJF 1.8 0.2 1.1 1.7 2.3 4.7 13.2 2.1 10.9 13.0 15.4 26.8
MAM 1.5 0.2 1.2 1.5 1.8 3.4 –5.2 –24.0 –10.0 –5.0 –0.1 7.6

JJA 1.6 0.3 1.3 1.6 1.9 3.4 –16.6 –39.2 –20.1 –16.2 –12.7 –1.8
SON 1.9 0.3 1.5 1.9 2.3 4.1 –4.5 –12.4 –5.8 –4.4 –3.0 –0.5

Table 9. Method I. Seasonal mean change in temperature (�C) and precipitation (%) for Valentia, Malin Head,
Kilkenny and Casement for the 2080s. Also shown are values for minimum (min), maximum (max), median
(med) and quartiles (Q1 ¼ 1st quartile; Q3 ¼ 3rd quartile).

Method I
Temperature Precipitation

Station Season Mean Min Q1 Med Q3 Max Mean Min Q1 Med Q3 Max

Valentia DJF 2.4 0.5 1.5 2.3 3.2 5.8 2.3 –6.2 –1.0 2.2 5.4 12.8
MAM 2.3 0.8 1.7 2.1 2.8 4.5 –6.1 –28.5 –12.4 –5.7 0.9 11.3

JJA 2.2 0.9 1.7 2.2 2.7 4.2 –19.4 –35.8 –23.4 –18.8 –14.9 –8.0
SON 2.6 1.0 1.9 2.5 3.1 4.9 –14.9 –30.7 –18.5 –14.0 –10.7 –4.7

Malin Head DJF 2.1 0.4 1.3 1.9 2.7 4.8 5.2 1.2 3.4 4.9 6.8 12.0
MAM 2.1 0.7 1.5 2.0 2.5 4.1 –10.9 –44.8 –20.2 –10.2 –0.4 14.1

JJA 1.9 0.8 1.5 1.9 2.4 3.6 –11.4 –24.7 –14.5 –10.7 –7.8 –3.1
SON 2.4 1.0 1.9 2.3 2.9 4.6 1.0 –7.9 –2.2 0.9 4.0 10.7

Kilkenny DJF 2.7 0.6 1.7 2.6 3.6 6.4 16.9 7.6 13.1 16.6 20.2 29.4
MAM 2.5 0.9 1.9 2.4 3.0 4.8 –9.7 –38.9 –17.6 –9.2 –0.7 11.5

JJA 2.8 1.1 2.2 2.7 3.4 5.2 –15.6 –35.2 –20.0 –14.6 –10.3 –3.7
SON 3.2 1.2 2.4 3.1 3.9 6.2 –14.2 –29.9 –17.8 –13.4 –10.1 –4.3

Casement DJF 2.8 0.6 1.8 2.7 3.7 6.6 21.2 9.0 16.4 20.6 25.4 38.1
MAM 2.4 0.9 1.8 2.3 2.9 4.7 –8.3 –34.8 –15.6 –7.8 –0.1 11.4

JJA 2.6 1.0 2.0 2.5 3.2 4.9 –26.6 –52.7 –32.7 –25.2 –19.7 –9.2
SON 3.1 1.2 2.4 3.0 3.8 5.9 –7.2 –16.5 –9.4 –6.8 –4.7 –1.7
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greater warming for all seasons at the selected

stations. For projected changes in precipitation,

Method I indicates more conservative changes,

mainly lower projected decreases, for nearly all

stations and seasons when compared to the sta-

tistically downscaled ensemble results. Such

small differences between both approaches are

not unexpected, as fundamentally both methods

rely on the same parent GCMs (Table 1).

Method II, which employed only two emis-

sions scenarios, the A2 and B1, but a larger num-

ber of GCMs, indicates much more conservative

projected mean changes in temperature and preci-

pitation by the 2080s for the selected stations in

all seasons. The lower projected values, when

compared to the statistically downscaled ensem-

ble method (SD-Ens) or Method I approach can

be readily explained by the difference in DTglobal

between the various approaches. The SD-Ens and

Method I employ the same parent GCMs

(DTglobal ranges from 2.02 to 4.86�C), while for

Method II, in spite of employing more GCMs

with a larger range inDTglobal (1.29 to 4.3�C), the

minimum and maximum values are lower than

those employed by the other two approaches,

highlighting the contribution of emissions sce-

nario uncertainty.

