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The approach Why3 takes to interfacing with a wide variety of interac-
tive and automatic theorem provers works well: it is designed to overcome
limitations on what can be proved by a system which relies on a single
tightly-integrated solver. In common with other systems, however, the de-
gree to which proof obligations (or “goals”) are proved depends as much on
the SMT solver as the properties of the goal itself. In this work, we present a
method to use syntactic analysis to characterise goals and predict the most
appropriate solver via machine-learning techniques.

Combining solvers in this way - a portfolio-solving approach - maximises
the number of goals which can be proved. The driver-based architecture of
Why3 presents a unique opportunity to use a portfolio of SMT solvers for
software verification. The intelligent scheduling of solvers minimises the
time it takes to prove these goals by avoiding solvers which return Timeout
and Unknown responses. We assess the suitability of a number of machine-
learning algorithms for this scheduling task.

The performance of our tool Where4 is evaluated on a dataset of proof
obligations. We compare Where4 to a range of SMT solvers and theoreti-
cal scheduling strategies. We find that Where4 can out-perform individual
solvers by proving a greater number of goals in a shorter average time.
Furthermore, Where4 can integrate into a Why3 user’s normal workflow -
simplifying and automating the non-expert use of SMT solvers for software
verification.
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Chapter 1

Introduction

As software development projects grow in size and budget, so does the cost,
time, and complexity associated with fixing the problems that inevitably
arise. As an example of a particularly expensive error, in 1996 the Ariane
5 rocket exploded soon after launch due to a numerical conversion error:
costing $350 million [40]. Software engineering (SE) as a field has intro-
duced concepts, models and techniques intended to combat such problems:

• Software process models (e.g. agile development).

• Specifications for the abstraction of systems (e.g. the Unified Mod-
elling Language [99]).

• Methodologies to ensure the safety of a system (e.g. unit testing).

This thesis is based on tool support for software verification (SV). In terms
of the categories listed above, SV is concerned with the safety of a system.
In contrast to software testing which ensures a program behaves as expected
for a given set of inputs, SV ensures the programs behave as specified for
all possible inputs. SV tools achieve this through logical reasoning based
on formal specifications. The consequences for the safety and reliability of
complex software systems can be impressive. One SV tool, Atelier B, was
used to verify the correctness of software operating the (driver-less) Line 14
of the Paris métro [33].

The three examples of software engineering techniques above have ben-
efited from excellent tool support and have been widely adopted by soft-
ware developers. Software verification systems, however, often require spe-
cialised knowledge and suffer from a lack of integrated tool support [3].
The automation of processes requiring domain-specific knowledge can be
an important technique to encourage the adoption of new software engi-
neering practices. This thesis presents a tool to automate one such process
for the Why3 [29] software verification system. By providing a layer of ab-
straction to the Why3 back-end architecture, we hope to make the system
more approachable for software engineers without specific knowledge of the
tools interfaced by the Why3 system.

1



Chapter 1. Introduction

1.1 Introducing Why3

In general, software verification systems can be viewed as being composed
of the following components:

1. A developer-facing front-end.

2. An intermediate logic language (IVL).

3. A back-end to solve proof obligations (POs).

This section will discuss Why3’s modular and extensible approach to
these three components compared to other SV systems.

1.1.1 A developer-facing front-end

Usually this component takes the form of either a special-purpose program-
ming language (such as Dafny [82]) or the modification of an existing lan-
guage such as Java (the Java Modelling Language (JML) [38]) or C# (via
Spec# [11]). In either case, the language must support verification con-
structs such as data invariants, pre- and post- conditions.

The WhyML [25] programming language is based on Standard ML. Poly-
morphic types, a module system and a large library of verified data struc-
tures make the language approachable and familiar to software engineers.
WhyML programs are natively supported by the Why3 integrated develop-
ment environment (IDE).

There are a number of projects building alternative front-ends for the
Why3 system. The Jessie plugin [87] provides deductive verification capa-
bilities for C programs and the SPARK 2014 [81] environment supports the
verification of Ada programs through the Why3 system. Both these projects
translate POs directly into the Why IVL.

1.1.2 An intermediate logic language

Assertions about a program’s properties are formally translated to a lower-
level logic language. The IVL typically supports axiomatisation of the pro-
gram’s constraints and other common concepts such as linear arithmetic,
arrays etc. A number of proof obligations (POs) are generated by the trans-
lation process. The POs must be satisfied in order for the program to be
verified. The Boogie language [12] is the IVL used by both the Dafny and
Spec# verification systems.

The logic of Why3’s IVL is an extension of first-order logic which sup-
ports polymorphic types, algebraic data types, quantifiers, recursive and
inductive predicate definitions. As it is the front-end to a wide range of au-
tomatic and interactive theorem proving tools, the Why IVL is designed to

2



Chapter 1. Introduction

be expressive and efficient. The major benefit to using Why3’s IVL is the ca-
pability to send the generated POs to a number of theorem-proving tools at
the back-end. This capability, and the flexibility of the language’s logic, has
led to a growing number of projects translating the output from Atelier-B
[91, 71] and Boogie [7] to the Why logic language.

1.1.3 PO-discharging back-end

In order for each PO to be proven satisfiable or otherwise, they must be
sent to a special-purpose program which implements the appropriate de-
cision procedures for the logical theories referenced by the IVL. This back-
end component may be a Satisfiability (SAT) solver; in which case, all con-
straints are translated into a boolean formula of propositional logic with a
number of unknown values. The solver’s task is to prove whether there is
some assignment of these variables which satisfies the formula.

More often, however, a Satisfiability Modulo Theories (SMT) solver is
used for SV system back-ends. SMT solvers extend SAT solvers by imple-
menting decision procedures for a number of logical theories. A specific
algorithm has been developed to decide problems using arrays or linear
arithmetic, for example. The combination of these algorithms allow SMT
solvers to prove formulæ using a more expressive range of logical theories
than propositional logic. Z3 [47] is an example of a popular and powerful
SMT solver. It is used to discharge POs generated by the Boogie, Spec# and
Dafny tools.

This component is where Why3 differs most from other SV systems.
It implements a modular architecture based on drivers. Using a specific
driver file, Why3 writes the input format for each supported automatic the-
orem prover (ATP), SMT solver, and interactive theorem prover (ITP). Sup-
ported ATPs such as MetiTarski [2] and Gappa [50] specialise in solving
numerical problems. The supported SMT solvers will be introduced in a
later section as their comparison constitutes a main contribution of this the-
sis. The ITPs supported by Why include Coq [17] and Isabelle [93] (these
tools sometimes referred to as proof assistants). Each tool’s driver file lists
the transformations that must take place (e.g. remove polymorphism or
inductive predicates) in order for Why3’s logic to conform to that of the
theorem proving tool.

1.2 Thesis Statement

Having such a range of ATP, SMT and ITP tools supported by a single IVL
is a welcome development. Increased operability in the SV domain lets
users utilise the most appropriate tool for their specific task. However, time

3



Chapter 1. Introduction

can be wasted if the wrong tool is consistently chosen. For example, Z3
has a unique and effective approach to reasoning about quantifiers, while
the Alt-Ergo [45] SMT solver produces excellent results for POs containing
polymorphic types.

By choosing the most appropriate SMT solvers, more POs can be proven
and safer software can be developed. Without knowing which SMT solver
is the most appropriate, however, this choice is essentially a random one.
We present a method to automate the choice of SMT solver for any given
proof obligation. The resultant tool, which we have named Where4, is
a “portfolio solver”: it is a portfolio of solving algorithms consisting of
several SMT solvers. It attempts to choose the most appropriate of these
solvers based on static metrics derived from each PO’s syntactic features.
Our project’s thesis statement:

The use of machine leaning and portfolio-solving techniques results in
the allocation of SMT resources which can prove more software verifi-
cation proof conditions than any single solver.

This work is intended for use by the non-expert developer performing
SV as part of an enlightened software development process. This user has
no specific knowledge of the internal implementation of individual SMT
solvers nor of their relative strengths and weaknesses. They may not even
know the particular characteristics of the PO they are trying to prove (hid-
den as they may be through the use of a front-end specification language).
A PO may be characterised by its use of universal quantifiers or non-linear
arithmetic, for example.

We limit this work to the use of SMT solvers in order to make valid com-
parisons about each tool’s suitability for SV-specific tasks. As we shall dis-
cuss in Sec. 2.1.1, the lack of a standard input format for SV systems makes
their comparative evaluation difficult. The opportunity to make such an
evaluation is a secondary aim for this project.

1.3 Contributions

The main contributions of this work are:

1. The design and implementation of a portfolio solver, Where4, which
uses supervised machine learning to predict the best solver to use
based on metrics collected from goals.

2. The integration of Where4 into the user’s existing Why3 work-flow
by imitating the behaviour of an orthodox SMT solver.

3. A set of metrics to characterise Why3 goal formulæ.

4
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Why3 
programs

Train 
data

Data 
preparation
(Chapter 3)

SMT solvers

Test 
data

Predictor
selection

(Chapter 4)

where4 
synthesis

(Chapter 5)

Evaluation
(Chapter 6)

where4

FIGURE 1.1: Overview of the Where4 project and this the-
sis’s structure

4. Statistics on the performance of eight SMT solvers using a dataset of
1048 Why3 goals.

5. An evaluation of six machine learning algorithms’ performance when
predicting the most appropriate SMT solvers, given a Why3 PO.

1.4 Organisation of this thesis

We view this research as being situated at the intersection of three broad
research areas within computer science: software verification, the measure-
ment of software through metrics, and machine learning (ML). Chapter 2’s
literature review reflects these themes and focusses particularly on their in-
tersection.

The organisation of the rest of this thesis, and the associated data / arte-
facts produced during the development of Where4, is illustrated in Fig. 1.1.
Chapter 3 discusses the choices we made regarding the experimental setup
of our empirical study. These choices include the dataset of Why3 POs and
the portfolio’s individual SMT solvers. The process to choose and extract
independent and dependent variables for the machine learning task is also
described in this chapter. Chapter 4 contains a discussion of the chosen
solvers’ performance on the dataset. A number of options considered for
the prediction task and an evaluation of several ML algorithms’ suitability
for this task is contained in this chapter.

5



Chapter 1. Introduction

Chapter 5 describes our implementation of the chosen model using
Why3’s OCaml API. The encoding of Where4’s ML model into OCaml data
structures is discussed in this chapter. Chapter 6 defines three Evaluation
Questions designed to assess the final Where4 tool’s performance, usabil-
ity and practicality. We evaluate Where4 with reference to these questions.
Chapter 7 concludes this thesis by reflecting on the contributions of our
work and suggesting some future directions for this project.

6



Chapter 2

Literature Review

This chapter views Where4 as incorporating ideas from three separate disci-
plines: software verification, machine learning, and software measurement
and metrics. A Venn diagram illustrating the intersections of these disci-
plines and how this chapter is organised according to these intersections
is given in Fig. 2.1. We shall concentrate this review on Software Verifica-
tion and SV research incorporating concepts from the other two disciplines.
Where more background in associated topics outside the SV domain is re-
quired, the literature is discussed in the relevant sections (i.e. Sec. 2.2 and
2.3).

The rest of this chapter will review the literature associated with each
segment of Figure 2.1 – moving clockwise from the top. This review was
approached with the following questions:

Q1 What does the SV tool landscape look like in terms of interoperability?

Q2 Does a standardised suite of benchmark programs exist for the com-
parison of deductive SV tools?

Q3 How have concepts from traditional SE been applied to large-scale SV
projects?

Q4 How have machine learning concepts been integrated for use in the
SV domain?

The answers to these questions have informed the design choices made in
regard to the Where4 portfolio-solving tool.

2.1 Why3 and Software Verification Systems

An overview of the Why3 verification system [29, 58] has been given in the
previous chapter. The WhyML programming language provides a high-
level ML-like language for the specification of programs with pre- and post-
conditions, recursive definitions and type invariants. An extensive library
of verified polymorphic data-types make WhyML a flexible language [26,
25]. It is Why3’s driver-based approach to interfacing with external tools

7
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Machine
Learning

2.3

Software
Verification

2.1

Metrics &
Measurement

2.2

2.3.2
Where4

2.3.1 2.1.1

2.2.1

FIGURE 2.1: Where4 is placed at the intersection of three
disciplines

that is of most interest to our project. The Why3 approach is, in this regard,
quite different from the typical SV system of tightly-integrated systems con-
sisting of an IDE/annotation language/front-end DSL, intermediate logic
language, and SMT-solving back-end. Examples of systems which follow
this latter model are Spec# [11] and Dafny [82] which use the Boogie [12]
IVL and the Z3 [47] SMT solver.

The diversity of languages and formalisms has been matched by an
increase in software verification tools in recent years. Filliâtre’s overview of
the deductive verification tool landscape [57] counts sixty-five tools cited
or used in the five papers of a special edition of the Verified Software: Theory,
Tools and Experiments post-proceedings in 2009. Recently, there has been an
effort to increase the interoperability of these tools. The two-dozen ATPs,
ITPs and SMT solvers targeted by Why3 make it an attractive choice for
translations: recent projects have used Why3 as a platform for discharging
POs translated from Boogie [7] and the B system [71, 91].

Q1: What does the SV tool landscape look like in terms of interoper-
ability?
For users of SV tools, Why3 facilitates the integrated use of numerous ATPs,
SMT solvers and ITPs. This distinguishing characteristic of the Why3 plat-
form makes it arguably the most open platform for the formal verification
of software. We chose the Why3 system for the flexibility of its specification
language, extensible driver-based architecture and potential for conducting
a comparative evaluation of several theorem-proving tools.

8



Chapter 2. Literature Review

2.1.1 Measurement and Metrics in Software Verification

With the diversity of languages, formats, and approaches currently in use
in the SV domain, experimental software measurement concepts and tech-
niques must be introduced for the rigorous evaluation, comparison, and
characterisation of software. These techniques are usually employed in the
general software engineering domain and have been adapted to reflect the
specific concerns of formal methods.

Benchmark repositories and tool competitions have proven to be impor-
tant as a means of evaluation and improvement among SV communities. A
number of large-scale SV projects, meanwhile, have necessitated the adap-
tation of established SE metrics and methodologies.

Software Verification Competitions and Benchmark Repositories

At present, competitions provide the most prominent means of compar-
ing systems which focus on the verification of object-oriented software. In
competitions such as those held at FoVeOOS 2011 [32] and the VerifyThis
series [69], teams are given the natural-language specifications and pseudo-
code for a small number of typical SV problems. Any system can be used,
with tool developers often choosing to compete using their own system.
As well as evaluating solutions based on correctness and completeness, an
emphasis is placed on judging a team’s implementation approach and ideas,
given the diverse capabilities of the SV systems in use. Previous challenges
have been based on a set of eight incremental benchmarks for software ver-
ification tools proposed by Weide et al. at VSTTE 2008 [109]. The Why3
development team are regular competitors at VerifyThis and some of the
standard Why3 examples are refined versions of solutions submitted at the
competition [26].

SV-COMP [18, 19] is a well-established annual competition for auto-
matic program verifiers. The tools use static analysis and model-checking
techniques to ensure properties such as reachability or termination. Teams
can choose to compete in a subset of categories based on the strengths of
their tool. As soundness of automatic program verifiers cannot be guaran-
teed, marks are deducted for false positive and false negative answers. The
scoring hierarchy rewards true positive answers with the highest marks
and penalises false positive answers severely; with “Unknown” answers
having zero effect on a tool’s score. We followed a similar scoring hierarchy
when devising Where4’s cost function (Sec. 4.2.5).

Importantly, a large, publicly-available benchmark repository consist-
ing of 6661 programs has been developed using these competition ques-
tions. It is possible to maintain such a repository due to the standard input
format of the tools which all accept input in the C language. Other efforts to
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TABLE 2.1: Summary of SV benchmark sources
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standardise benchmark repositories for software verification tools encoun-
tered during this review are summarised in Table 2.1.

The need for a standard set of benchmarks for the diverse range of ver-
ification systems was identified by a number of participants in the week-
long seminar at Dagstuhl [21] in 2014. The series of workshops and events
brought the model-checking and SV system communities together. Qualita-
tive, repeatable comparative evaluation was agreed as an important goal if
deductive software verification is to advance as an engineering discipline.
Following on from the eight incremental benchmarks proposed at VSTTE
[109], the VACID-0 [83] project is another attempt to maintain a repository
of standard abstract specifications for verified data structures and opera-
tions similar to those used in the VerifyThis competition. The VACID-0
benchmarks also include a marking scheme to identify the most important
aspects of the specification for a tool to be able to verify.

In addition to SV-COMP, the benefits of a large benchmark suite writ-
ten in a common input language are evidenced by the SMT-LIB [14] project.
The performance of SMT solvers has significantly improved in recent years
due in part to the standardisation of an input language and the use of stan-
dard benchmark programs in competitions [44]. In contrast to the ATPs
competing in SV-COMP, SMT solvers are assumed to be correct. Therefore,
solvers are marked according to how many problems they can solve and the
time taken to solve problems. Why3 includes an SMT-LIB printer and uses
the format for a number of SMT solvers (including CVC4, Z3, and veriT).
Our previous work [62] has exploited this feature: verification tasks were
compared to other application domains of SMT solvers using the SMT-LIB
repository as a data source.

The TPTP (Thousands of Problems for Theorem Provers) project [106]
is a benchmark repository with similar aims to SMT-LIB but has a wider
scope. The problems target theorem provers which specialise in numeri-
cal problems as well as general-purpose SAT and SMT solvers. The TPTP
library is specifically designed for the rigorous experimental comparison
of solvers [105]. There has been a significant development effort by Why3
developers to support the TPTP format in Why3 and to extend the TPTP
language with rank-1 polymorphism [23] thereby allowing the use of ML-
like polymorphic types to be used in an interchange format understood by
over two-dozen provers. This extension of the TPTP language makes it
more similar to the specification language of Why3.

More recently, a group from Chalmers University of Technology has in-
troduced a repository of benchmarks for inductive theorem provers called
Tons of Inductive Problems (TIP) [42]. The project aims to facilitate the com-
parison of how various tools handle proving inductive properties and uses
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a specialised problem description language which is an extension of SMT-
LIB. An interesting aspect of the project is its approach to interoperabil-
ity: aside from benchmarks written in the aforementioned format, tools are
provided to translate the problems into standard SMT-LIB, Haskell, TPTP,
Isabelle/HOL and WhyML.

Q2: Does a standardised suite of benchmark programs exist for the
comparison of deductive SV tools?
Although the need for such a benchmark suite is well understood, the di-
versity of input languages hampers progress towards this goal. A small
number of abstract specifications for standard problems, mostly collected
by competitions which evaluate approaches used by various systems to soft-
ware verification, are the closest approximation.

Proof Engineering

The scale of formal software engineering projects has grown in recent years.
The formal verification of the seL4 microkernel [79] and Thomas Hales’ Fly-
Speck proof of the Kepler Conjecture [60] are large and complicated engi-
neering projects developed over a number of years. Both projects represent
significant engineering efforts – it is estimated that the seL4 verification
took twenty-five person-years of work – and produced a large volume of
software artefacts in the form of proof scripts. Researchers applying con-
cepts from software engineering to manage and measure such projects call
their practice “proof engineering” [78]. Proof engineering has become an
active research area in recent years.

Both object-oriented software and formal proofs make use of “modules”
to package related classes and lemmas/axioms respectively. Aspinall and
Kaliszyk [8] suggest that this common approach to modularity allows the
standard Chidamber and Kemerer [41] (CK) metrics to be adapted for for-
mal SE projects. The authors use this analogy to model and measure the
dependency tree for proof modules and the derivation of the module’s cou-
pling and cohesion metrics (CK metrics will be discussed further in Section
2.2).

Other approaches measure syntactic features of the specification to de-
rive complexity metrics. The verification of the seL4 microkernel men-
tioned previously was used as the basis for at least two similar studies.
For this large-scale SV project, the property statement size was found to be
quadratically related to the human effort (and associated cost) of develop-
ment [88]. Staples et al. argue that code sizing (i.e estimating the number of
lines of executable C code that will need to be written) is more strongly cor-
related to the size of the formal specification (both abstract and executable)
than to a metric based on a notion of “function points” [102]. The method
of sizing software using function points is an international standard based
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on the identification of discrete processes described by a software require-
ments document [1].

The quality of specifications for a single project (the Web-Service Defi-
nition Language) was observed over a period of time in a study by Bollin
[30]. Formal specifications, written in the Z language [112], were measured
for their cohesion and coupling. The measurement of specifications is in
contrast to the previous examples [8, 88] which used the proof scripts.

The proof obligation formulæ used by Where4 are more similar to spec-
ifications than to the proof scripts used in interactive theorem proving. For-
mal specifications give no indication of how the formula is to be proved,
only providing a precise description of properties which must hold. Pro-
cedural proof scripts (such as the Isabelle style of theorem proving) can
be thought of as similar to conventional programs because they combine
formal specifications and tactic applications to produce machine-verifiable
proofs.

Formal specification is facilitated by the Object Constraint Language
(OCL) [43] in UML models. Two studies propose complexity metrics
for OCL expressions. The first [98] uses structural metrics such as the
number of operators, quantifiers, etc. A later study [39], however, takes
the view that dynamically measuring the number of objects involved in the
expressions evaluation provides a more accurate measure of complex-
ity. As this second approach is more specific to object-oriented software,
we chose to use mostly structural metrics as predictor variables for Where4.

Q3: How have concepts from traditional SE been applied to large-
scale SV projects?
The application of SE concepts to large-scale SV projects provides an emerg-
ing set of metrics by which we can characterise formal software artefacts.
Structural (internal) metrics have been defined in order to predict external
measures such as effort and cost estimation. McCabe’s complexity metric
and the CK suite have been adapted for use in the SV domain. As will
be discussed later in this thesis, the appropriate selection of predictor vari-
ables is important for all machine learning tasks. Traditional SE metrics
have been used as a solid basis for predictor variables in projects which
combine ML techniques with formal verification.

2.2 Software Measurement and Metrics

The selection of independent variables used by Where4 was guided by the
research discussed in the previous section. This section gives context to this
research by situating the need for software metrics in the wider SE domain.
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Just as software verification aims to make software safer and more depend-
able by using formal methods to prove its correctness, software metrics can
be used to quantify the characteristics of a program which make it more
likely to fail. The rigorous measurement of software and the definition of
metrics to group and comprehend these measurements is vital for the ac-
curate prediction of a project’s development schedule, cost, associated lines
of code, etc. A comprehensive overview of the topic is given in Fenton and
Pfleeger’s book [56]. The metrics of most interest to our project are internal,
structural code-based metrics. Those introduced in Sec. 3.2 are of this type.

We have previously made reference to CK metrics in this chapter. The
CK metric suite was developed in response to the popularity of object-
oriented SE practices. Weighted Methods per Class, Depth of Inheritance
Tree and Coupling Between Object classes are examples of some CK met-
rics. As an example of its use, the suite has been relatively successful for
prediction of maintenance effort [84]. As our POs are taken as simple,
stand-alone formulæ, (rather than being organised in classes or modules)
we do not use CK metrics. This is in contrast to the projects using interac-
tive proof scripts discussed in the previous subsection.

One particularly useful metric for measuring code complexity was de-
fined by McCabe in 1976 [89]. The graph-based cyclomatic complexity of
a function is a size-independent and intuitive measure of the code’s com-
plexity. To calculate the McCabe cyclomatic complexity of a piece of code,
a control flow graph representation is constructed where each indivisible
sequence of statements is a node. Decision nodes are typically constructed
from if/else statements. The number of nodes is subtracted from the
number of lines connecting those nodes plus 2. For low-level languages,
McCabe showed that the cyclomatic complexity of code with a single entry
and exit point is equal to the number of decision nodes [89]. It has proved
useful in unit-testing scenarios [90]. It is also used to estimate external met-
rics such as how long a project is expected to take, or how much it will
cost. McCabe’s complexity metric has previously been adapted for use in
measuring the complexity of context-free grammars [96].

While structural metrics such as McCabe’s are statically measured, the
statistically-accurate dynamic measurement of software is important if the
predicted behaviour of a program is to be related to the actual observed be-
haviour. Many of the associated issues are addressed by Lilja [85] in his
book on the subject. Robust experimental methods for software engineer-
ing are the subject of other major studies [100], including recent work by
Kitchenham et al. [76] who propose the use of kernel density plots as a vi-
sualisation method to gain a better understanding of data distributions for
empirical software engineering.
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2.2.1 Measurement and Machine Learning

At the intersection of software metrics, measurement, and machine learn-
ing, there has been a growing trend of using ML techniques to make predic-
tions about SE metrics. Examples of this trend include the use of text-based
clustering to predict defect resolution time [9], effort estimation using Sup-
port Vector Machines (SVMs) [101] and the use of genetic algorithms for the
efficient allocation of cloud-based resources [68]. In a survey on the topic,
Gandotra et al. [59] cite numerous examples of the use of ML classification
algorithms to identify potentially dangerous or intrusive software.

Recent issues of the journal Empirical Software Engineering contain many
more articles combining the use of ML techniques and standard software
metrics. Zhang and Tsai [116] edited a collection of such journal papers.

2.3 Machine Learning

For a broad overview of the extensive subject of Machine Learning, we re-
fer the reader to three useful overviews. Mitchell [92] and Bishop [22] both
balance practical implementation issues for a variety of algorithms with a
treatment of their theoretical foundations. Domingos [51] focuses on new
research on comparing and combining ML approaches while also giving an
entertaining account of the history of many ML algorithms. We focus this
section on some of the background literature and considerations associated
with the algorithms compared during the development of Where4 (Sec.
4.3). More details about the individual algorithms will be given in Sec.
4.3.1, but a brief introduction to three algorithms discussed in this chap-
ter – SVMs, K-Nearest Neighbours, and Random Forests – is given in this
section. By briefly introducing a number of algorithms at this stage, we
hope that the reader is not lost amongst unfamiliar concepts if ML is new
to them.

SVMs [46] have been mentioned in the previous subsection. Briefly, the
algorithm aims to find a number of hyperplanes or (support vectors) in an n-
dimensional space (where n is the number of features) so that the distance
between any hyperplane and any training instance is maximal. Accurate
and robust predictions about the characteristics of a testing instance can be
made by asking the algorithm which support vectors define its position.

K-Nearest Neighbours (k-NN) also utilises a distance metric in n-
dimensional space for its predictions. Instead of finding separating hyper-
plane, however, a notion of similarity is used to group instances into homo-
geneous clusters. Where SVMs are robust to outliers, the k-NN algorithm
is more sensitive, and care has to be taken with the distance metric used.
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After analysing a number of ML approaches (as discussed in detail in
Chapter 3) Where4 ultimately uses a Random Forest [35] method for predic-
tion. The Random Forest approach is an ensemble extension of the Decision
Tree [97] algorithm. A decision tree is constructed by recursively splitting
the set of training instances based on the feature and threshold resulting in
the largest information gain. A random forest takes the average of a num-
ber of tree’s predictions where the individual trees have been constructed
using a random subset of the training instances and/or features.

2.3.1 Software Verification and Machine Learning

As this project deals with training ML algorithms on software artefacts, it
relies on representations of these programs. As discussed in Sec. 2.2, the
measurement of software requires the use of metrics. The intersection of
software verification and machine learning, therefore, necessarily involves
concepts from the software metrics and measurement domain. This subsec-
tion concentrates on research from the field of interactive theorem proving
while the next looks at portfolio solvers in more detail.

We have already introduced the Flyspeck [60] proof of the Kepler con-
jecture. The 14,185 theorems and millions of lemmas form the basis for a
number of projects which aim to take advantage of ATP tools within inter-
active environments [74, 75]. These projects involve the translation of TPTP
formulæ from the higher-order logic of the interactive prover HOL Light
to the input format of a number of ATPs. Kaliszyk and Urban were also
involved with extending the Sledgehammer [94] tool for Isabelle [93] with
machine learning capabilities. The resulting MaSh [24] engine uses a Naïve
Bayes algorithm and clustering to select facts based on syntactic similarity.

Tactic learning is a method applied to automate the interactive theorem
proving process. It works by making a logical association from groups of
low-level commands to the syntactic and semantic properties of the prob-
lem. The groups of commands, called tactics, are then applied when a sim-
ilar problem is recognised. An early example of this approach [72] uses a
custom learning algorithm to learn patterns in the ΩMEGA proof system.

The AI4FM1 group includes researchers from Edinburgh, Newcastle
and Heriot-Watt universities. Much of the group’s work [55, 64, 80, 37]
continues the tactic learning line of research introduced in the previous para-
graph. For a number of SV platforms, the group uses ML/AI to automate
the interactive theorem proving process by learning proof patterns from hu-
man experts and proof repositories. The resultant tools such as ACL2(ml)
[64] and ML4PG [80] use clustering to identify proof patterns which can
be translated to ATPs in a process called premise selection. The goal is to

1http://www.ai4fm.org

16

http://www.ai4fm.org


Chapter 2. Literature Review

automate and guide interactive proof sessions, thereby increasing the use
of ITP tools in practical scenarios. Hazel Duncan’s NewT (New Tactic tool)
[52] uses a combination of techniques from probabilistic reasoning, machine
learning and genetic programming to this end.

These tactic learning tools differ from Where4’s approach by mostly us-
ing unsupervised learning techniques such as clustering. Random Forests
have been used for premise selection [54] outside the AI4FM group, the
authors claiming an improvement on the performance of k-means cluster-
ing. In Maynooth University, analogical reasoning (which is a supervised
method) has been applied to recognise similar computer programs of the
Spec# SV system. The goal of the Aris [61] tool is to increase the reuse
of formal specifications by automatically matching specifications to imple-
mentations.

2.3.2 Where4, portfolio-solving, and the intersection of all three
disciplines

Portfolio solving can have a number of meanings. For example, the Z3 SMT
solver can run in “portfolio mode”: a number of Z3 instances with different
heuristics are run in parallel in order to return a result in a faster time [110].
In the case of Where4 and the other projects discussed in this subsection,
however, portfolio solving is taken as being the combination of separate
ATP tools, used as “black-box” algorithms, selected based on features of
the PO being solved.

Portfolio-solving approaches have been implemented successfully in
the SAT domain by SATzilla [114]. Early versions of this tool used a ridge
regression method to predict runtime for a number of solvers based on an
empirical hardness model derived from problem instances. The current
version [115] uses a forest of decision trees. SATzilla has been successful in
SAT competitions and several portfolio SAT solvers have been developed in
recent years [10]. The proceedings of the 2012 SAT competition list the par-
ticipation of eight portfolio solvers. The SAT competition has had separate
tracks and medals for portfolio solvers since 2012.

A team from University College Cork show that instances of another
NP-complete problem, the Constraint Satisfaction Problem (CSP), can be
solved by translating them to a SAT instance and using a portfolio of solvers
[70]. Their evaluation of several learning algorithms identified linear re-
gression as the best model for their data. Other portfolio solvers have been
implemented to solve constraint programming and constraint optimisation
problems. One such tool is sunny-cp [6] which uses a trained k-Nearest
Neighbours model to match solvers based on program features. Short but
useful surveys of portfolio solvers in these domains are provided by Ama-
dini et al [4, 5].
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Portfolio solvers have also been implemented in the model-checking SV
domain. The MUX [108] solver uses metrics derived from syntactic features
as input variables. SVMs are trained using counts of datatypes such as
scalars, arrays and pointers as well as meta-features such as McCabe com-
plexity. The industrial dataset of proprietary device drivers on which MUX
is trained and tested is not publicly available, however.

The large SV-COMP repository of C programs (mentioned in Sec. 2.1.1)
has been used to train and test a similar portfolio solver to MUX. The Veri-
folio [49] solver uses a different SVM weighting function and an extended
suite of metrics for C programs based on data-flow analysis. Verifolio was
found to be the hypothetical winner of both the 2014 and 2015 editions of
SV-COMP.

Neither of the previous two studies include an evaluation of a range
of learning algorithms: they are predicated on the use of SVMs. Conse-
quently, this thesis represents a wider treatment of the various prediction
models available for portfolio solving.

Q4: How have machine learning concepts been integrated for use in
the SV domain?
The practice of premise selection has seen much research into the use of
ML techniques to automate interactive proof sessions. This is due in large
part to the extensive corpus of proof scripts available to projects working
in the ITP domain. SAT solvers have been innovative in their use of ML
to produce successful portfolio solvers. Examples of ML in deductive SV
systems and SMT solving are less common. Table 2.2 summarises the ML
algorithms used by the literature reviewed in this chapter. With the excep-
tion of Naïve Bayes, these are the algorithms we chose to evaluate for use
by Where4 in Chapter 4.

2.4 Conclusion

This chapter has presented an overview of the research related to this thesis.
The intersection of software verification and machine learning domains, in
particular, is an active and fertile research area. It is exciting to see research
in software verification incorporate recent advances in machine learning.
It is equally important, however, that the new possibilities ML creates for
verification tools can be evaluated and measured using established metrics
and techniques.

We began this review by discussing how the interoperability features
of Why3 make it unique among the range of program verification systems.
The number of tools which can be used by Why3 offers opportunities to
conduct empirical evaluations of a number of SMT solvers. The study can
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TABLE 2.2: Summary of ML algorithms used in SV tools
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Chapter 2. Literature Review

be specifically targeted at the solvers’ behaviour when given a software ver-
ification workload in a common input format. By employing ideas from the
software metrics domain as well as current machine learning techniques, a
portfolio of solvers can be implemented for the Why3 platform. The goal of
our portfolio solver is to reduce the time needed to prove large numbers of
POs. It is similar to the portfolio solvers developed for the SAT domain and
static model checking.

The next chapter begins by listing seven questions important to the de-
sign of Where4. This chapter has presented the research context in which
these questions are answered. Where4 is the first portfolio solver, to the
best of the author’s knowledge, specifically designed for the use of SMT
solvers in software verification.

20



Chapter 3

Where4 System Overview and
Data Collection

As empirical studies require many choices to be made from the outset, we
identified the following questions which required consideration during the
initial planning of Where4:

1. Which solving back-ends of Why3 should be supported by Where4?

2. What program data should the machine learning algorithm use for
training and testing?

3. What are the predictor variables to be extracted from these programs?

4. What is to be predicted by the machine learning algorithm?

5. How is the accuracy of response variables to be ensured?

6. Which machine learning algorithm should be used by Where4?

7. How is Where4’s interaction with Why3 implemented?

In this chapter we detail the tools and data we chose to measure and the
methods used for this measurement; i.e. questions 1-5 are answered. Ques-
tion 6 is answered in Chapter 4. The choices made in regard to Question 7
are discussed in Chapter 5.

A diagram illustrating this part of the experimental process is given in
Fig. 3.1. Verification POs undergo two processes: (i) static syntactic anal-
ysis is used to derive feature vectors, and (ii) the result of proving the PO
using several SMT solvers is recorded. For each PO in the dataset, the static
feature vector is associated with the dynamic measurements for each SMT
solver to form our database. Three quarters of the database will be used in
the next chapter for training and validation of the ML models. The same
data will be used to train the Where4 tool in Chapter 5. The remaining
quarter of the database forms the basis of Chapter 6’s evaluation.

In Sec. 3.1.1 the repository of verification programs used for training
and testing purposes are introduced. The selection of SMT-solving tools to
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Verification
PO

Why3
Feature 

Extraction

SMT 
solver

SMT 
solver

SMT 
solver

FeaturesTimings & 
Results

Train & 
Test 
data

FIGURE 3.1: Diagram illustrating the process to collect pre-
dictor and response variables for the Where4 model

be considered by this study is discussed in Sec 3.1.2. Sec. 3.2 details the
process taken to extract a number of structural code-based metrics from the
proof obligations sent to the SMT solvers by Why3. These metrics are the
predictor variables for the Where4 models; otherwise known as independent
variables. The response (or dependent) variables are predicted by the model.
Execution time and solver output are the two aspects of solver behaviour
we need to accurately measure in order to characterise solver performance.
The steps taken to ensure the response variables are statistically represen-
tative are given in Sec. 3.3.

3.1 Selection of tools and programs

3.1.1 Selection of Why3 programs

As we mentioned in Chapter 2, Why3 was chosen for its modular architec-
ture and ability to read from, and write to, many formats associated with
software verification tools. The diversity of input languages in the SV do-
main was referenced in the previous chapter (Sec. 2.1.1, [21, 57]). We refer
the reader to the summary of major benchmark repositories for SV tools
given in Table 2.1. Given the lack of a large standard benchmark repository
for software verification systems, we chose to make use of the 128 exam-
ple programs written in the WhyML programming language as our corpus
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for training and testing purposes. These programs are distributed with the
Why3 software; we used version 0.87.1. Many of the programs are solutions
to problems posed at software verification competitions such as VerifyThis
[26], VSTTE [77] and COST [32]. Other programs are implementations of
benchmarks proposed by the VACID-0 [83] initiative.

It is our assumption that the Why3 examples are representative of soft-
ware verification workload. Two alternatives to this dataset are the TPTP
[106] library and the BWARE [48] collection of industrial proof obligations.
The latter dataset consists of Atelier-B POs translated into the TPTP format
[91]. The TPTP repository is limited to first-order logic problems: inductive
problems cannot be expressed. The BWARE SMT-LIB translation uses an
upper-bound logic of UFNIA – this set of theories does not use arrays or
real arithmetic1. Both datasets are, however, much larger. The TPTP library
currently consists of 20,306 POs [103] – many of which are very similar to
each other. There are 12,876 BWARE benchmarks. In comparison, the 128
WhyML programs produced 1048 individual proof obligations.

The TIP (Tons of Inductive Problems) benchmarks [42], while interest-
ing, were not considered for use as they only measure one aspect of a set of
SV tools: their ability to discharge proof obligations which require the use
of induction.

Importantly, the chosen dataset makes use of the full capabilities of the
Why3 system: the programs include inductive problems and require the
use of as many logical theories as each individual SMT solver can reason
with.