Figure 6 illustrates boxplots of the applica-

tion of the methods outlined above to just one

synoptic station, that of Casement Aerodrome,

a station located on the east coast of Ireland,

to illustrate the range in GCM derived projec-

tions both within and between individual emis-

sions scenarios for seasonal mean temperature.

Figure 7 shows the same, but for seasonal mean

precipitation. While all GCM and emissions

scenarios indicate that warming is likely to

occur at Casement Aerodrome by the end of the

Table 11. Comparison of projected mean temperature (�C) and precipitation (%) change in the statistically
downscaled ensemble (SD-Ens) for selected stations, based on the A2 and B2 emissions scenarios, calculated
by Fealy and Sweeney (2007, 2008) employing the IR-CPI approach (after Wilby and Harris, 2006), the mean
change calculated from the probability distribution functions (Method I) employing the broader range of
emissions scenarios (A1FI, A2 B2, B1) and for the probability distribution functions derived from the 17
GCMs and station level regional response rates for the A2 and B1 emissions scenarios (Method II). All values
are for the 2080s (2070–2099) period.

Temperature Precipitation

Station Season SD-Ens Method I Method II SD-Ens Method I Method II

Valentia DJF 2.0 2.4 1.9 3.5 2.3 1.5
MAM 1.9 2.3 1.8 –9.8 –6.1 –5.0

JJA 2.1 2.2 1.9 –25.6 –19.4 –15.9
SON 2.4 2.6 2.1 –16.0 –14.9 –12.1

Malin Head DJF 1.7 2.1 1.7 5.8 5.2 4.2
MAM 1.7 2.1 1.7 –11.1 –10.9 –8.9

JJA 1.9 1.9 1.7 –13.1 –11.4 –8.0
SON 2.3 2.4 2.0 0.1 1.0 –0.7

Kilkenny DJF 2.3 2.7 2.2 16.9 16.9 13.7
MAM 2.1 2.5 2.0 –12.7 –9.7 –8.0

JJA 2.7 2.8 2.4 –25.8 –15.6 –12.6
SON 3.0 3.2 2.6 –16.7 –14.2 –11.6

Casement DJF 2.3 2.8 2.3 19.2 21.2 17.6
MAM 2.1 2.4 1.7 –9.7 –8.3 –6.8

JJA 2.6 2.6 2.2 –31.8 –26.6 –18.9
SON 2.9 3.1 2.5 –10.5 –7.2 –6.1
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present century, the magnitude of the projected

changes vary according to GCM and emissions

scenario. The largest range in projected change

in mean temperature for any one emissions sce-

nario is projected for the A1FI scenario during

the winter season (1.3–6.5�C). When the four

emissions scenarios are considered, the range

increases to 0.3–6.5�C for winter. The season

with the smallest projected range in mean tem-

perature, when all emissions scenarios are con-

sidered, is summer (0.6–4.6�C).

For precipitation, as with Methods I and II, the

largest changes are projected to occur in winter

(þ6 to þ35%) and summer (–53.0 to –6.0%).

From Figure 7, the projected direction of change

in mean precipitation at Casement Aerodrome

is consistent between emissions scenarios.

However, for spring, when the full range in

projections is considered, both the direction and

magnitude of change (–32.0 to þ6.0) are found

to differ between GCMs and emissions scenar-

ios. These findings highlight the difficulty with

any approach that requires GCM models to pro-

vide accurate and reliable ‘predictions’ (such as

the ‘predict and provide’ approach) and also, the

likely challenges associated with the single tra-

jectory approach, which until recently, has been

common practice within the impacts community.

V Discussion and Conclusions

Kass and Raftery (1995) suggest that ‘any

approach that selects a single model and then

makes inference conditionally on that model

ignores the uncertainty involved in model

selection, which can be a big part of overall
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Figure 2. Method I. Probability distribution functions of projected change in seasonal mean temperature (�C)
for Valentia, Malin Head, Kilkenny and Casement for the 2070–2099 period, assuming a uniform distribution for
DTglobal from three GCMs (Table 1) and the regional response rates. (See colour version of this figure online).
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uncertainty’, and ‘this leads to underestimation

of the uncertainty about quantities of interest,

sometimes to a dramatic extent’ (Kass and

Raftery 1995: 784). Yet, in spite of this early

acknowledgement, the climate modelling and

impacts community continued to produce and

employ single trajectory climate scenarios for

use in impact assessments which sought to

inform policy making (‘predict and provide’).