3.1.2 Selection of SMT solvers

We used six current, general-purpose SMT solvers supported by Why3:

• Alt-Ergo is a general-purpose SMT solver written in OCaml (the oth-
ers in this list are written in C++). It is the most tightly-integrated
solver supported by Why3: it supports polymorphic types and its
native input format is a previous version of the Why3 intermediate
language. Two recent major versions, 0.95.1 and 1.01, are used by
Where4.

• CVC3 is the open-source SMT solver developed by the University of
Iowa and New York University. We used version 2.4.1.

• CVC4 is an entirely re-implemented update to CVC3. Version 1.4 is
used by Where4.

1More information about the SMT-LIB standard for logical theories can be found at
http://smtlib.cs.uiowa.edu/logics.shtml
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TABLE 3.1: SMT solvers supported by Where4

SOLVER LICENCE WHY3 DRIVER

OUTPUT

REFERENCE

Alt-Ergo CeCILL-C .why: Alt-Ergo
native input
format

[45]

CVC3 Open-source .cvc: CVC3
native input
format

[15]

CVC4 BSD .smt: SMT-LIB
version 2

[16]

veriT BSD .smt: SMT-LIB
version 2

[34]

Yices Non-commercial
use

.ycs: Yices
native input
format

[53]

Z3 MIT .smt: SMT-LIB
version 2

[47]

• veriT is an open-source SMT solver developed by the University of
Lorraine, France, and the Federal University of Rio Grande do Norte,
Brazil. We used the current version, 201506, which is not officially
supported by Why3 v.0.87.1 but is the only version available.

• Yices is developed by SRI International and is free for non-
commercial use. Where4 uses version 1.0.38 rather than Yices2 be-
cause the newer implementation does not support quantifiers – mak-
ing it unsuitable for SV.

• Z3 is the SMT solver developed at Microsoft Research. The source
code has been available since 2012 and it has been open-source since
2015. Where4 uses two versions: 4.3.2 and 4.4.1.

As Table 3.1 shows, the six solvers use four different input formats be-
tween them – three of which are specific to the solver in question. This gives
some idea of the interoperability capabilities of Why3 and the difficulties of
comparing tools with a diverse range of input languages.

Using two versions of Alt-Ergo and Z3 affords the user more flexibility
in their local SMT solver installation. We describe the process Where4 uses
to find and use supported SMT solvers on a user’s local machine in Chap-
ter 5.
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FIGURE 3.2: Tree illustrating the Why syntactic features
counted by traversing the AST.

3.2 Independent/Predictor variables

In supervised machine learning terms, these variables represent the known
properties of the item from which we want to derive a prediction (in the
present case, this item is a computer program). The predictor variables
must be an accurate characterisation of the program in order for the ML
model to be effective. We chose to use the proof obligations from goals
and lemmas rather than those from axioms and predicates (which tend to
be repeated in files using the same logical theories). Proof obligations are
generated from the goals and lemmas only, while the axioms and predicates
provide the context for these POs to be proved by the SMT solver.

3.2.1 Extracting static metrics from Why3 proof obligation for-
mulæ

To extract the structural metrics from the logical formulæ, we traversed the
abstract syntax tree (AST) representation. We made use of the Why3 OCaml
API to do this. Our approach is similar to the method used internally by
Why3 to derive a shape string from an interactive proof session [27]. The
purpose of shape strings in this context is to track changes in the POs and
avoid re-proving files unnecessarily. The shape acts as a minimal finger-
print representing the structure of the PO formula. Instead of producing
a string after traversing the AST, our process simply counts the syntactic
features of the formula to construct a feature vector.

Fig. 3.2 lists the predictor variables that were used in our study. All of
these are (integer-valued) metrics that can be calculated by analysing the
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Why3 goal statement, and are similar to the Syntax metadata category for
proof obligations written in the TPTP format [106]. The metrics we chose
to characterise Why3 proof obligations are intended to generalise for first-
order formulæ and other IVLs such as Boogie [12] rather than be specific
to Why3 syntax. The metrics’ simplicity also makes the ML models more
transparent and understandable: metrics derived from multiple compli-
cated interactions of structural features would be hard to reason about and
apply to other related contexts where learning would be useful.

The features shown in pink rectangles in Fig. 3.2 are counted individu-
ally by traversing the AST. The rounded blue nodes represent metrics that
are the sum of their children in the tree. The metrics represented by pink
rectangles measure syntactic features and are self-explanatory except for
the following:

zero-ar: The number of functions which do not take any arguments (i.e.
zero-arity functions).

depth: The depth of the AST.

avg-arity: The total number of arguments for all functions which are chil-
dren of the divisor node, divided by the value of divisor.

Size measures the size the expression and is the sum of ops (the num-
ber of operators), leaves (the number of leaf nodes in the AST), and quants
(the number of quantifiers). We map our notion of conds to the number
of decision nodes used to calculate McCabe’s cyclomatic complexity metric
discussed in Sec. 2.2.

Options for the extraction of features from WhyML programs were lim-
ited. The domain specific language makes this process more difficult in
comparison to related work which uses the general-purpose C language
[49, 108]. As a result, we decided to use the purely syntactic analysis out-
lined in this subsection (along with meta information such as the size of the
expression, average arity and depth of AST). Keeping the choice of inde-
pendent variables simple also has the effect of increasing generalisability
to other formalisms such as Microsoft’s Boogie [12] intermediate language.
A direction for future work disscussed in Chapter 7 is to investigate more
elaborate methods for feature extraction.

Example: first_last lemma

As a minimal illustrative example, we refer to the code listing in Fig. 3.3.
This code is one of the 13 POs from the edit_distance.mlw file in the
Why3 examples directory. The entire program verifies an algorithm which
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lemma f i r s t _ l a s t :
f o r a l l a : char , u : word . e x i s t s v : word , b : char .
v ++ Cons b Nil = Cons a u /\ length v = length u

FIGURE 3.3: WhyML code for the first_last lemma in
edit_distance.mlw

forall

exists

and

func 'infix =' func 'infix ='

func 'Cons'  func 'infix ++' func 'length' func 'length'

var var func 'Cons' var var var

func 'Nil' var

FIGURE 3.4: The parse tree extracted from the first_last goal
(Fig. 3.3)

finds the “edit distance”2 similarity measure between two strings. Infor-
mally, this intermediate lemma asserts that the same words are produced
by (i) prepending a word (minus its first letter a) with a and (ii) appending a
word (minus its last letter b) with b. A representation of the parse tree from
this lemma is shown in Fig. 3.4. The root node (forall) is circled and the leaf
nodes are shown as rectangles. The name of each func (as interpreted by
Why3) is shown for clarity. The reader will note that the zero-arity function
Nil is a leaf node in the tree, while all other functions (Cons, =, ++, length)
and operators (and) have an arity of either 1 or 2.

Table 3.2 shows the non-zero metrics used to describe the first_last for-
mula for predictive purposes.

2https://en.wikipedia.org/wiki/Edit_distance
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TABLE 3.2: Non-zero metrics calculated for first_last

Metric Value Metric Value Metric Value
and 1 exists 1 forall 1
var 6 func 8 quants 2
ops 9 leaves 7 depth 7

size 17 divisor 9 avg_arity 1.55
zero_ar 1

3.3 Dependent/Response variables

Our evaluation of the performance of a solver depends on two factors: the
time taken to calculate the result, and the solver’s output as interpreted by
Why3.

3.3.1 Execution time

In order to accurately measure the time each solver takes to return an an-
swer, we used a measurement framework specifically designed for use in
competitive environments. The BenchExec [18, 20] framework was devel-
oped by the organisers of the SV-COMP [19] software verification compe-
tition to reliably measure CPU time, wall-clock time and memory usage of
software verification tools. We recorded the time spent on CPU by each
SMT solver for each proof obligation.

Accounting for randomness with confidence intervals

Any effort to measure execution time accurately is hampered by random
errors introduced by the experimental environment. Such errors are inher-
ent to measuring time in real world computing environments due to fac-
tors such as cache misses, competing processes and instructions needed to
perform the measurement itself. These errors affect the precision of the ex-
periment: i.e. how likely a result is to be repeated exactly across multiple
experiments. To account for these errors, we used the methodology de-
scribed by Lilja [85] to obtain the number of measurements needed to make
an approximation of the true mean execution time.

As each solver execution can be quite expensive in terms of time (a
worst case scenario for one measurement of each PO: 1048 (POs) × eight
(solvers) × ten seconds (time limit) u 23.3 hours of computation time), a
small number of initial measurements (five) were made. From these sample
measurements, the mean execution time x̄ and standard deviation s were
computed.

To determine the number of measurements (n) required for a
statistically-significant sample, Lilja recommends that we assume the ran-
dom errors have a Student′s t-distribution (similar in shape – although
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more spread out – to a Gaussian distribution). An assumption of the error’s
distribution is required as there is no reference value (ie. the absolutely correct
time taken by the solver to execute) available. This distribution is chosen
as the number of sample measurements taken (< 30) is small whereas if it
was large, we could assume errors follow a Gaussian distribution. When
comparing the two distributions, differing results are most obvious when
we use a very small (< 4) degree of freedom to determine the confidence
interval (ie. measurements at the higher and lower end of the range are
given more importance). As the following example using seven degrees of
freedom shows, this effect is not applicable to our methodology.

We use the five measurements to find the confidence interval (c1, c2)

using the equations:

c1 = (1− e)x̄ = x̄− z1−a/2;n−1
s√
n

(3.1)

c2 = (1 + e)x̄ = x̄+ z1−a/2;n−1
s√
n

(3.2)

Either Equation 3.1 or 3.2 can be used to find

z1−a/2
s√
n

= x̄e. (3.3)

Solving for n gives

n =
(z1−a/2s

ex̄

)2
(3.4)

where z is a value from the t-distribution which is used to model the
measurement error. An illustration of this distribution, Fig. 3.5, shows
that there is a probability 1 − a that the actual value being measured (i.e.
x: the execution time for each solver to return an answer for a particular
PO), is within the confidence interval (c1, c2). As the bounds of (c1, c2)
increase outward, the confidence level increases. We can be 100% confident
that the actual mean value is within the interval (0, ∞) but this interval
is not practical. A value of 0.1 was chosen for a, meaning we can be 90%
confident that the actual value of x is between c1 and c2. We allow the
computed mean value to be within 7% of the actual mean (i.e. seven
degrees of freedom or an allowed error of ±3.5%). Thus for the equations
3.1 to 3.4, we take e = 0.035.

Example: finding Alt-Ergo’s execution time for first_last:
To show how this method is used in practice, we return to the example
introduced in Sec. 3.2.1 – the first_last goal from edit_distance.mlw’s Word
theory. The five sample measurements of CPU time spent by Alt-Ergo (to
return an answer of Unknown):
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c1 c2

a/2 a/2

x 1-a

FIGURE 3.5: Accounting for errors in measurement of
solver execution time x

{ 0.124, 0.142, 0.136, 0.131, 0.133 }
given a sample mean (x̄) and sample standard deviation (s) of 0.133 and

0.006 respectively. Consulting a table for the t distribution, we find that
when a = 0.1 and we require seven degrees of freedom, t0.95;7 = 1.895.
Substituting these values into equation 3.4, we find

n =
(z1−a/2s

ex̄

)2
=

(
1.895(0.006)

0.035(0.133)

)2

= 5.966 (3.5)

Therefore, we need to make six measurements to be assured that there is a
90% chance that the true value is within this ±3.5% interval.

For completeness, the extra measurement yielded a value of 0.135; mak-
ing the CPU time Alt-Ergo spent solving first_last the mean of the six mea-
surements: 0.134 seconds.

3.3.2 Prover output

When a solver is sent a goal by Why3, it returns an answer A where A
is one of {V alid, Invalid, Unknown, T imeout, Failure}. The following
definitions of these answers are taken from the Why3 User Manual [28].

Valid The goal is proved in the given context.
Invalid The prover knows the goal cannot be proved.
Unknown The prover has stopped its search.
Timeout The prover has reached the time limit.
Failure An error has occurred.

Fig. 3.6 shows the relative amount of V alid/Unknown/T imeout/

Failure answers from the eight SMT solvers (when given a timeout of 60
seconds) on the entire dataset of 1048 POs. For example, Alt-Ergo version
0.95.1 (leftmost bar) returned an answer of Valid for 590 POs, Unknown for
144 POs, Timeout for 300, and Failure for 14. Note that no tool returned an
answer of Invalid for any of the 1048 proof obligations. We assume this is
because the example programs are verified algorithms/data-structures and
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FIGURE 3.6: The relative amount of Valid / Unknown /
Timeout / Failure answers from the eight SMT solvers (with

a timeout of 60 seconds).

an answer of Invalid would indicate a violated pre-/post- condition or in-
variant. The limitations of our chosen dataset and other threats to validity
are discussed later in the thesis (Sec. 6.4).

Often, goals that cannot be proved Valid or Invalid require inductive rea-
soning through the use of an interactive theorem prover such as Isabelle
[93] or Coq [17]. Sometimes a splitting transformation needs to be applied
in order to simplify the goals before they are sent to the solver. Where4 does
not perform any transformations to goals other than those defined by the
solver’s Why3 driver file. In other cases, more time or memory resources
need to be allocated in order to return a conclusive result. We address the
issue of resource allocation in the next subsection.

Setting a timeout limit for measurement

A solver is said to return a useful result if it returns an answer of Valid,
Invalid or Unknown when given a reasonable timeout limit. We justify
this statement by making the observation that an answer of Failure usu-
ally means there is an error in logical translation of the PO. The failing
solver is not a good choice for the particular logics required to return a Valid
or Invalid answer. Unknown answers are usually identified as such very
quickly therefore they do not impose a long waiting period for an answer
and Where4 can call another solver with a minimal delay. By definition,
Timeout results incur the maximal time penalty.
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for increased clarity at the low end of the scale.

Fig. 3.7 shows the number of Valid/Invalid/Unknown results for each
solver when given a timeout value of 60 seconds. For example, the solid
black line shows the useful results for version 4.4.1 of Z3. At 2−3 (0.125)
seconds, Z3 returned 130 Valid/Invalid/Unknown results. This number in-
creases sharply to 518 after 2−2 (0.25) seconds, before levelling off. If Z3
is given a time limit of 60 seconds, only 125 more useful responses are re-
turned; giving a total of 632.

The value of 60 seconds was chosen as an upper limit, since this time-
out value is not realistic for most software verification scenarios. Why3, for
example, has a default timeout value of five seconds. By inspecting the plot
of solver answers in Fig. 3.7, we can see that the number of useful answers
returned levels off very quickly. From this observation we deduce that the
likelihood of a Timeout answer potentially turning into a Valid/Invalid an-
swer (if given more time) is minimal.

To establish a realistic timeout limit, we find each solver’s “Peter Prin-
ciple Point” [105]. In resource allocation for theorem proving terms, this
point can be defined as the time limit at which more resources will not lead
to a significant increase in the number of goals the solver can prove. By
satisfying ourselves with being able to record 99% of the useful responses
which would be returned after 60 seconds, a more reasonable threshold is
obtained for each solver. To calculate this time value for each solver, we
find the time at which 99% of the solver’s total number of Valid / Invalid /
Unknown responses have be returned. This threshold ranges from 7.35 secs
(veriT) to 9.69 secs (Z3-4.3.2). Thus we chose a value of ten seconds (Fig.
3.7’s dotted vertical line) as a representative, realistic timeout that gives each
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solver a fair opportunity to return decent results.

3.4 Summary

In this chapter, we have introduced the SMT solvers, training and testing
dataset, predictor and response variables used by the Where4 model. The
choices made in regard to the SMT solvers were dictated to a large extent by
Why3 and its selection of drivers. The dataset contains solutions to canoni-
cal SV challenges and is designed to demonstrate the specification and ver-
ification of data structures and algorithms fundamental to a wide range of
applications, using the full capabilities of the Why3 system. The choice of
predictor variables was influenced by the structural metrics introduced by
McCabe (see Sec. 2.2), which have become established in the SE domain,
and syntactic features similar to those used in TPTP library metadata. The
response variables of time and result are similar to the scoring mechanism
used for SV tools in the SV-COMP [19]. The response variables will be com-
bined in the next chapter as a single value suitable for prediction by a vari-
ety of regression models.

After conducting the data preparation discussed in this chapter, we
have collected particular information about each proof obligation:

• the time each of the eight solvers takes to return an answer when
given a time limit value of ten seconds

• each solver’s response (Valid/Timeout/etc.) for the same time limit

• a feature vector consisting of the twenty-eight structural and syntactic
metrics listed in Fig. 3.2

The material presented in this chapter is critical to how the Where4 model
functions and forms the basis for the experiments presented in the next
chapter.
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Chapter 4

Choosing a Prediction Model

This chapter will evaluate the effectiveness of a number of machine learning
algorithms at predicting the most appropriate SMT solver to use on any
(unseen) Why3 PO. Our goal in this thesis is to construct a “meta-solver” or
portfolio solver which chooses from a range of tools in order to prove more
goals than a single solver is capable of. We motivate the need for a portfolio
solver with an analysis of our dataset in Sec. 4.1. More details about the
type of prediction task chosen for the evaluation of ML algorithms is given
in Sec. 4.2. A more detailed introduction to the six prediction algorithms
(some of which were introduced previously in Sec. 2.3 and Table 2.2) is
given in Sec. 4.3 before the results of their comparison is discussed. We
make this comparison with reference to a number of theoretical strategies
introduced in Sec. 4.4. We end this chapter with a more detailed look at the
model chosen for use in the actual implementation of Where4.

Throughout this chapter, we use the terms “algorithms” and “models”
to refer to different, but related, concepts. An “algorithm” refers to the
general approach to prediction, as formalised to be applicable to a number
of prediction scenarios. “Models” are trained instances of these algorithms
which use specific parameters and data to make predictions for a single use
case.

4.1 The benefit of portfolio-solving in Why3

Now that the SMT solvers to be supported by Where4 have been identified
and an appropriate dataset for training and testing purposes has been cho-
sen, we can make a preliminary and exploratory analysis of the behaviour
of the SMT tools on the particular data. We aim to make a case for portfolio-
solving as an effective method for discharging POs in the Why3 system.

We refer the reader to Table 4.1 which shows the results of running eight
solvers on the example Why3 programs with a timeout value of ten sec-
onds. The entire dataset is used in this case. WhyML files are modularised
as one or more complete theories which can be used locally by other theo-
ries in the same file. The Why3 IVL identifies the goals which need to be
proven in order for the theory (and in turn the entire file) to be verified as
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TABLE 4.1: Results of running eight solvers on the exam-
ple Why3 programs. Also included is a theoretical solver
Choose Single, which always returns the best answer in the

fastest time.

File Theory Goal
#

proved
%

proved
Avg
time

#
proved

%
proved

Avg
time

#
proved

%
proved

Avg
time

Choose Single 48 37.5% 1.90 190 63.8% 1.03 837 79.9% 0.42
Alt-Ergo-0.95.2 25 19.5% 1.45 118 39.6% 0.77 568 54.2% 0.54
Alt-Ergo-1.01 34 26.6% 1.70 142 47.7% 0.79 632 60.3% 0.48
CVC3 19 14.8% 1.06 128 43.0% 0.65 597 57.0% 0.49
CVC4 19 14.8% 1.09 117 39.3% 0.51 612 58.4% 0.37
veriT 5 4.0% 0.12 79 26.5% 0.20 333 31.8% 0.26
Yices 14 10.9% 0.53 102 34.2% 0.22 368 35.1% 0.22
Z3-4.3.2 25 19.5% 0.56 128 43.0% 0.36 488 46.6% 0.38
Z3-4.4.1 26 20.3% 0.58 130 43.6% 0.40 581 55.4% 0.35

TABLE 4.2: Breakdown of results in terms of triviality and
hardness

File Theory Goal

Trivial (all solvers can prove) 3 55 206
Hard (no solver can prove) 85 118 211

UNIQUELY-PROVABLE BY A SINGLE SOLVER

Alt-Ergo-0.95.2 0 0 1
Alt-Ergo-1.01 6 12 25
CVC3 2 3 17
CVC4 1 6 33
veriT 0 0 0
Yices 0 0 2
Z3-4.3.2 0 0 0
Z3-4.4.1 0 0 2

Others: provable by at least two, 32 104 551
but not all, solvers

TOTAL 129 298 1048
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correct. WhyML theories containing assertions and lemmas can produce
many goals while others which merely define types and helper functions
can produce none. Our dataset of 128 WhyML files consists of 289 theories,
which in turn generate 1048 goals. Aside from the number of each modular
construct proved by the solver (left sub-column), the percentage this num-
ber represents of the total is given (centre sub-column) and the average time
taken (in seconds) to prove each construct (as measured using the process
described in Sec. 3.3.1) is given in the right sub-column.

We show the results of proving a WhyML file using its modular con-
structs. This method of verification is particularly useful when Why3 is run
in batch mode from the command line. When using the Why3 IDE, it is
more natural to prove programs by applying solvers to individual goals.
This is because the environment separates WhyML programs into theories
and goals automatically.

Table 4.1 also shows the results for a theoretical solver Choose Single.
Choose Single is the best solver, from the eight SMT solvers measured,
chosen on a per-goal basis. For example, if a file contains one theory which
consists of three goals, and the best-performing solver is CVC4 for the first
goal, Yices for the second, and CVC3 for the third, the result for Choose
Single on that file is the sum of the results for CVC4 on the first goal, Yices
on the second, etc. We define what is means for a solver to be the best in the
next subsection.

The theoretical solver Choose Single shows the benefit of being able to
use the most appropriate solver for each PO: 205 more goals are provable
– an increase of 19.6% – over the best single solver (Alt-Ergo version 1.01)
which can prove a total of 632. In total, 837 goals are provable by using
a combination of the eight solvers – a figure that represents 79.9% of the
1048 goals. On average, Choose Single proves goals in a shorter amount
of time than either version of Alt-Ergo or CVC3. The average time subcol-
umn provides an insight into how solvers which can prove relatively few
goals, theories, or entire files – such as veriT or Yices – can be useful in a
portfolio-solving context: such solvers often prove what they can in a very
short amount of time (veriT takes an average time of just 0.12 seconds, for
example, to prove each of five entire files) and can be the best choice of
solver for those files, theories and goals.

The advantages of using multiple solvers are further illustrated by the
results presented in Table 4.2. Trivial files, theories and goals (the first row
of Table 4.2) are defined as those which can be proved by all eight solvers
measured. Three files, 55 theories and 206 goals fall under the trivial cate-
gory. Again, this table provides an interesting insight into the behaviour of
all solvers: three of the five files proved by veriT are trivially provable by all
solvers (which may explain the short amount of time taken, on average, to
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prove the five files). The second row of this table shows the number of hard
files, theories and goals. These are the tasks which no solver is able to prove
entirely. As we have previously discussed in Sec. 3.3.2, these goals usually
require the use of an ITP or splitting transformation to be discharged. Two
hundred and eleven goals fall under this category.

The breakdown of the number of files, theories and goals which only
one solver is able to prove is given in Table 4.2. The good performance
of Alt-Ergo version 1.01 is obvious: six complete files can only be proved
in their entirety by the solver. A higher number of goals require the use
of CVC4 in order to be proved, however. Thirty-three goals (compared to
twenty-five for the newer version of Alt-Ergo) can only be proved by this
solver. The relatively low numbers for files, theories and goals provable by
a single solver suggests that most goals can be proved by more than one
tool, if they can be proved at all. Indeed, the second-to-bottom row of Table
4.2 shows that the majority of goals fall in this category.

4.1.1 The relative utility of solver responses

To make assertions about the relative performance of different solvers on
the same goal, a definition of the relative utility of solver responses is re-
quired. Should a solver which returns an answer of Valid in five seconds
be seen as “worse” than one that returns Unknown in half a second? Like-
wise, should the solver returning Failure after one second be penalised more
severely than one returning Timeout after the maximum time limit?

We define an ordering for response utility as

{V alid, Invalid} > Unknown > {Timeout, Failure}

the reasoning being that a Failure response usually signals a fatal error in the
logic encoding for that solver/goal pair, and the learning algorithm should
be discouraged from choosing a failing solver for the particular goal char-
acteristics in question. As discussed in Sec. 3.3.2 of the previous chapter,
Unknown answers are returned quickly in general, and should not be pe-
nalised as much as Timeout responses. Solvers which reach the timeout limit
are unlikely to return a Valid or Invalid response if given more time (illus-
trated clearly by Fig. 3.7). Solvers returning the same answer are ranked
according to runtime – with faster solvers being preferred.

This method for defining relative performance has similarities to the
scoring structure for ATPs competing in SV-COMP [18, 19], with some im-
portant differences. In SV-COMP, Unknown responses are given a neutral
score of 0, the correct reporting of a property which does not hold (“true
negative") is rewarded with smaller score (+1) than the correct reporting of

37



Chapter 4. Choosing a Prediction Model

a property which is found to hold (“true positive" which scores +2). Like-
wise, the incorrect reporting of a property which does not hold (“false nega-
tive" or “false alarm") is punished less severely (with a score of−4) than the
incorrect reporting of a property which does hold (“false positives" score
−8). Although the notion of “false positive” and “false negative” responses
is not applicable in the SMT domain (where tools are assumed to be sound),
we follow the SV-COMP scoring scheme by awarding a “true positive” (or
Valid response) a higher score than a “true negative” (or Invalid response).
Unknown, Timeout and Failure responses are not treated separately by the
SV-COMP scoring scheme – they all fall under the Unknown response cate-
gory. We penalise poorly-performing solvers through the use of a cost func-
tion. The definition of the cost function we applied to solver results is given
in Sec. 4.2.5 of this chapter.

4.2 Classification and regression

Machine learning prediction tasks can be separated into two categories:
those involving the classification of a variable into discrete categories or
classes, and those predicting a continuous-valued variable directly – regres-
sion tasks. This section will discuss some of the options considered when
designing Where4’s prediction task.

4.2.1 Predicting the single best solver

This option involves a multi-class classification task: the classes involved
are the eight SMT solvers. Each PO is classified as belonging in one class.
We reject this approach because some benefits associated with portfolio-
solving are lost, since if the PO is misclassified, the performance of the
portfolio solver suffers severely. For example, the single solver can return
an answer of Failure with no other solver suggestion being made. In the best
case, the predictions would be equivalent to the Choose Single theoretical
solver.

4.2.2 Predicting the best ranking of solvers

Again, this option is a multi-class classification task. Instead of predicting
a single solver, however, the task involves predicting the entire ranking of
eight solvers. The benefit of obtaining a ranking is the flexibility it affords
in calling SMT solvers sequentially or in parallel. If the first solver fails or
returns an answer other than Valid or Invalid, the next best predicted solver
is called, and so on.

With eight SMT solvers there are eight factorial (or 40,320) rankings
which is far too many to be reasonable for a classification task. We rejected
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this approach because in our dataset of 1048 POs many of these rankings
could not possibly be represented. In fact, only 766 of the 40,320 rankings
occur in our dataset. Such an unbalanced representation of classes cannot
lead to accurate classification.

4.2.3 Predicting solver runtime and response separately

This approach involves two separate tasks, each predicting a characteris-
tic of the solver’s performance. One model would attempt to predict the
response class (i.e. Valid, Invalid, etc.) while another would attempt to pre-
dict the solver runtime. The former task is a multi-class classification task
with five classes, while the latter is a multi-output regression task. This
method has the advantage of affording the user flexibility in how to choose
the ultimate ranking: for example, if fast responses are preferred over Valid
answers. This flexibility comes at the price of complexity, however: two
accurate predictors, a classifier and regressor, are required instead of one.

4.2.4 Combining the prediction of solver response and runtime

This option uses a cost function to combine the two solver response vari-
ables as a single real-valued number which is used for ranking the solvers.
This is a multi-output regression task: a cost prediction is made for each
solver individually. The individual predicted values are sorted in increas-
ing order to produce a ranking of decreasing “solver utility”.

This approach shares most of the advantages of predicting solver re-
sponse and runtime separately: each solver’s actual behaviour is predicted
directly rather than relying on the relative behaviour of all eight together
constituting a single class. It is relatively simple to change the cost function,
although it can not be done “on-the-fly” in the same manner as the previ-
ous approach allows. A change to the cost function requires re-training the
model. The major benefit is having one single model to predict both the
solver response and the runtime. This is the prediction approach chosen
for Where4 in this thesis.

4.2.5 The Cost Function

The use of a cost function is inspired by the first version of the SATZilla
portfolio solver [114]. The cited paper describes the prediction of a per-
formance score. This differs from most portfolio approaches which aim to
predict a solver’s runtime directly.

The cost function should reflect the ordering of solver utility defined
in Sec. 4.1.1: penalising poorly-performing solvers while ensuring Valid
and Invalid responses incur the lowest cost. The following simple function
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allocates a cost to each solver S’s response 〈answer, time〉 to each goal G:

cost(S,G) =


timeS,G, if answerS,G ∈ {V alid, Invalid}

timeS,G + timeout, if answerS,G = Unknown

timeS,G + (timeout× 2), if answerS,G ∈ {Timeout, Failure}
(4.1)

Thus, to penalise the solvers that return an Unknown result, the timeout
limit is added to the time taken, while solvers returning Timeout or Failure
are further penalised by adding double the timeout limit to the time taken.
A response of Failure refers to an error with the back-end solver and usually
means a required logical theory is not supported. This function ensures the
best-performing solvers always have the lowest costs. A ranking of solvers
for each goal in order of decreasing relevance is obtained by sorting the
solvers by cost in ascending order.

Other cost functions were trialled before this formulation was decided
upon. Previous methods allocated a cost penalty (based on the answer)
and calculated the solver cost as the Euclidean distance from the origin
to point defined as this penalty and the solver’s time. Eg: cost(S,G) =

dist((timeS,G, penaltyans), (0, 0)). Where the penalties associated with each
response are:

penaltyans =



0 if ans = V alid

5 if ans = Invalid

10 if ans = Unknown

15 if ans = Timeout

20 if ans = Failure

(4.2)

The problem with this formulation is that the penalty values are arbitrarily
determined and bear no relation with the timeout value. It is therefore not
guaranteed that our defined relative utility of solvers is respected by using
the penalties of Eq. 4.2. This issue led us to re-formulate the cost function
to incorporate the timeout value as follows:

cost(S,G) =


timeS,G, if answerS,G ∈ {V alid, Invalid}

timeS,G + timeout, if answerS,G = Unknown

dist((timeS,G, timeout), (0, 0)), if answerS,G ∈ {Timeout, Failure}
(4.3)

which only makes use of the Euclidean distance for Timeout and Failure
responses. As pointed out by a reviewer of an early version of this work
[63], in certain circumstances a Timeout response may have a lower cost
than an Unknown response. This is the case when the Unknown response is
returned in a time >= 0.42 times that of the time taken to return a response
of Timeout. This property of the triangle inequality was account for in the
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TABLE 4.3: Result of eight solver executions on first_last

SOLVER VERSION RUNTIME

(SECS)
RESPONSE COST RANK

POSITION

Alt-Ergo 0.95.1 0.134 Unknown 10.134 2
Alt-Ergo 1.10 0.170 Unknown 10.171 3
CVC3 2.4.1 0.356 Valid 0.356 1
CVC4 1.4 0.173 Unknown 10.173 4
veriT 201506 10.109 Timeout 30.109 5
Yices 1.0.38 10.161 Timeout 30.161 8
Z3 4.3.2 10.115 Timeout 30.115 6
Z3 4.4.1 10.131 Timeout 30.131 7

final formulation of the cost function (Eq. 4.1).

Example: using the cost function to obtain a ranking for first_last:
To illustrate the effect of applying our cost function, we return to the
first_last goal introduced in the previous chapter. Table 4.3 lists the results
of executing the eight solvers on the goal, as measured using the method
described in Sec. 3.3, with a time limit of ten seconds. The derived cost
value for each solver is used as its dependent variable in the prediction
models compared in Sec. 4.3 and Where4’s actual implementation.

4.3 Choosing the most effective algorithm for rank
prediction

Fig. 4.1 illustrates a high-level view of the process used to compare and
evaluate the various ranking strategies in this section. The solver timings
and results are combined as a single variable using the cost function defined
in Sec. 4.2.5. The value returned by this function is the response variable
for a number of ML algorithms; with the statically-extracted features acting
as the predictor variables.

A four-fold cross validation of this data is used to evaluate the models.
In this method, the data is split into quarters. Four models are effectively
trained on different datasets by holding a different quarter back for model
evaluation each time. The final evaluation is based on the model’s aver-
age performance over the four instances. The general K-fold cross valida-
tion method allows the use of the entire dataset for model evaluation and
training (rather than holding a portion of the data back solely for model
evaluation use – a technique known as “hold-out” validation). The number
of folds used (four) was chosen to reflect the percentage of the total dataset
(75%) used for training. The folds were stratified (i.e. ensuring a repre-
sentative frequency of values was contained in each split) according to the
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FIGURE 4.1: Overview of the process used to derive the
Where4 prediction model

best performing solver for each instance. This technique was used to over-
come the difficulties of stratification for regression tasks where values may
appear infrequently.

4.3.1 The ML algorithms we used for model training

The ML algorithms compared in this section have been briefly introduced
in Sec. 2.3. We do not compare Naïve Bayes which does not support regres-
sion tasks. In this section, we go into more detail about how the algorithms
operate and the specific variants and parameters chosen for use during this
comparison. We used the Sci-Kit Learn [95] Python implementation for all
algorithms. The consistent API is well-designed, the library is well docu-
mented and it integrates well with other Python tools for scientific comput-
ing (such as NumPy and the Pandas data structure library).

ML Algorithm 1: Support Vector Machines

Support Vector Machines (SVMs) [46] are based on a concept of similarity
between training instances. During training, a number of separating hyper-
planes are determined. The idea behind SVMs is to ensure the distance from
this hyperplane to any training instances closest to it is maximal. This pro-
cess is known as “maximising the margin” and is designed give the model
the best chance at classifying unseen instances correctly. The set of train-
ing instances closest to the margin is called the support vector as they can be
thought of as “holding up” the hyperplane.
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A number of kernel functions can be used as a similarity measure dur-
ing training. We chose to use the Radial Bias Function (RBF) kernel as we can
not assume a linear relationship between our features and cost value. The
RBF kernel requires the use of two hyperparameters to control how flexible
the model is (i.e. how closely it fits the training data). We used a grid search
technique [66] to identify the C (hyperplace smoothness) and gamma (the
radius of influence for each individual training instance) parameters.

In the multi-output case, each cost value has to be predicted individu-
ally for each solver – requiring the use of eight SVMs each tuned to different
parameters on a per-solver basis. The benefit of using SVMs is their ability
to give good results in large-dimensional spaces; even with large datasets.

We followed Hsu and Lin’s [67] recommendations regarding the use
of SVMs (which excel at binary classification) for multi-output regression
tasks.

ML Algorithm 2: Decision Trees

Decision trees recursively construct a binary tree by splitting the data on the
feature and threshold which create the most distinct partitions [97]. This
notion of “distinctiveness” is defined using either a measure of entropy or
information gain. Features of new instances are queried according to the
thresholds specified by the non-leaf nodes, with leaves consisting of (one
or many) predictions. The original implementation required that features
be categorical (Quinlan’s ID3 algorithm). Sci-kit Learn uses the CART [36]
algorithm which supports numerical features and outputs for regression
tasks.

Decision trees are a transparent and powerful method for classifica-
tion and regression. Since the 1960s, decision trees have been successfully
deployed in many domains. In the intervening years, techniques have
been developed to improve the accuracy and generalisability of decision
trees: such techniques include the pruning of if-then branches created by se-
quences of splitting nodes. Termination conditions can be used to limit the
depth of the tree and make each leaf node account for a minimum number
of examples in the training data. We chose this last technique as a method
to prevent our decision tree from overfitting training data: a minimum of
five training instances had to be described by the if-then rule associated with
the leaf. By using this constraint, non-leaf nodes are converted into leaves
if, when split, they would have produced leaves of size less than five. This
relatively small number (five) was chosen as a compromise: leaves of this
size allow the decision tree to generalise better than trees with leaves ac-
counting for fewer training instances. At the same time, the leaves remain
small enough to allow the tree to utilise many of the instance’s features for
its characterisation (i.e. the tree’s depth does not become too small).
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ML Algorithm 3: Random Forests

Random forests [35] were created as a response to decision tree’s tendency
to overfit training data – leading to poor generalisation results. As the name
suggests, this technique involves creating many decision trees, with each
tree trained on a random subset of the training data and/or restricted to
using a subset of the features for use in splitting nodes. Random forests are
an example of an ensemble method which uses multiple weak predictors to
strengthen the overall prediction.

For classification problems, each tree “votes” on an instance’s class. In
the regression case, all trees’ predictions are averaged to determine the for-
est’s ultimate prediction.

Similar to our use of decision trees, we limited the depth of each tree
by specifying a minimum size of five for each leaf node. For this initial
algorithm comparison we used 100 trees in the random forest. This is the
default Sci-Kit Learn implementation.

ML Algorithms 4 & 5: Linear and Ridge Regression

Linear regression attempts to predict the parameters of a function which fits
the input features to the output variable. It expects that the output variable
be a linear combination of the input variables. We used the Ordinary Least
Squares formulation which attempts to minimise the sum of squared error
for the set of training instances to the output variable.

Ridge regression [65] is a related algorithm which attempts to be more
robust to violations in the input variables’ independence.

ML Algorithm 6: k-Nearest Neighbours Clustering

K-Nearest Neighbours (k-NN) clustering, like SVMs, belong to the analog-
ical family of ML algorithms which rely on a similarity measure to group
training instances (we used the standard Euclidean distance). The idea is to
create k clusters of training instances which are “most similar” to each other
in terms of features – with each feature acting as a dimension. In both the k-
NN and SVM algorithms, instances must undergo a normalisation process
to scale features. This preprocessing step is designed to avoid dominance of
one feature over another (due to differences in scale) in distance-based al-
gorithms. In contrast to SVMs, most clustering algorithms (k-NN included)
do not scale well in high-dimensional spaces.