While there was a valid historical reason for

such, arising from the limited number of centres

who were undertaking global climate modelling

due to the computational resources required and

associated expense of running such model simu-

lations, the implications for the policy commu-

nity were significant. GCMs have been found to

produce such divergent scenarios at the regional

scale that it is difficult, if not impossible, to

develop appropriate adaptation strategies

(Stakhiv, 1998) based on one or a few global cli-

mate models. Hulme and Carter (1999) consider

the practice of employing a limited number of

climate scenarios as ‘dangerous’, as such an

approach only reflects a partial assessment of

the associated risk involved. Modelling the cli-

mate system will always result in a range of pos-

sible futures being projected, even when forced

with the same emissions scenario (Hulme and

Carter, 1999).

While a number of techniques have devel-

oped in order to account for model differences,

an inability to produce probabilistic based pro-

jections has proved a limiting factor in enabling

the potential risk of climate change impacts in

key sectors to be quantified, and potentially hin-

dered the subsequent development of suitable

policy responses to reduce or mitigate such

impacts. More recently, this topic has received

Figure 3. Method I. Probability distribution functions of projected change in seasonal precipitation (%) for
Valentia, Malin Head, Kilkenny and Casement for the 2070-2099 period, assuming a uniform distribution for
DTglobal from three GCMs (Table 1) and the regional response rates. (See colour version of this figure online).
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much attention in the literature, with divergent

attitudes and opinions towards the most suit-

able approach to employ. In spite of such diver-

gence in attitudes, the discussion is a necessary

one. Some exciting developments have also

emerged, through the perturbed physics experi-

ments (PPEs) (Murphy et al., 2004) and large-

scale experiments such as Climateprediction.net,

which included a significant participation of

non-climate scientists and the public at large

in providing distributed computer resources for

climate modelling at the global scale. More

recently, the development of scenario-neutral

approaches (e.g. Prudhomme et al., 2010; Wilby

and Dessai, 2010) represents a significant and

important contribution to the debate.

The generation of multiple scenarios from dif-

ferent GCMs has received much focus within the

statistical downscaling community, largely due

to the ease in implementation of statistically

based downscaling approaches. However, tradi-

tional statistical downscaling approaches do not

explicitly account for the uncertainties that

accrue in the modelling process. Intercomparison

of dynamically based downscaled scenarios has

also become feasible through European Union

funded projects such as PRUDENCE and

ENSEMBLES, which focused on producing out-

puts from multiple GCM-RCM combinations for

a common domain over Europe. The availability

of such data from a number of RCMs has greatly

contributed to the development of probabilistic
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Figure 4. Method II. Probability distribution functions of projected change in seasonal mean temperature
(�C) for Valentia, Malin Head, Kilkenny and Casement for the 2070–2099 period, employing uniform priors
for DTglobal from the 17 GCMs and station level regional response rates. Probability distributions functions
are for the A2 and B1 emissions scenarios. (See colour version of this figure online).
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based approaches at the required scale for policy

assessment and decision making, based on dyna-

mical regional climate models.

The application of techniques as outlined in

this paper seeks to contribute to methodological

developments in the field of statistical down-

scaling through the generation of probability

distribution functions, accounting for key

uncertainties from emissions scenarios to the

GCMs employed, and perhaps represents a sig-

nificant addition to the traditional techniques

employed in statistical downscaling. Addition-

ally, the ability to include alternative, or (previ-

ously) unavailable, emissions scenarios (i.e.

A1FI and B1) through pattern scaling allows for

a broader range of plausible futures to be

included in any subsequent analysis.

While the projected mean changes in tempera-

ture and precipitation, based on the probabilistic

approach, were found to be comparable to the

ensemble mean directly derived from the statisti-

cally downscaled data, the probability distribu-

tion functions indicated a wide range in the

distribution of the projected changes. Projections

of temperature were found to be consistent in the

direction and magnitude of change; however,

results for precipitation were found to vary in both

direction and magnitude in particular seasons.

While the probabilistic based mean seasonal pro-

jected changes in precipitation was found to be

more conservative than that of the ensemble

mean from the statistical downscaling approach,

the range in projected changes was found to vary.