Typically used for classification tasks, the k-NN algorithm can be
adapted for regression by calculating the target/response variable as the
average of the k nearest instances in the training data. By default, Sci-Kit
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Learn sets k = 5: each instance is compared to the five most similar in-
stances (in terms of input variables) in the training set. We used a modifica-
tion: training instances “closer” to the unseen instances are weighted more
than those further away in the cluster when computing the target variable.
This modification makes the algorithm more robust to noisy training data.

4.3.2 Experimental Configuration

In the previous chapter, we described our dataset as consisting of 1048
Why3 POs. We now split this dataset into two disjoint subsets: the train-
ing and testing sets. The rest of this chapter uses only the training set while
the testing set is used in our final evaluation of Where4 in Chapter 6. The
training set represents 75% of the entire dataset: 96 files, 212 theories and
785 goals. The data was split on a per-file basis to ensure that the no PO in
the training set belonged to the same theory or file as a PO in the test set.

Beside the standard implementation of the prediction algorithm, two
variations were evaluated: cost discretisation and instance weighting. By
discretisation we describe the process to transform a continuous-valued
variable into one of a finite number of values. It usually involves divid-
ing the continuous variable by some small empirically-tested number. Dis-
cretisation allows algorithms which perform better when given a smaller
number of discrete options for prediction to be identified. We chose 2.5
to be a discretisation divisor for the response variable (i.e. each solver’s
cost). In choosing this value, two factors must be balanced: the discretisa-
tion error inherent in the process should be minimised while allowing only
a relatively small number of possibilities for prediction.

The other technique we applied during model evaluation was the
weighting of training instances1. Weighting is standard practice in super-
vised machine learning: each instances’s weight was defined as the stan-
dard deviation of solver costs for the PO in question. This function was
designed to give more importance to instances where there was a large dif-
ference in performance among the solvers; thereby de-emphasising triv-
ial POs provable by most or all solvers, and empirically hard instances for
which all solvers fail or time out.

4.4 Ranking strategies

The ranking strategies introduced in this section are not directly compara-
ble to single solvers or to theoretical solvers such as Choose Single. The
purpose of defining these strategies is to provide a basis by which we can
compare and evaluate the solver rankings predicted by the ML models.

1Apart from K-Nearest Neighbours: the Sci-kit Learn implementation does not support
instance weighting.
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The Best Ranking and Worst Ranking strategies use the empirical measure-
ments to construct rankings on a per-goal basis, while the Random Rank-
ing strategy uses the same set of rankings for each goal. We refer to the
following strategies as theoretical as they assume knowledge of the actual
behaviour of the solvers for the goal in question – knowledge which is im-
possible to have prior to execution in a real-world verification scenario.

Algorithm 1 describes the process to return answers and runtimes from
solver rankings. This process is used in our model evaluation (Sec. 4.5).
Essentially, the runtime of next best solver (according to a given rank-
ing) is added to the cumulative total until an answer of Valid or Invalid
is returned or the array of solvers has been exhausted. When solver an-
swers are compared in the if statement, the ordering of response util-
ity introduced in Sec. 4.1.1 (with Timeout responses preferred to Failure):
{V alid, Invalid} > Unknown > Timeout > Failure. If both Valid and In-
valid responses were recorded for the same PO, it would indeed signal a
soundness bug existed in one of the solvers. This issue did not arise.

Input: Solvers {S1, ..., Sn} sorted by cost (predicted, actual, or
random)

Output: 〈A, T 〉where A = the best answer from the solvers; T = the
cumulative time taken to return A

begin
/* initialisation */
A← Failure
T ← 0
i← 1
while A /∈ {V alid, Invalid} ∧ i ≤ n do

/* AS = the answer returned by solver Si */
AS ← Answer(Si)
/* add solver Si’s time to the cumulative

runtime */
T ← T + Time(Si)
if AS > A then

/* Si’s answer is better than the current
best answer */

A← AS

end
i← i+ 1

end
return 〈A, T 〉

end
Algorithm 1: Returning answers and runtimes from solver rankings

4.4.1 Best Ranking

The Best Ranking is the one derived from sorting the solvers in terms of
increasing cost. Referring to the solver costs listed in Table 4.3, the Best
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Ranking for this goal is CVC3 > Alt-Ergo-0.95.1 > Alt-Ergo-1.01 > CVC4
> veriT > Z3-4.3.2 > Z3-4.4.1 > Yices. As the first-choice solver according
to this ranking (CVC3) returns an answer of Valid, no other solver will be
called after the first returns its answer. Thus for the first_last goal, the Best
Ranking strategy returns an answer of Valid in 0.356 seconds.

It is important not to confuse the Best Ranking strategy with the theo-
retical solver Choose Single introduced in Sec. 4.1. Choose Single refers to
a single solver (and hence is directly comparable to the other eight SMT
solvers in Table 4.1), while Best Ranking refers to a ranking of all eight
solvers. Choose Single is equivalent to using the top-ranking solver from
Best Ranking and stopping.

4.4.2 Worst Ranking

Ranks returned by the Worst Ranking strategy are the inverse to those from
the Best Ranking. For the first_last goal, Yices will be the first solver called
by this strategy. As Yices returns an answer other than Valid or Invalid, the
next solver in the ranking (Z3 version 4.4.1) will be called, and so on. The
user of this strategy would have to wait until the eighth solver, but a Valid
answer would eventually be returned. For the example goal, the Worst
Ranking strategy returns an answer of Valid in 41.349 seconds.

Both the Best Ranking and Worst Ranking strategies provide important
upper and lower bounds for any trained model’s runtime. If a goal is prov-
able by any of the eight solvers, all of our theoretical strategies will be able
to prove it. The difference between these strategies is how long the goal
takes to be proven. Worst Ranking therefore acts as a method to obtain the
worst case runtime (which would in fact be equal to that of Best Ranking
for POs which cannot be proved by any of the eight solvers). This point is
important to bear in mind when evaluating prediction models (and their
implementation in Where4), as a seemingly ineffective ordering may be
equivalent to the best ordering of solvers.

4.4.3 Random Ranking

The Random Ranking strategy differs from the previous two because it does
not refer to one ranking per goal but to all possible rankings for every goal.
The set of all possible rankings is the same for all goals, but the runtime and
result obviously vary. As previously mentioned, there are eight factorial
(or 40,320) possible solver rankings. The runtime for each of the 40,320
rankings is calculated and the mean of these times is returned by Random
Ranking. As mentioned in relation to Worst Ranking, for any goal the result
returned by all rankings (of the same eight solvers) is the same.
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For the first_last goal, the Random Ranking strategy returns an answer
of Valid in an average time of 20.853 seconds.

4.4.4 Quantifying Solver Contributions Using Ranking Strate-
gies

In addition to the findings presented in Sec. 4.1.1 which measured the
goals uniquely provable by each solver, this section quantifies how valu-
able each individual solver is to a ranking of solvers. We follow a method
described by Xu et al [113]: each constituent solver A’s value is mea-
sured by observing the performance of the theoretical best solver which
does not include A. Hence, A’s marginal contribution to Best Ranking can
be defined as the difference between Best Ranking’s cumulative cost ex-
cluding A: cost(Best Ranking−A); and its cumulative cost including A:
cost(Best Ranking).

contrib(A) = cost(Best Ranking)− cost(Best Ranking−A)

We define the cost of a ranking to be the cumulative cost for each of its
constituent solvers: for any given PO, we accumulate the cost of each
solver called until an answer is returned according to Alg. 1. To en-
sure cost(Best Ranking) ≤ cost(Best Ranking−A), the two rankings need
to have the same number of solvers. Thus, we exclude the lowest ranking
solver from Best Ranking for these purposes. This accounts for POs un-
provable by any solver (Hard in terms of the data presented in Table 4.2)
which have a relatively high cost for all solvers. Including these costs when
comparing rankings would bias the results towards the rankings with fewer
solvers: the Best Ranking excluding A will always have a lower cost than
the ranking including A for Hard POs.

For each solver in the set of solvers S, we normalise its contribution by
dividing it by the sum of all solver contributions and multiplying by 100:

contribnorm(A) =
contrib(A)∑|S|
i=1 contrib(Si)

× 100

Figure 4.2 shows the normalised contribution statistics for each solver in
the portfolio. Each solver’s percentage represents the impact its exclusion
has on Best Ranking’s accumulated cost across the entire dataset, relative to
the other solvers. It is unsurprising that Alt-Ergo-1.01 and CVC4 contribute
most to the portfolio: these solvers can prove the most uniquely-provable
POs (according to Table 4.2). It is somewhat unexpected that veriT and
Yices contribute more than either version of Z3, given that they can prove
less goals overall (Table 4.1). This implies that (i) Z3 does not perform sig-
nificantly better than other solvers for provable goals, (ii) veriT and Yices
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Alt-Ergo-1.01

27.1%

veriT

7.7%

Yices

10.2%

Alt-Ergo-0.95.2 6.3%

CVC4

25.5%

CVC3

17.6%

Z3-4.4.1
3.3%

Z3-4.3.22.2%

FIGURE 4.2: Relative solver portfolio contributions

prove goals in a very short time and (iii) for goals not provable by any of
these solvers, veriT and Yices return a better answer in a shorter time.

It is logical that earlier versions of solvers contribute less than more re-
cent versions. Alt-Ergo-0.95.2 contributes significantly less than Alt-Ergo-
1.01: we deduce that the earlier version takes more time to return a worse
answer for Hard POs than the update. Nevertheless, including multiple
versions of solvers improves prediction accuracy and ultimately makes
Where4 a more flexible tool for the user.

4.5 Predictor Selection Results

In Table 4.4 we list the cross-validation results for all six trained prediction
models (with discretised and/or weighted variants where applicable). We
compare these with the three theoretical ranking strategies introduced in
Sec. 4.4. For each of the five Evaluation Criteria EC1-5, the best-performing
algorithm is marked in bold with an asterisk.

4.5.1 EC1: Time

The first result column, labelled Time (secs), shows the average time taken
for the ranking of solvers returned by the model/strategy to return a Valid
/ Invalid response (if such a response was in the set of solver answers – see
Algorithm 1).

If there is no Valid / Invalid response in the set, the time will be the same
for any ordering of the solvers (ie. all eight will be called). We do not ignore
the time taken for the response to be returned.
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4.5.2 EC2: R2 Score

The second numeric column of Table 4.4 shows the R2 score (or coefficient
of determination), which is an established evaluation criterion. It measures
how well regression models can predict the variance of dependent / re-
sponse variables. The maximum R2 score is 1 but the minimum can be
negative. Note that the theoretical strategies return rankings rather than
individual solver costs. For this reason, R2 scores are not applicable.

The R2 score is calculated by the following formula

R2 = 1− Σ(yi − ŷ)2

Σ(yi − ȳ)2
(4.4)

which can be interpreted as “the sum of squared error of the predictions
divided by the sum of the squared mean". In Formula 4.4, yi − ŷ denotes
the distance of the predicted value ŷ from the actual value y for data point
i. ȳ is the mean value from the set of actual values (which in our case is a
two-dimensional array of solver scores). We used the Sci-Kit Learn imple-
mentation of this formula, which allows ȳ to be set to the weighted average
of the outputs for multi-output instances. We applied uniform weighting
to all outputs; meaning the variance of the individual solvers’ scores was
not considered.

4.5.3 EC3: Normalised Distributed Cumulative Gain

The third numeric column of Table 4.4 shows the Normalised Discounted
Cumulative Gain (nDCG), which is commonly used to evaluate the accu-
racy of rankings in the search engine and e-commerce recommender system
domains [73]. Here, emphasis is placed on correctly predicting items higher
in the ranking. For a general ranking of length p, it is formulated as:

nDCGp =
DCGp

IDCGp
where DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(4.5)

where reli refers to the relevance of element i with regard to a ground
truth ranking, and we take each solver’s relevance to be inversely propor-
tional to its rank index. In our case, p = 8 (the number of SMT solvers).
TheDCGp is normalised by dividing it by the maximum (or idealised) value
for ranks of length p, denoted IDCGp. As our solver rankings are permu-
tations of the ground truth (making nDCG values of zero impossible), the
values in Table 4.4 are further normalised to the range [0..1] using the lower
nDCG bound for ranks of length eight – found empirically to be 0.4394.

We illustrate our use of this criterion with a small example. Take a
ground truth ranking of eight items sorted in decreasing relevance as

A > B > C > D > E > F > G > H.
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TABLE 4.4: Predictor Selection Results. * indicates the best
result among the prediction models
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Chapter 4. Choosing a Prediction Model

TABLE 4.5: Illustration of various nDCG scores (normalised
for permutations of length eight)

PERMUTATION NDCG SCORE

ABCDEFGH 1.0
ABCDEFHG 0.9998
ABCDFEGH 0.9989
ABDCEFGH 0.9899
BACDEFGH 0.7848
ABCDHGFE 0.9950
DCBAEFGH 0.3809
HGFEDCBA 0.0

We take each item’s relevance to be inversely-proportional to its rank posi-
tion:

relA = 8, relB = 7, relC = 6, relD = 5, relE = 4, relF = 3, relG = 2, relH = 1.

The predicted ranking of these items is

B > A > C > F > D > E > G > H.

Applying Equation 4.5 to these values gives us an nDCG value of

127

1.0
+

255

1.58
+

63

2.0
+

7

2.32
+

31

2.58
+

15

2.81
+

3

3.0
+

1

3.17
= 341.053.

It can be shown that IDCG8 = 389.591 which makes the un-normalised
nDCG value for the predicted ranking 0.875. Using the lower bound of
0.4394 to normalise this value to the range [0, 1] (accounting for permuta-
tions of length 8) gives us a final nDCG score of 0.778.

The nDCG metric is best understood in relation to other rankings in the
same problem domain: a score of say, 0.5, is meaningless in isolation. For
this reason, we provide Table 4.5 so that the reader may gain an intuitive
understanding of this metric as we use it.

4.5.4 EC4: Mean Average Error

Table 4.4’s fourth numeric column shows the MAE (Mean Average Error)
– a ranking criterion which can also be used to measure string similarity.
It measures the average distance from each predicted rank position to the
solver’s index in the ground truth.

Using the same predicted and actual rankings as the nDCG example,
we calculate the MAE to be:

MAE =
1 + 1 + 0 + 2 + 1 + 1 + 0 + 0

8
= 0.75
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The Mean Average Error is a good measure of overall ranking accuracy,
but it fails to take into account that in many use cases – including Where4 –
it is often the highest-ranking items that are the most important to predict
accurately.

4.5.5 EC5: Regression Error

The rightmost column of Table 4.4 (labelled Reg. error) lists the average
regression error per instance. We illustrate the calculation of the regression
error with a small example. For two testing instances, the predicted and
actual costs for three solvers are:(

0.5 10.0 5.0

0.4 5.5 10.0

)
= predicted;

(
0.6 9.0 8.0

0.7 9.5 7.0

)
= actual

which gives a per-instance regression error of(
0.1 + 1.0 + 3.0

0.3 + 4.0 + 3.0

)
=

(
4.1

7.3

)

taking the average of the two instances’ regression error, 4.1 and 7.3, gives
5.7. It is this average error between predicted cost and actual cost for eight
solvers which is listed in the rightmost column.

The regression error should be treated with a note of caution, however,
as the relative ranking of solvers – which we argue is the most important
prediction – is not explicitly taken into account. This qualification also ap-
plies to the MAE and R2 score criteria. Note that when the predictions
and actual costs are sorted in increasing order the best-performing solver is
predicted correctly for both instances in the previous example. The entire
ranking of solvers is predicted correctly in the first instance.

4.5.6 Properties of multi-output problems

An interesting feature of all the best-performing models in Table 4.4 – Ran-
dom Forests, K-Nearest Neighbours, Decision Trees – is their ability to pre-
dict multi-output variables. In contrast to Support Vector Machines, for ex-
ample, which must predict the cost for each solver individually, an algo-
rithm which supports multi-output problems can predict each solver’s cost
simultaneously. Not only is this method more efficient (by reducing the
number of estimators required), but it has the ability to account for the cor-
relation of the response variables. This is a useful property in the software
verification domain where certain goals are not provable and others are
trivial for SMT solvers. Multiple versions of the same solver can also be
expected to have highly correlated scores.
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TABLE 4.6: Relative importance of each feature in the
Where4Random Forest model

FEATURE IMPORTANCE (%) FEATURE IMPORTANCE (%)

func 19.63 divisor 2.66
avg-op-arity 11.05 n-ops 2.48
int 8.96 not 1.15
forall 7.19 if 1.07
and 6.02 case 0.99
depth 5.70 wild 0.84
var 4.84 false 0.37
impl 4.72 or 0.36
size 4.31 iff 0.33
let 4.03 eps 0.13
n-quants 3.70 true 0.12
n-preds 3.27 exists 0.07
zero-ar 3.03 float 0.00
n-branches 2.97 as 0.00

A more general survey of multi-output regression and how various ML
algorithms can either be adapted or extended for this use case is provided
by Borchani et al. [31].

4.5.7 The chosen model

After inspecting the results for all trained models (summarised in Table
4.4), we can see that Random Forests [35] perform well, relative to other
methods. They score highest for three of the five criteria (shown in bold
with an asterisk) and have generally good scores in the others. Based on
these results, we selected Random Forests as the choice of algorithm to use
in Where4. We chose to implement a Random Forest model which does
not use discretisation or instance weighting. Inspecting the results from
the entire range of algorithms shows that, in general, the best-performing
models do not use these techniques.

The k-Nearest Neighbours model, while coming top for two important
criteria, scored poorly in the Time category. This result leads us to con-
clude that k-Nearest Neighbours can often predict good rankings but the
instances on which it performs badly are very expensive in terms of time.
Overall, the Random Forest model is the most consistent and reliable pre-
dictor.

Before discussing the implementation of Where4in the next chapter, we
shall investigate the properties of the Random Forest model after it was fit
on the entire training dataset.

Table 4.6 shows the relative importance of each predictor variable for
decision-making in the Random Forest model. Every time a split of a node
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is made on a feature the impurity criterion for the two descendent nodes is
less than the parent node. This criterion is called the Gini impurity [35]. The
percentages correspond to the proportion of the Gini decrease accounted for
splitting by each feature. This data is part of Sci-Kit Learn’s implementation
of Decision Trees and Random Forests.

It can be seen that the number of functions in each PO is by far the
most important factor in determining each solver’s cost, with the average
branching factor of functions and other operators also being important. It
is somewhat surprising that the number of integer constants is one of the
more important factors while the number of floating point constants is rela-
tively unimportant. This may be due to the fact that there are more integer-
based POs in our dataset than those which use floating point numbers. This
reasoning may also account for the fact the universal quantifiers (forall)
rank higher than existential (exists) quantifiers.

4.6 Summary

This chapter began by motivating the use of portfolio-solving in the Why3
system by showing that more files, theories and goals can be proven by
using the best-performing solver on a per-goal basis. We then gave a tour
of the prediction approaches considered for use in Where4. We decided to
use a regression method to predict each solver’s cost – a value designed to
account for solver response as well as the time taken to return the response.

A number of ranking strategies and evaluation criteria were described
in Sec. 4.4 and Sec. 4.5 respectively. In this chapter, we used them to
compare various trained models and found Random Forests to be the best
choice for implementation in Where4.

Some properties of the trained Random Forest model were then dis-
cussed. The choice of prediction model has an obvious importance on
Where4’s implementation and success as a predictor. We give more details
of this implementation in the next chapter.
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OCaml Implementation

This chapter will give some details of the choices we made when imple-
menting the Where4 tool. We decided to make Where4 available as a stand-
alone tool on the command-line as well as through the Why3 system by
imitating an orthodox SMT solver.

The implementation of Where4 makes use of various techniques and
heuristics encountered when researching related premise selection and
portfolio solving tools such as those described in sections 2.3.1 and 2.3.2
of the Literature Review. For example, Where4’s interaction with Why3 is
inspired by Sledgehammer’s MaSh [24] tool. MaSh uses machine learning
to suggest premises based on a large corpus of learned theorems, allow-
ing POs to be proved automatically by ATP and SMT tools. We aspired
to Sledgehammer’s “zero click, zero maintenance, zero overhead” philoso-
phy in this regard: Where4 should not interfere with a Why3 user’s normal
work-flow nor should it penalise those who do not use it.

One heuristic we implemented was to call the highest ranking solver in-
stalled on the user’s system from the following static ranking: Alt-Ergo-1.01
> CVC4 > CVC3 > Z3-4.4.1 > Alt-Ergo-0.95.1 > Z3-4.3.2 > Yices > veriT.
We derived this ranking from the total number of POs each solver could
prove (as listed in Table 4.1). The use of a high-performing solver called
initially with a short time limit value discharges easy POs. It does this
without incurring the cost of feature extraction and solver rank prediction.
This heuristic is implemented successfully in the SATzilla [115] portfolio
solver for SAT instances where it is termed “pre-solving”. SATzilla has in-
spired the use of pre-solving in portfolio solvers for constraint / optimi-
sation problems such as sunny-cp [6]. This heuristic improves Where4’s
performance and reduces its reliance on the underlying random forest pre-
diction model. The process described in Algorithm 1 for obtaining results
from solver rankings needs to be modified to describe Where4’s operation:
the following algorithm (Alg. 2) only performs feature extraction if the ini-
tial solver does not solve the input program within one second.
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Input: P , a Why3 program;
R, a static ranking of solvers for pre-proving;
φ, a timeout value
Output: 〈A, T 〉where
A = the best answer from the solvers;
T = the cumulative time taken to return A
begin

/* Highest ranking solver installed locally */
S ← BestInstalled(R)
/* Call solver S on Why3 program P with a

timeout of 1 second */
〈A, T 〉 ← Call(P, S, 1)
if A ∈ {V alid, Invalid} then

return 〈A, T 〉
end
/* extract feature vector F from program P */
F ← ExtractFeatures(P )
/* R is now based on program features */
R← PredictRanking(F )
while A /∈ {V alid, Invalid} ∧R 6= ∅ do

S ← BestInstalled(R)
/* Call solver S on Why3 program P with a

timeout of φ seconds */
〈AS , TS〉 ← Call(P, S, φ)
/* add time TS to the cumulative runtime */
T ← T + TS
if AS > A then

/* answer AS is better than the current
best answer */

A← AS

end
/* remove S from the set of solvers R */
R← R \ {S}

end
return 〈A, T 〉

end
Algorithm 2: Returning an answer and runtime from a Why3 input pro-
gram
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TABLE 5.1: Finding the minimal number of trees

N Trees Time R2 nDCG MAE Reg-error

10 15.09 0.24 0.48 2.12 41.10
20 14.99 0.27 0.48 2.12 40.39
30 15.03 0.28 0.47 2.12 40.61
40 15.02 0.28 0.48 2.12 40.42
50 15.00 0.28 0.48 2.10 39.55
60 15.00 0.28 0.48 2.10 39.68
70 15.05 0.28 0.48 2.10 39.39
80 15.00 0.28 0.48 2.10 39.37
90 15.00 0.28 0.48 2.10 39.35
100 14.99 0.28 0.48 2.09 39.63

5.1 Finding the minimal number of trees

As previously discussed, the Random Forest algorithm operates by find-
ing a prediction from each of its constituent decision trees and averaging
their results. The generalisation of these results is improved by limiting the
depth of these trees. The heuristic we used to ensure that no prediction
was associated with less than five training instances was introduced in the
previous chapter.

The Sci-Kit Learn implementation of the Random Forest algorithm uses
100 trees. When implementing our own version of the algorithm, the effi-
ciency of deriving these predictions has to be taken into account. For that
reason, we want to minimise the number of trees which have to be tra-
versed.

As Table 5.1 shows, the prediction accuracy of the model does not de-
teriorate significantly as the number of trees decreases. We decided to use
50 trees for the final OCaml implementation: it can be seen that this num-
ber represents the point where the number of trees and the model’s perfor-
mance reaches stability. No significant increases in terms of Mean Average
Error or Regression Error correspond to the use of more trees beyond this
point.

5.2 Encoding the random forest

We train the Random Forest model described in Sec. 4.5.7 (and refined in
the previous section) on the entire training set. The Sci-kit Learn library
allows the constituent decision trees to be extracted and inspected. We print
the forest as a JSON array of trees using the data model shown in Fig. 5.1.

This JSON schema is designed to be human-readable so that users can
define their own simple trees in order to experiment with the effect a par-
ticular feature may have. The index attribute is a unique identifier used
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Forest

Tree

11..*

Node

+index: int

Leaf

Prediction

+solver: string

+cost: float

1

1..*

1

1..*

Decision

+feature: string

+threshold: float

+ifTrue: Node

+ifFalse: Node

FIGURE 5.1: Data design for JSON encoding
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where4.ml

(Access to Why3 API)

mytermcode.mli make_session.mli

forest.json

make_predictions.mli

tree.mli

print_tree.ml
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to
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li)

<<generates>>

<<read by>>

<<writes to>>

<<read by>>

<<called by>>

FIGURE 5.2: The organisation of components in Where4’s
design

when traversing the tree: if the value for feature is less than or equal
to threshold, the current focus moves to the Node with the value of
ifTrue, or to ifFalse if it is greater. This process continues until a Leaf
node is encountered and each solver’s cost Prediction is returned.

Fig. 5.2 shows Where4’s design in terms of OCaml modules. The func-
tions exposed by the interface files (*.mli) are listed in Appendix A. Upon
installation of Where4, forest.json is read in by print_tree.ml and
an equivalent OCaml array is generated and written to the file tree.ml.
When make_predictions.ml is provided with a vector of program
features by where4.ml, the forest is traversed in the manner outlined
above. Making the forest available as an OCaml data structure (through
the tree.mli interface file) is more efficient than reading in the JSON
file at each execution of Where4. Of course, if forest.json changes,
Where4 needs to be re-installed for these changes to have effect (more in-
formation about installing Where4 is given in Appendix C).
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5.3 Extracting features

The previous section described Where4’s use of a tree data structure to pre-
dict solver performance given a vector of program features. A tree is also
used to derive these feature vectors from Why3 programs: the Why3 API is
used to traverse the abstract syntax tree (AST) for each PO. As previously
discussed in Sec. 3.2, we use a process similar to that used internally by
Why3 to extract “goal shapes” [27]. The Why3 OCaml module used to per-
form this task is named termcode.ml and Where4’s mytermcode.ml is
based upon the same process.

A hash table is maintained while recursively traversing the AST: at each
node visited the count of the corresponding feature is incremented in the
hash table. Any other relevant information (such as function arity, for ex-
ample) is also recorded before the rest of the tree is traversed.

5.4 Integration with Why3

The mytermcode.mli, where4.ml and make_session.mli files are
shown in Fig. 5.2 as having access to the Why3 API. We have al-
ready described how mytermcode.ml uses the AST to extract the fea-
ture vector. Other important information required by Why3 is gathered
by the make_session.ml module. For example, this module reads the
Why3 configuration file to determine which supported SMT solvers are in-
stalled locally. make_session.ml loads drivers for these solvers and cre-
ates a proof session in the current directory. This module reads and type-
checks the input file; returning its abstract representation. These actions are
performed using a method described in the Why3 manual1 [28].

where4.ml parses command line options (see Appendix B) and prints
results to the console. The process it uses to schedule solvers is summarised
by Algorithm 2. Where4 is available as a stand-alone command-line tool
which accepts files written using the WhyML front-end or the Why IVL.
Such a tool is useful as an initial solving step for large batches of files, but
it cannot take full advantage of the Why3 system. By following the “zero
click, zero maintenance, zero overhead” philosophy, we wanted Where4’s
functionality to integrate fully with the Why3 user’s normal workflow. To
take advantage of the full range of transformations and parsers associated
with the Why3 system, we decided to make the tool available to be accessed
as an individual backend solver.

The imitation of an orthodox SMT solver requires a number of modifi-
cations and extra files as follows:

1Specifically http://why3.lri.fr/doc-0.87.2/manual005.html#sec28 (last
accessed 16/10/16)
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• An entry to the provers-detection-data.conf configuration
file must be made for Why3 to recognise Where4 as a supported SMT
solver. Where4’s entry lists the command needed to invoke the bi-
nary, specifies which version of the tool is supported, and where to
find the corresponding driver file.

• The driver file must contain regular expressions to parse Where4’s
output, making it comprehensible to Why3 (defining the character-
istics of a Valid output, for example). The driver must also list the
printer used by Why3 for intermediate files, as well as any transfor-
mations which need to be performed to conform to the solver’s input
language. Where4 uses the standard Why3 printer and its list of trans-
formations.

• The Why3 API requires that supplied paths to input files are relative
to the current directory. When called via the driver, however, a tem-
porary file is written by the printer and an absolute path is specified.
Where4 needs to convert this to a relative path in order to read the
input file.

These modifications allow Where4 to be recognised as an orthodox
solver which can be used by Why3 through the IDE, on the command-line,
or through the OCaml API – similar to any other supported ATP or SMT
tool.

5.5 Summary

This chapter has presented an overview of the method we used to imple-
ment the Where4 tool using the Why3 OCaml API. In total, the six statically-
written OCaml modules (i.e. not including tree.ml) contain 712 lines of
code. We used OCaml version 4.02.3 for their compilation locally. The only
library we used (in addition to version 0.87.1 of the Why3 API) is Yojson2 to
help with parsing the forest.json file. The data disk included with this
thesis contains all of the source code for Where4. The files install.sh
and readme.md contain useful information about the compilation of these
modules and how to satisfy their few dependencies. The same source files
are available online at https://github.com/ahealy19/where4.

2version 1.2.1 http://mjambon.com/yojson.html
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Chapter 6

Evaluating Where4 on Test
Data

This chapter will evaluate Where4’s portfolio algorithm on the held-back
test data. The randomly-selected test set represents 25% of the entire num-
ber of POs and consists of 32 WhyML files, 77 theories and 263 goals (see
Sec. 4.3.2). In addition to evaluating Where4 ’s predictions, the OCaml im-
plementation (detailed in the previous chapter) will be discussed in terms
of its efficiency. We also present the results of our prediction algorithm on
the training data when no pre-solver is used (i.e. Algorithm 1 is used). We
do this to evaluate the prediction model in isolation and compare Where4’s
performance with and without the pre-solving heuristic. We perform our
evaluation guided by three Evaluation Questions:

EQ1: How does Where4 perform in comparison to the eight SMT solvers?
The importance of this question is obvious: the success of Where4 de-
pends on its improvement over the status quo. In the case of discharg-
ing Why3 POs, the status quo is represented as the use of a single
solver.

EQ2: How does Where4 perform in comparison to the three theoretical
strategies?
The theoretical strategies introduced in Sec. 4.4 provide a fairer basis
for comparison than a single solver by taking multiple solver calls per
PO into consideration. As a reminder for the reader, the Best Ranking
always chooses solvers in the order of ascending cost, Random Rank-
ing is the average result of running every possible permutation of the
eight solvers, and Worst Ranking is the inverse of Best Ranking: it is
the ranking of solvers in order of descending cost.

EQ3: What is the time overhead of using Where4 to prove Why3 goals?
The feature extraction and solver scheduling processes incur a time
cost. This evaluation criterion measures whether this cost represents
a significant proportion of Where4 ’s overall solving time.
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TABLE 6.1: Number of files, theories and goals proved by
each strategy and individual solver. The percentage this
represents of the total 32 files, 77 theories, 263 goals, and

the average time in seconds, are also shown.

File Theory Goal
#

proved
%

proved
Avg
time

#
proved

%
proved

Avg
time

#
proved

%
proved

Avg
time

Where4 (PS) 11 34.4% 1.39 44 57.1% 0.99 203 77.2% 1.98
Where4 (no PS) 1.99 1.31 2.32
Best Rank. 0.25 0.28 0.37
Random Rank. 4.19 4.02 5.70
Worst Rank. 14.71 13.58 18.35

Alt-Ergo-0.95.2 8 25.0% 0.78 37 48.1% 0.26 164 62.4% 0.34
Alt-Ergo-1.01 10 31.3% 1.07 39 50.6% 0.26 177 67.3% 0.33
CVC3 5 15.6% 0.39 36 46.8% 0.21 167 63.5% 0.38
CVC4 4 12.5% 0.56 32 41.6% 0.21 147 55.9% 0.35
veriT 2 6.3% 0.12 24 31.2% 0.12 100 38.0% 0.27
Yices 4 12.5% 0.32 32 41.6% 0.15 113 43.0% 0.18
Z3-4.3.2 6 18.8% 0.46 31 40.3% 0.20 145 55.1% 0.37
Z3-4.4.1 6 18.8% 0.56 31 40.3% 0.23 145 55.1% 0.38

This chapter answers each Evaluation Question in turn. Threats to the va-
lidity of our study are discussed in Sec. 6.4.

6.1 EQ1: How does Where4 perform in comparison to
the eight SMT solvers?

When each solver in Where4’s ranking sequence is run on each goal, the
maximum amount of files, theories and goals are provable. As previously
mentioned in Sec. 4.4.2 and as Table 6.1 shows, the difference between
Where4 and the set of reference theoretical strategies (Best Ranking, Ran-
dom Ranking, and Worst Ranking) is the amount of time taken to return the
Valid/Invalid result. Compared to the eight SMT solvers, the biggest increase
is on individual goals: Where4 can prove 203 goals, which is 26 (9.9%) more
goals than the next best single SMT solver, Alt-Ergo-1.01.

As is shown by Table 6.1, the average time taken for Best Ranking to
return an answer of Valid is not necessarily less than that of an individual
solver. As Best Ranking can return Valid for all provable POs – more than
any individual solver – it is the number of Valid answers, rather than any
inefficiency, that is responsible for this slightly slower average time.

The average time Where4 takes to prove these goals (using Algorithm 2
– denoted Where4 (PS) in Table 6.1) is significantly better than the Random
Ranking strategy. Without a pre-solver, Where4 suffers slightly (as denoted
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FIGURE 6.1: The relative amount of Valid/Un-
known/Timeout/Failure answers from the eight SMT
solvers, Where4 (PS where pre-solver = Alt-Ergo-1.01),
Where4 with no Pre-Solver, and three theoretical strategies

on the 263 test POs (with a timeout limit of ten seconds).

by the results for Where4 (no PS)). Both algorithms, however, lag behind
the time recorded by the Best Ranking strategy.

In comparison to the eight SMT solvers, the average time taken by
Where4 to prove each of the 203 goals is high. This tells us that Where4 can
perform badly with goals which are not provable by many SMT solvers:
expensive Timeout results are chosen before the Valid result is eventually
returned. In the worst case, Where4 may try all eight solvers in sequence,
timing out for each solver, whereas each individual solver does this just
once. Thus, while having access to more solvers can allow more goals
to be proved (if there are goals uniquely-provable by the solvers such as
those identified in Table 4.2), there is also a time penalty associated with
portfolio-based solvers in these circumstances. This issue has previously
been identified by Amadini et al. in their studies on portfolio solvers for
constraint programming [4] and constraint optimisation [5] where portfo-
lio performance was found to degrade as the number of constituent solvers
increased.

The multiple timeout issue raises the question of whether it is fair to
compare Where4 to individual solvers. Any ranking strategy will be able to
prove the maximum number of files, theories and goals, but unless the best
solver is consistently placed high in the ranking, it could take a significantly
longer time to do so than even the worst-performing individual solver.

We remind the reader of the Choose Single solver introduced in Sec.
4.1. Choose Single is the best single solver as chosen on a per-goal basis. It
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provided a motivation for the use of portfolio-solving on the Why3 plat-
form by proving the maximum number of goals in the shortest amount of
time. We mentioned that Choose Single is equivalent to choosing the top-
ranking solver from Best Ranking and stopping. We return to this concept
in Fig. 6.1 which is similar to Fig. 3.6 in that it shows the relative amount
of Valid/Unknown/Timeout/Failure answers from the eight SMT solvers. Also
shown (on the right) are results obtainable by using the top solver (only)
with the three ranking strategies (where Best Ranking ≡ Choose Single)
and the Where4 predicted ranking (after pre-solving with Alt-Ergo version
1.01 – Where4 (PS) – and without: Where4 (no PS)).

Input: P , a Why3 program;
R, a static ranking of solvers for pre-proving;
φ, a timeout value;
µ, the cost threshold
Output: 〈A, T 〉where
A = the best answer from the solvers;
T = the cumulative time taken to return A
begin

/* pre-solving */
S ← BestInstalled(R)
〈A, T 〉 ← Call(P, S, 1)
if A ∈ {V alid, Invalid} then

return 〈A, T 〉
end
F ← ExtractFeatures(P )
R← PredictRanking(F )
/* the predicted cost of S is an additional

stopping condition */
while A /∈ {V alid, Invalid} ∧R 6= ∅ ∧ Cost(S) ≤ µ do

S ← BestInstalled(R)
〈AS , TS〉 ← Call(P, S, φ)
T ← T + TS
if AS > A then

A← AS

end
/* remove S from the set of solvers R */
R← R \ {S}

end
return 〈A, T 〉

end
Algorithm 3: Returning answers and runtimes from Where4 solver rank-
ings using a cost threshold: A minor modification to Alg. 2 with an addi-
tional stopping condition in the while loop

The 62 Valid answers returned by the top solver from the Worst Ranking
(i.e. the worst solver) represent the trivial POs solvable by all eight solvers.
Likewise, the 60 goals for which Best Ranking did not return a Valid or
Invalid answer could not be proved by any solver.
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The results show that limiting the portfolio solver to just using the best
predicted individual solver eliminates the multiple time-out overhead yet
reduces the number of goals provable by Where4. This number of goals –
184 – is still more than the best-performing individual SMT solver, Alt-Ergo
version 1.01.

In an effort to compare Where4 to individual SMT solvers, Table 6.1
and Fig. 6.1 show results at two extremes of a spectrum: using all solvers
available, and only using one. In the next subsection we describe a method
to calibrate the use of Where4 by using the predicted cost of each solver.