Therefore, the development of probabilistic
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Figure 5. Method II. Probability distribution functions of projected change in seasonal mean precipitation (%)
for Valentia, Malin Head, Kilkenny and Casement for the 2070–2099 period, employing uniform priors for
DTglobal from the 17 GCMs and station level regional response rates. Probability distributions functions are
for the A2 and B1 emissions scenarios. (See colour version of this figure online).
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scenarios provides a valuable assessment of

variables/seasons where the associated uncertain-

ties may require alternative policy options to be

more rigorously assessed. For example, uncer-

tainty associated with projected precipitation

changes at all stations during the spring months

by the 2080s, which results in both increased and

decreased precipitation being modelled with

equal likelihood, is highlighted as a case in

point. From a policy perspective, these findings

are particularly relevant for sectors dependent

on water supply and availability that seek to

develop robust adaptation options. Under the

traditional approach to impact assessment, such

uncertainty may be viewed as a justification to

adopt a ‘wait and see’ approach to adaptation

on the basis of not having an optimal solution,

while the alternative scenario-neutral approach

can readily accommodate such uncertain cli-

mate information, with the ultimate aim of

developing robust adaptation options which

are insensitive to uncertainties. Importantly, the

approach also has the potential to highlight

seasons/locations where climate information

simply cannot address the needs of the policy

community (e.g. seasons/locations where an

equal likelihood of both positive and negative

changes are suggested).

However, a significant weakness in this

approach is that no strict quantification of

uncertainty in predictor selection in the statisti-

cal downscaling procedure employed by Fealy

and Sweeney (2007, 2008) is accounted for.

This source of uncertainty is likely to be greatest

in cases where a number of optimum predictor

sets may exist, but the resultant downscaled
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Figure 6. Boxplots of the projected changes in seasonal mean temperature (�C) for the synoptic station at
Casement Aerodrome for four emissions scenarios: A1FI (3�GCMs), A2 (17�GCMs), B2 (3�GCMs) and
B1 (17 � GCMs). GCM data taken from Table 1 (3 � GCMs) and Table 7 (17 � GCMs). The first (Q1) and
third (Q3) quartiles are denoted by the boxes and the median (Q2) by the centre line. Whiskers represent
the minimum and maximum data points within 1.5 box heights from the bottom/top of the box.
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scenarios produce divergent responses. Such a

situation can arise when candidate predictors

which have a large sensitivity to warming, such

as relative humidity and temperature, contribute

separately to two equally optimum sets of pre-

dictors. While both sets of predictors may pro-

vide a similar level of explanation in the

validation of the downscaled data, the future

projected change in the desired variable will

largely be determined by the sensitivity of the

selected predictor set. However, this is a recog-

nized weakness in statistical downscaling and,

generally, the selection of the optimum predic-

tor set seeks to avoid the use of overly sensitive

candidate predictors in the selection criteria.

In addition, the ability of the GCM to simu-

late candidate predictors employed in the statis-

tical downscaling approach will also contribute

to the uncertainty. This source of uncertainty

arises due to sub grid scale processes and model

parameterizations within the parent GCM.

Dibike et al. (2008), in an analysis of uncer-

tainty in statistically downscaled temperature

and precipitation in northern Canada, suggests

that the regression based downscaling approach

employed in their analysis was able to repro-

duce the climate regime over highly heteroge-

neous terrain when driven by ‘accurate’ GCM

predictors. Such findings indicate that the

regression based approach may not contribute

as much uncertainty to the cascade as the GCM

employed. Similar conclusions have been

arrived at for downscaled output employing

regional climate models.

The method outlined here is also considered

to be sensitive to choice of GCMs employed,

in that the contribution of an individual model

which projects a change in the statistically
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the minimum and maximum data points within 1.5 box heights from the bottom/top of the box.
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downscaled temperature or precipitation, oppo-

site in sign to all available GCMs, is considered

to have equal weight in the uniform distribution

ascribed as a prior to the regional response rate.

While attributing a non-uniform distribution as

a prior to the regional response rates is difficult

to ascertain objectively, weighting the contribu-

tion of projected changes from each GCM is one

alternative. Determining the relevant criteria,

such as convergence of model output (Giorgi

and Mearns, 2002), to derive the weights, how-

ever, requires careful consideration.

In spite of these shortcomings, the proposed

method represents a technique by which prob-

abilistic based climate scenarios can be rapidly

developed, even with limited availability of

downscaled data. The outcome of this research

can readily be employed within the scenario neu-

tral framework approach which has the ultimate

aim of ensuring adaptation that is robust to future

changes in the climate system, whatever it may

bring. Nevertheless, a note of caution is still

required: information derived from probabilistic

based climate assessments is not independent

of the methodology employed (e.g. New et al.,

2007). In addition, the contribution of full end-

to-end probabilistic based climate impact assess-

ments to the decision making process remains

largely untested with the exception of one or two

peer-reviewed studies (Wilby et al., 2009).
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