6.1.1 Use of a cost threshold

To balance the time-taken-versus-goals-proved trade-off associated with
the two approaches above, we introduce the notion of a cost threshold as an-
other method of comparing Where4 to individual SMT solvers. Where4’s
use of a cost threshold constitutes a minor adjustment to Alg. 2 and is de-
tailed in Alg. 3. After pre-solving, solvers with a predicted cost above this
threshold are not called. If every solver’s cost is predicted to be above the
threshold µ, the pre-solver’s result is returned.

We determine the appropriate value for this threshold by first splitting
the training data into model training and validation sets. The model train-
ing set used for this step represents 90% of the total training set (or 706 POs),
while the validation set is made up of 79 POs. We train the Random For-
est predictor (with pre-solving) before simulating the effect of an increasing
cost threshold using the validation set.

Fig. 6.2a and 6.2b show the effect of varying this threshold when solv-
ing POs in the test set. The top plot (a) shows a comparison of the average
time taken for any answer to be returned (not necessarily Valid / Invalid).
The amount of time taken by Where4 often depends on the number of
solvers called. The number of solvers called depends on the cost thresh-
old given to Where4. This is particularly true in the case where a pre-solver
is not used. The solid black/red lines of Fig. 6.2a, shows the increase in
average time taken by Where4 (with / without pre-solving) to return a re-
sponse as the cost threshold increases. Fig. 6.2b shows the number of Valid
/ Invalid responses returned by each individual SMT solver as compared to
Where4 with a range of threshold values. As the corresponding results for
each individual solver are unaffected by the threshold parameter, they are
represented by horizontal line segments intersecting with the Where4 data
in Fig. 6.2a.

We note that even when given a threshold value of zero, 46 POs are
proven. The difference with the solid red line’s more gradual increase
makes it obvious that the pre-solving routine is responsible for these re-
sults. In our case, Alt-Ergo-1.01 can prove 46 POs given a time limit of one
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second and the solver cost is never used. As in Fig. 6.2a, the results for each
individual solver are unaffected by the threshold parameter.

By inspecting these results, we find that a threshold value of seven gives
good results. At this threshold, the use of a pre-solver results in far more
Valid/Invalid responses being returned than the best-performing individual
solver (Z3-4.4.1) and they are returned in a faster time (on average) than
the fastest-returning solver (Yices). Even without pre-solving (the solid red
line), about the same number of Valid/Invalid responses are returned as by
Z3-4-4-1 and in a slightly faster time than the pre-solving version.

As the dashed red line in Fig. 6.3 shows, a threshold value of seven
also performs well on the test data. The results for Where4 using a
pre-solver are shown in numerical form in Table 6.2. When Where4 is
given a cost threshold of five, it can prove the same number of POs as the
best-performing solver – Alt-Ergo-1.01. By referring to Fig. 6.3a, we see
that at the same cost threshold, it takes a shorter time to return a response,
on average, than the fastest SMT solver (which is also Alt-Ergo-1.01). If the
cost threshold is increased to seven, significantly more POs can be proven.
The average time taken to return a response is approximately equal to that
of the four slowest individual solvers on the test data: CVC4, veriT, and
both versions of Z3.

EQ1 Answer: The cost threshold greatly improves Where4’s perfor-
mance in comparison to the individual SMT solvers. The performance
penalties associated with portfolio solvers can be mitigated by defining a
cut-off point and trusting that solvers with a predicted cost greater than
this value do not need to be called. We found this point to be about seven
for the POs in the Why3 example dataset. Giving Where4 a threshold value
less than seven may result in significantly worse results without the use
of a pre-solver. The value to choose as a threshold may not be obvious in
real-world scenarios with unseen results, however.

6.2 EQ2: How does Where4 perform in comparison to
the three theoretical strategies?

Fig. 6.4 compares the time taken for Where4 (with and without the use of
a Pre-Solver) and the three ranking strategies to return Valid answers for
the 263 POs in the test set. This experiment is equivalent to running each
strategy on all 263 POs in parallel and measuring the time taken for each
strategy to return a total of 203 Valid answers. As described in Sec. 4.4, Best
Ranking and Worst Ranking use Alg. 1 to return their time taken. Random
Ranking’s time measurement is based on the average of 40,320 (i.e. eight
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TABLE 6.2: The effect of using a cost threshold. The average
time taken for Where4 (with pre-solver) to return an answer
compared and the number of Valid/Invalid answers. Same

data as Fig. 6.3

THRESHOLD 0 1 2 3 4 5

Avg. Time 0.37 0.37 0.48 0.53 0.98 1.77
Num. Proved 168 168 168 169 173 177

THRESHOLD 6 7 8 9 10 11

Avg. Time 2.72 4.59 6.55 8.74 10.31 11.89
Num. Proved 183 192 192 195 197 199

THRESHOLD 12 13 14 15 16 17

Avg. Time 14.16 15.24 16.06 16.35 16.35 16.35
Num. Proved 202 203 203 203 203 203
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FIGURE 6.4: The time taken by each theoretical strategy and
Where4 to return all Valid/Invalid answers in the test dataset

of 263 goals
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factorial, the number of individual rankings) uses of Alg. 1. Where4 (PS)’s
times are derived from the use of Alg. 2 with a pre-solver of Alt-Ergo-1.01.

Although both Where4 implementations and Random Ranking finish
at approximately the same time, Where4 is significantly faster for returning
Valid/Invalid answers. Both Where4’s solid lines are more closely correlated
to Best Ranking’s rate of success than the erratic rate of the Random Rank-
ing strategy. Surprisingly, the implementation of Where4 which does not
use a pre-solver (Fig. 6.4’s solid red line), finds slightly more Valid/Invalid
answers at the lower end of the time scale than the pre-solver. We assert
that this is a validation of the prediction algorithm’s effectiveness: amongst
provable POs, it often chooses a solver faster than the pre-solver. Again, we
find that Where4 struggles to prove a small number of POs. This trait can
be seen in the amount of time needed for either Where4 implementation
to return all Valid/Invalid responses (42.65/42.30 seconds) compared to that
required by the Best Ranking strategy (just 8.75 seconds). Best Ranking’s
excellent time result shows the capability of a perfect-scoring learning
strategy.

EQ2 Answer: At almost any point in time from zero seconds to 42.65
seconds, the number of Valid/Invalid answers returned by Where4 is
greater than the number returned by Random Ranking. This shows that
our prediction model is a better choice than selecting a sequence of SMT
solvers at random, without any regard for program features or solver ca-
pability. Where4’s performance on all but the hardest POs is encouraging.
Although Where4 cannot compete with Best Ranking yet, the performance
of this theoretical strategy is motivation to further improve Where4 in the
future. Over the entire test dataset (i.e. both provable and non-provable
PO instances), there was no significant time time advantage associated
with using a pre-solver.

6.3 EQ3: What is the time overhead of using
Where4 to prove Why3 goals?

The timings for Where4 in all plots and tables in this chapter are based
solely on the performance of the constituent solvers (the measurement of
which is discussed in Sec. 3.3). They do not measure the time it takes for
the OCaml binary to extract the static metrics, traverse the decision trees
and predict the ranking. We have found that this adds (on average) 0.46
seconds to the time Where4 takes to return a result for each of the files in
the test set. On a per goal basis, this is equivalent to an increase in 0.056
seconds. This overhead is only applied to goals for which pre-solving is
unsuccessful. For the test set, pre-solving eliminated this overhead for 168
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out of 263 POs (see Table 6.2: Where4’s number of Valid/Invalid responses
when the cost threshold is zero).

The imitation of an orthodox solver to interact with Why3 is more costly:
this is due to Why3 printing each goal as a temporary file to be read in by the
solver individually (see Sec. 5.4). As Where4 uses the abstract, internal rep-
resentation of the program, the printing of each goal to the Why format is
unnecessary. The Why3 driver mechanism makes this step unavoidable for
any supported solver including, of course, the Where4 “imitation solver”.

Another issue with calling Where4 through Why3 is that of applying
Why3’s timeout value to a sequence of solver calls. For example, if a user
gives Why3 a timeout of five seconds for Where4 to prove a PO and the first
solver called by Where4 goes over that limit, the potentially useful answer
returned by the second solver in the sequence would not be returned to the
user.

EQ3 Answer: While pre-solving is an important heuristic for avoid-
ing the overhead of feature extraction and rank prediction, these processes
must be optimised for Where4 to be practical as a portfolio solver called
from Why3. Future work will look at a portfolio-solving Why3 plugin
similar to Where4. Tighter integration with the Why3 system can be
expected to improve the efficiency of such a tool. In its current form,
Where4 is more suited to an initial proving step performed using the
stand-alone command line tool.

6.4 Threats to Validity

In this section we discuss the threats to the validity of the evaluation pre-
sented in this chapter. We categorise threats as either internal or external.
Internal threats refer to influences that can affect the response variable with-
out the researcher’s knowledge and threaten the conclusions reached about
the cause of the experimental results [111]. Threats to external validity are
conditions that limit the generalisability and reproducibility of an experi-
ment.

6.4.1 Internal

The main threat to our work’s internal validity is selection bias. All of our
training and test samples are taken from the same source. We took care
to split the data for training and testing purposes on a per file basis, as we
discussed in Sec. 4.3.2. This ensured that Where4 was not trained on a goal
belonging to the same theory or file as any goal used for testing.

The results of running the solvers on our dataset are imbalanced: (i)
there were far more Valid responses than any other response and (ii) no goal
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in our dataset returned an answer of Invalid on any of the eight solvers. Is-
sue (i) could be remedied through the use of resampling. The technique
either adds copies of instances of under-represented classes (over-sampling)
or remove instances of POs returning Valid responses (undersampling). A
larger dataset of POs would help with resampling to ensure a representa-
tive balance of responses is reflected in the test and training set. Issue (ii) is
a more serious problem as Where4 would not be able to recognize such a
goal in real-world use.

Use of an independent dataset is likely to influence the performance
of the solvers. Alt-Ergo was designed for use with the Why3 platform –
its input language is a previous version of the Why logic language. It is
natural that the developers of the Why3 examples would write programs
which Alt-Ergo in particular would be able to prove. Due to the syntac-
tic similarities in input format and logical similarities such as support for
type polymorphism, it is likely that Alt-Ergo would perform well with any
Why3 dataset. We would hope, however, that the gulf between it and other
solvers would narrow.

There may be confounding effects in a solver’s results that are not re-
lated to the independent variables we used (Sec. 3.2). We were limited in
the tools available to extract features from the domain-specific Why logic
language (in contrast to related work on model checkers which use the
general-purpose C language [49, 108] – as previously discussed in Sec.
2.3.2). We made the decision to keep the choice of independent variables
simple in order to increase generalisability to other formalisms such as Mi-
crosoft’s Boogie [12] intermediate language.

6.4.2 External

The generalisability of our results is limited by the fact that all dependent
variables were measured on a single machine. All data collection was con-
ducted on a single 64-bit machine running Ubuntu 14.04 with a dual-core
Intel i5-4250U CPU and 16GB of RAM. We believe that the number of each
response for each solver would not vary dramatically on a different ma-
chine of similar specifications. By inspecting the results when each solver
was given a timeout of 60 seconds (Fig. 3.7), the rate of increase for Valid/In-
valid results was much lower than that of Unknown/Failure results. The for-
mer set of results are more important when computing the cost value for
each solver-goal pair.

Timings of individual goals are likely to vary widely (even across in-
dependent executions on the same machine). It is our assumption that al-
though the actual timed values would be quite different on any other ma-
chine, the ranking of their timings would stay relatively stable.
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A “typical” software development scenario might involve a user veri-
fying a single file with a small number of resultant goals: certainly much
smaller than the size of our test set (263 goals). In such a setting, the pro-
ductivity gains associated with using Where4 would be minor. Where4 is
more suited therefore to large-scale software verification.

6.5 Discussion

By considering the answers to our three Evaluation Questions, we can make
assertions about the success of Where4. The answer to EC1, Where4’s per-
formance in comparison to individual SMT solvers, is positive. A small im-
provement in Valid/Invalid responses results from using only the top-ranked
solver, while a much bigger increase can be seen by making the full rank-
ing of solvers available for use. The time penalty associated with calling a
number of solvers on an un-provable PO is mitigated by the use of a cost
threshold. Judicious use of this threshold value can balance the time-taken-
versus-goals-proved trade-off: in our test set of 263 POs, using a threshold
value of seven results in 192 Valid responses – an increase of fifteen over
the single best solver – in a reasonable average time per PO (both Valid and
otherwise) of 4.59 seconds.

There is also cause for optimism in Where4’s performance as compared
to the three theoretical ranking strategies – the subject of Evaluation Ques-
tion 2. All but the most stubborn of Valid answers are returned in a time
far better than Random Ranking. We take this random strategy as repre-
senting the behaviour of the non-expert Why3 user who does not have a
preference amongst the variety of supported SMT solvers. For this user,
Where4 could be a valuable tool in the efficient initial verification of POs
through the Why3 system.

In terms of time overhead – the concern of EQ3 – our results are less
favourable, particularly when Where4 is used as an integrated part of the
Why3 toolchain. The costly printing and parsing of POs slows Where4 be-
yond the time overhead associated with feature extraction and prediction.
At present, due to the diversity of languages and input formats in use for
SV (see Sec. 2.1), this is an unavoidable pre-processing step enforced by
Why3 (and is indeed one of the Why3 system’s major advantages).

Overall, we believe that the results for two out of three Evaluation Ques-
tions are encouraging and suggest a number of directions for future work
to improve Where4.
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Chapter 7

Conclusion

This thesis has presented a strategy to choose appropriate SMT solvers
based on the syntactic features of Why3 POs. Our final solution, Where4,
was implemented after a careful consideration of a number of datasets (Sec.
2.1.1), SMT-solving tools (Sec. 3.1), learning tasks (Sec 4.2) and learning al-
gorithms (Sec. 4.3).

The Where4 tool is a random-forest multi-output regressor with a num-
ber of optimisation heuristics. Users without any knowledge of SMT
solvers (i.e. those choosing solvers at random) can prove a greater num-
ber of goals in less time by delegating to Where4. Although the prediction
accuracy of Where4 is disappointing on some instances of the test set, we
maintain that Where4 represents a positive first step in developing the port-
folio solver that simplifies discharging POs for non-expert Why3 users.

We believe that the Why3 platform has great potential for machine-
learning based portfolio-solving due to its unique approach to interfacing
with disparate ATP, SMT and ITP tools. We are encouraged by the perfor-
mance of a theoretical Best Ranking strategy. The convenience that a tool
implementing such a strategy would give Why3 users has the potential to
make deductive software verification more approachable to the wider soft-
ware engineering community. This ultimate goal provides a motivation for
improving Where4 through future work.

7.1 Future Work

The number of potential directions for this work is large. An obvious
and immediate first step could be the use of a larger and more generic
dataset for training and testing purposes. The two viable alternatives to
the Why3 example dataset discussed in Sec. 3.1.1 – the TPTP library [106]
and the BWARE dataset [48] – could be investigated to this end.

The application of an initial splitting transformation (to simplify each
PO) would also be relatively simple to implement. This would also create
an entirely different, and potentially much larger, dataset. For example,
applying the split_goal_wp transformation to each PO in the Why3 ex-
ample dataset would increase its size from 1048 to 7489 POs. Of course, any
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changes to the dataset would require repeating the costly measurement of
dependent variables (Sec. 3.3).

An interesting direction for this work could be the identification of the
simplifying transformations (both splitting and non-splitting) which would
need to be applied by Why3 in order for a PO to be tractable for an SMT
solver. The tool resulting from this multi-class classification task would
be quite different to the one implemented as Where4 but potentially very
useful. It would complement the existing Where4 tool in its goal to assist
non-expert Why3 users in discharging proof obligations through automa-
tion.

Applying multiple solvers in parallel could potentially alleviate some
of the time penalties associated with Where4 and portfolio solvers in gen-
eral (identified in Sec. 6.1). The effectiveness of such an approach has been
demonstrated by the ppfolio (Parallel PortFOLIO) SAT tool which won
eleven medals at the SAT 2011 competition [86]. All SMT solvers could ei-
ther be scheduled to run in parallel (thereby eliminating the need for feature
extraction and prediction) or alternatively only the solvers with the lowest
predicted cost could be run. There is a trade-off in the allocation of compu-
tational resources associated with these two approaches: the time and CPU
cycles needed for feature extraction and solver prediction must be balanced
with those consumed by a number of low-performing solvers.

One of the limitations of this work is lack of comparison of features
for extraction. Future would could make a more thorough investigation of
how semantic properties of programs (eg. the associativity of the operators
found in the program, constructions indicating inductively defined types,
etc.) affect accurate predictions for each learning algorithm.

As mentioned in Sec. 6.3 in response to Evaluation Question 3, future
work could investigate the re-implementation of Where4 as a Why3 plu-
gin in order to optimise the interaction with Why3’s internal data struc-
tures used for feature extraction. Aside from the implementation of the
Where4 tool itself, a minimal benchmark suite could be identified which could
be used to train the prediction model using new SMT solvers and theorem
provers installed locally.
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Ocaml Interfaces

treetypes.mli

type p r e d i c t i o n = ( s t r i n g ∗ f l o a t )

type d e c i s i o n = ( s t r i n g ∗ f l o a t )

type tree_node =
| Node of ( d ec i s i on ∗ i n t ∗ i n t )
| Leaf of p r e d i c t i o n l i s t

type d e c i s i o n _ t r e e = tree_node array

type f o r e s t = d e c i s i o n _ t r e e l i s t

type t r e e _ o r _ f o r e s t =
| Tree of d e c i s i o n _ t r e e
| Fores t of f o r e s t

(∗ b u i l t with : ocamlfind ocamlc −c t r e e t y p e s . mli ∗ )

tree.mli

open Treetypes

val t r e e : t r e e _ o r _ f o r e s t
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mytermcode.mli

(∗ based on ’ shape ’ computation funct ion :
val t_shape_task : ? vers ion : i n t −> Task . task −> shape
from Why3 : s r c /s e s s i o n /termcode . mli ∗ )

open Why3

(∗ the funct ion t h a t t r a v e r s e s the AST of a Why3 Task
.

A hash t a b l e conta in ing the number/value of each
f e a t u r e

i s returned .

This i s encoded as f e a t u r e ( s t r i n g ) −> value ( f l o a t )
∗ )

val t_shape_num_map : Task . task −> ( s t r i n g , f l o a t )
Hashtbl . t

get_predictions.mli

open Treetypes

(∗ given the f e a t u r e vec tor returned from mytermcode .
ml ,

re turn the corresponding l e a f node ∗ )
val g e t _ p r e d i c t i o n s : ( s t r i n g , f l o a t ) Hashtbl . t −>

tree_node option

(∗ i f no proving i s to be done , p r e d i c t i o n s can be
pr inted ∗ )

val p r i n t _ p r e d i c t i o n s : tree_node option −> uni t

val s o r t _ p r e d i c t i o n s : tree_node option −> p r e d i c t i o n
l i s t

(∗ bes t s o l v e r i n s t a l l e d l o c a l l y , t h a t i s ∗ )
val g e t _ b e s t : p r e d i c t i o n l i s t −> s t r i n g option
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make_session.mli

open Why3

(∗ takes the path to the . why/.mlw f i l e , the path to
the . why . conf f i l e

and the f i l e format (why or whyml) as arguements ∗ )
val make_f i le : s t r i n g −> s t r i n g −> s t r i n g −> ( uni t

Sess ion . f i l e )

(∗ by defaul t , Why3 adds ’ . / ’ to any path supplied .
However , when c a l l e d by the driver , an absolute
path i s supplied − t h i s converts the absolute path
to a r e l a t i v e one ∗ )

val make_relat ive : s t r i n g −> s t r i n g

(∗ which s o l v e r s (known to Where4 ) are i n s t a l l e d
l o c a l l y ? ∗ )

val provermap : ( s t r i n g , ( Whyconf . conf ig_prover ∗
Driver . dr iver ) option )

Hashtbl . t
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Where4 command-line options

Much like Why3 itself, the Where4 tool is intended for use on Unix sys-
tems only. During the installation of Where4, the location of a binary called
where4 is added to the user’s PATH environment variable. The following
options are appended to calls to where4 on the command-line:

--help / -h

Print a consise version of this Appendix to the console.

--version

Print Where4’s version number. This command is used by Why3 to de-
termine if a supported version of Where4 is installed.

--list-provers / -l

Print each SMT solver known to Where4 and found if Where4 has de-
termined it is installed locally; NOT found otherwise.

The following two options, predict and prove, must be followed by
FILENAME: a relative path to a .why (Why logic language) or .mlw (WhyML
programming language) file.

predict FILENAME

Print the predicted ranking of solver utility for each PO in FILENAME.
The ranking will consist of all 8 solvers known to Where4 whether they
are installed locally or not.

predict FILENAME

Call the pre-solver, then each installed solver in the predicted ranking se-
quentially, for each PO in FILENAME.

If the Why3 configuration file has been moved to a location other than
its default (i.e. $HOME/.why3.conf), the following option is necessary in
order for where4 prove or where4 predict to function correctly:

--config / -c CONFIGPATH

Specify the path to Why3’s .why.conf configuration file as
CONFIGPATH. Use the default location ($HOME/.why3.conf) oth-
erwise.
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A number of optional parameters can be appended to the prove

FILENAME command (their order is unimportant):

--verbose

Print the result of each prover call and the time it took. The default be-
haviour is to just print out the best result and the cumulative time (see
Alg. 3).

--why

A special flag for use with the Why3 driver which tells Where4 to convert
the given absolute filename to a relative path.

--time / -tm TIME

Override the default (5 seconds) timeout value with TIME number of sec-
onds. TIME must be an integer; an error message will be printed other-
wise.

--threshold / -ts THRESH

Use a cost threshold (see Sec. 6.1.1) to limit the number of solvers called
based on their predicted ranking. We found in Chapter 6 that a THRESH
value of 7 is optimum for the test set. THRESH must be parsable as a
floating-point number; an error message will be printed otherwise.

B.1 The Where4 command given to Why3

The following is the command specified in
provers-detection-data.conf to call Where4:

where4 prove %f --why -tm %t -ts 7

%f is the absolute path to the temporary file created by Why3

--why tells Where4 that the given path is absolute and requires conversion

-tm %t use the time limit %t specified by the Why3 user

-ts 7 enforce a cost threshold of 7
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Where4 installation options

The installation process for Where4 is defined by a shell script
install.sh. This Appendix gives more details about the options avail-
able to the user when calling this file to compile the OCaml files and install
the Where4 binary locally.

--location / -l PATH

By default, Where4 will be copied to the /usr/local/bin/ directory.
If the user wishes, this location can be overridden to be PATH. The given
directory must be on the user’s $PATH environment variable to be found
by Why3.

--why3name / -w PATH

The location of the Why3 binary, if it is not on the user’s $PATH can be
supplied. Where4 is added to Why3’s list of provers by calling why3

config -detect-provers at the end of the installation process.

--prover-detection / -p PATH

By default, Why3’s provers-detection-data.conf file is assumed
to be located in /usr/local/share/why/. The location of this file can
be specified as PATH.

--driver-location / -d PATH

The location of the Why3 driver files. Where4 needs to know where to
copy where4.drv so that Why3 will be able to find it.

--reinstall / -r

Delete the installed binary (i.e. execute uninstall.sh)
and repeat the installation process (the Where4 entry in
provers-detection-data.conf will not be deleted, however).
This option can be combined with the above flags.

By default, Where4 assumes there is a JSON file called forest.json in
the current directory which is to be used to construct the prediction model.
The user can control this behaviour with the following flags. As a random
forest is just an array of decision trees, a JSON file containing a single tree
may be provided instead, if it is specified as such during installation.
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--forest / -f PATH

Use the JSON file located at PATH to construct the prediction model. This
file should define a Random Forest using the JSON schema defined in
Sec. 5.2.

--tree / -t PATH

Use the JSON file located at PATH to construct the prediction model. This
file should define a Decision Tree using the JSON schema defined in Sec.
5.2.
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Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Ce-
sare Tinelli. “CVC4”. In: Computer Aided Verification. Snowbird, UT,
USA, July 2011, pp. 171–177.

[17] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Pro-
gram Development: Coq’Art The Calculus of Inductive Constructions.
Springer-Verlag Berlin Heidelberg, 2010.

[18] Dirk Beyer. “Reliable and Reproducible Competition Results with
BenchExec and Witnesses (Report on SV-COMP 2016)”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Eindhoven,
The Netherlands, Apr. 2016, pp. 887–904.

[19] Dirk Beyer. “Status Report on Software Verification”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Grenoble,
France, Apr. 2014, pp. 373–388.

[20] Dirk Beyer, Stefan Löwe, and Philipp Wendler. “Benchmarking and
Resource Measurement”. In: Model Checking Software - 22nd Interna-
tional Symposium, SPIN 2015. Stellenbosch, South Africa, Aug. 2015,
pp. 160–178.

86

http://www.smt-lib.org
http://www.smt-lib.org


BIBLIOGRAPHY

[21] Dirk Beyer, Marieke Huisman, Vladimir Klebanov, and Rosemary
Monahan. “Evaluating Software Verification Systems: Benchmarks
and Competitions (Dagstuhl Reports 14171)”. In: Dagstuhl Reports
4.4 (2014). DOI: 10.4230/DagRep.4.4.1.

[22] Christopher M. Bishop. Pattern recognition and machine learning. New
York, USA: Springer, 2006.

[23] Jasmin Christian Blanchette and Andrei Paskevich. “TFF1: The
TPTP Typed First-Order Form with Rank-1 Polymorphism”. In:
CADE-24: 24th International Conference on Automated Deduction. Lake
Placid, NY, USA, June 2013, pp. 414–420.

[24] Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk,
Daniel Kühlwein, and Josef Urban. “A Learning-Based Fact Selec-
tor for Isabelle/HOL”. in: Journal of Automated Reasoning 57.3 (2016),
pp. 219–244.

[25] François Bobot and Andrei Paskevich. “Expressing Polymorphic
Types in a Many-Sorted Language”. In: Frontiers of Combining Sys-
tems: 8th International Symposium, FroCoS 2011. Saarbrücken, Ger-
many, Oct. 2011, pp. 87–102.

[26] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and An-
drei Paskevich. “Let’s verify this with Why3”. In: International Jour-
nal on Software Tools for Technology Transfer 17.6 (2015), pp. 709–727.

[27] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guil-
laume Melquiond, and Andrei Paskevich. “Preserving User Proofs
across Specification Changes”. In: Verified Software: Theories, Tools,
Experiments: 5th International Conference. Menlo Park, CA, USA, May
2013, pp. 191–201.

[28] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guil-
laume Melquiond, and Andrei Paskevich. The Why3 User Manual.
0.87.2. 2016. URL: http://why3.lri.fr/doc-0.87.2/.

[29] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and An-
drei Paskevich. “Why3: Shepherd your herd of provers”. In: Work-
shop on Intermediate Verification Languages. Wroclaw, Poland, Aug.
2011, pp. 53–64.

[30] Andreas Bollin. “Is There Evolution Before Birth? Deterioration Ef-
fects of Formal Z Specifications”. In: Formal Methods and Software En-
gineering: 13th International Conference on Formal Engineering Methods.
Durham, UK, Oct. 2011, pp. 66–81.

[31] Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Lar-
ranaga. “A survey on multi-output regression”. In: Data Mining
And Knowledge Discovery 5.5 (2015), pp. 216–233.

87

http://dx.doi.org/10.4230/DagRep.4.4.1
http://why3.lri.fr/doc-0.87.2/


BIBLIOGRAPHY

[32] Thorsten Bormer et al. “The COST IC0701 Verification Competition
2011”. In: Formal Verification of Object-Oriented Software. Torino, Italy,
Oct. 2011, pp. 3–21.

[33] Jean-Louis Boulanger. “Atelier B”. in: Formal Methods Applied to
Complex Systems. New York, USA: John Wiley & Sons, 2014, pp. 35–
46.

[34] Thomas Bouton, Diego Caminha B. de Oliveira, David Déharbe,
and Pascal Fontaine. “VeriT: An Open, Trustable and Efficient SMT-
Solver”. In: 22nd International Conference on Automated Deduction.
Montreal, Canada, Aug. 2009, pp. 151–156.

[35] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (2001),
pp. 5–32.

[36] Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Ol-
shen. Classification and Regression Trees. The Wadsworth and Brooks-
Cole statistics-probability series. Taylor & Francis, 1984.

[37] Alan Bundy, Dieter Hutter, Cliff B. Jones, and J Strother Moore. “AI
meets Formal Software Development (Dagstuhl Seminar 12271)”.
In: Dagstuhl Reports 2.7 (2012), pp. 1–29. DOI: 10.4230/DagRep.
2.7.1.

[38] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst,
Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik
Poll. “An overview of JML tools and applications”. In: International
Journal on Software Tools for Technology Transfer 7.3 (2005), pp. 212–
232.

[39] Jordi Cabot and Ernest Teniente. “A metric for measuring the com-
plexity of OCL expressions”. In: Workshop on Model Size Metrics (co-
located with MODELS 2006). Genova, Italy, Oct. 2006.

[40] Robert N. Charette. “Why Software Fails [Software Failure]”. In:
IEEE Spectr. 42.9 (Sept. 2005), pp. 42–49.

[41] Shyam R. Chidamber and Chris F. Kemerer. “A metrics suite for
object oriented design”. In: IEEE Transactions on Software Engineering
20.6 (1994), pp. 476–493.

[42] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Small-
bone. “TIP: Tons of Inductive Problems”. In: Intelligent Computer
Mathematics: International Conference. Washington, DC, USA, July
2015, pp. 333–337.

[43] Tony Clark and Jos B. Warmer. Object modeling with the OCL: the ratio-
nale behind the Object Constraint Language. New York, USA: Springer,
2002.

88

http://dx.doi.org/10.4230/DagRep.2.7.1
http://dx.doi.org/10.4230/DagRep.2.7.1


BIBLIOGRAPHY

[44] David R. Cok, Aaron Stump, and Tjark Weber. “The 2013 Evaluation
of SMT-COMP and SMT-LIB”. in: Journal of Automated Reasoning 55.1
(2015), pp. 61–90.

[45] Sylvain Conchon and Évan Contejean. The Alt-Ergo automatic theo-
rem prover. 2008. URL: http://alt-ergo.lri.fr/.

[46] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”.
In: Machine Learning 20.3 (1995), pp. 273–297.

[47] Leonardo De Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Budapest, Hungary, Mar. 2008, pp. 337–340.

[48] David Delahaye, Catherine Dubois, Claude Marché, and David
Mentré. “The BWare Project: Building a Proof Platform for the Au-
tomated Verification of B Proof Obligations”. In: Abstract State Ma-
chines, Alloy, B, TLA, VDM, and Z: 4th International Conference, ABZ
2014. Toulouse, France, June 2014, pp. 290–293.

[49] Yulia Demyanova, Thomas Pani, Helmut Veith, and Florian Zuleger.
“Empirical Software Metrics for Benchmarking of Verification
Tools”. In: Computer Aided Verification. San Francisco, CA, USA, July
2015, pp. 561–579.

[50] Florent de Dinechin, Christoph Quirin Lauter, and Guillaume
Melquiond. “Assisted Verification of Elementary Functions Using
Gappa”. In: ACM Symposium on Applied Computing. 2006, pp. 1318–
1322.

[51] P. Domingos. The Master Algorithm: How the Quest for the Ultimate
Learning Machine Will Remake Our World. Basic Books, 2015.

[52] Hazel Duncan. “The Use of Data-Mining for the Automatic For-
mation of Tactics”. PhD thesis. UK: School of Informatics, Univer-
sity of Edinburgh, 2007. URL: https://www.era.lib.ed.ac.

uk/bitstream/handle/1842/1768/hazelthesis.pdf.

[53] Bruno Dutertre and Leonardo de Moura. The Yices SMT
Solver. 2006. URL: http://yices.csl.sri.com/papers/

tool-paper.pdf.

[54] Michael Färber and Cezary Kaliszyk. “Random Forests for Premise
Selection”. In: Frontiers of Combining Systems: 10th International Sym-
posium. Wroclaw, Poland, Sept. 2015, pp. 325–340.

[55] Colin Farquhar, Gudmund Grov, Andrew Cropper, Stephen Mug-
gleton, and Alan Bundy. “Typed meta-interpretive learning for
proof strategies”. In: Late Breaking Papers of Inductive Logic Program-
ming 2015. Kyoto, Japan, Aug. 2015. URL: http://ceur-ws.org/
Vol-1636/paper-02.pdf.

89

http://alt-ergo.lri.fr/
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/1768/hazelthesis.pdf
https://www.era.lib.ed.ac.uk/bitstream/handle/1842/1768/hazelthesis.pdf
http://yices.csl.sri.com/papers/tool-paper.pdf
http://yices.csl.sri.com/papers/tool-paper.pdf
http://ceur-ws.org/Vol-1636/paper-02.pdf
http://ceur-ws.org/Vol-1636/paper-02.pdf


BIBLIOGRAPHY

[56] Norman E. Fenton and Shari L. Pfleeger. Software metrics: a rigorous
and practical approach. 2nd. Boston;London; PWS Pub, 1997.

[57] Jean-Christophe Filliâtre. “Deductive software verification”. In: In-
ternational Journal on Software Tools for Technology Transfer 13.5 (2011),
pp. 397–403.

[58] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3 — Where
Programs Meet Provers”. In: Programming Languages and Systems:
22nd European Symposium on Programming, ESOP 2013. Rome, Italy,
Mar. 2013, pp. 125–128.

[59] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. “Malware Analysis
and Classification: A Survey”. In: Journal of Information Security 5
(2014), pp. 56–64. DOI: 10.4236/jis.2014.52006.

[60] Thomas C. Hales et al. A formal proof of the Kepler conjecture. 2015.
arXiv: 1501.02155.

[61] Felicia Halim. “Evaluate and Benchmark Arís”. MA thesis. Na-
tional University of Ireland Maynooth, July 2014. URL: http:

//eprints.maynoothuniversity.ie/5341/.

[62] Andrew Healy, Rosemary Monahan, and James F. Power. “Evalu-
ating the Use of a General-purpose Benchmark Suite for Domain-
specific SMT-solving”. In: 31st Annual ACM Symposium on Applied
Computing. Pisa, Italy, May 2016, pp. 1558–1561.

[63] Andrew Healy, Rosemary Monahan, and James F. Power. “Predict-
ing SMT Solver Performance for Software Verification”. In: Proceed-
ings of the Third Workshop on Formal Integrated Development Envi-
ronment. Limassol, Cyprus, 2017, pp. 20–37.

[64] Jónathan Heras, Ekaterina Komendantskaya, Moa Johansson, and
Ewen Maclean. “Proof-Pattern Recognition and Lemma Discovery
in ACL2”. In: Logic for Programming, Artificial Intelligence, and Rea-
soning: 19th International Conference. Stellenbosch, South Africa, Dec.
2013, pp. 389–406.

[65] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Bi-
ased Estimation for Nonorthogonal Problems”. In: Technometrics
42.1 (2000), pp. 80–86.

[66] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical
guide to support vector classification. 2003. URL: http://www.csie.
ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

[67] Chih-Wei Hsu and Chih-Jen Lin. “A comparison of methods for
multiclass support vector machines”. In: IEEE Transactions on Neural
Networks 13.2 (2002), pp. 415–425.

90

http://dx.doi.org/10.4236/jis.2014.52006
http://arxiv.org/abs/1501.02155
http://eprints.maynoothuniversity.ie/5341/
http://eprints.maynoothuniversity.ie/5341/
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


BIBLIOGRAPHY

[68] Chenn-Jung Huang, Yu-Wu Wang, Chih-Tai Guan, Heng-Ming
Chen, and Jui-Jiun Jian. “Applications of Machine Learning to Re-
source Management in Cloud Computing”. In: International Journal
of Modeling and Optimization 3.2 (2013), pp. 148–152.

[69] Marieke Huisman, Vladimir Klebanov, and Rosemary Monahan.
“VerifyThis 2012”. In: International Journal on Software Tools for Tech-
nology Transfer 17.6 (2015), pp. 647–657.

[70] Barry Hurley, Lars Kotthoff, Yuri Malitsky, and Barry O’Sullivan.
“Proteus: A Hierarchical Portfolio of Solvers and Transformations”.
In: Integration of AI and OR Techniques in Constraint Programming:
11th International Conference. Cork, Ireland, May 2014, pp. 301–317.

[71] Alexei Iliasov, Paulius Stankaitis, David Adjepon-Yamoah, and
Alexander Romanovsky. “Rodin Platform Why3 Plug-In”. In: ABZ
2016: Abstract State Machines, Alloy, B, TLA, VDM, and Z: 5th Interna-
tional Conference. Linz, Austria, May 2016, pp. 275–281.

[72] Mateja Jamnik, Manfred Kerber, and Martin Pollet. “Automatic
Learning of Proof Methods in Proof Planning”. In: Logic Journal of
IGPL 11.6 (2003), pp. 647–673.

[73] Kalervo Järvelin. “IR Research: Systems, Interaction, Evaluation
and Theories”. In: SIGIR Forum 45.2 (2012), pp. 17–31.

[74] Cezary Kaliszyk and Josef Urban. “Learning-Assisted Automated
Reasoning with Flyspeck”. In: Journal of Automated Reasoning 53.2
(2014), pp. 173–213.

[75] Cezary Kaliszyk and Josef Urban. “Learning-assisted theorem prov-
ing with millions of lemmas”. In: Journal of Symbolic Computation 69
(July 2015), pp. 109 –128.

[76] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Ke-
ung, Pearl Brereton, Stuart Charters, Shirley Gibbs, and Amnart Po-
hthong. “Robust Statistical Methods for Empirical Software Engi-
neering”. In: Empirical Software Engineering (2016), pp. 1–52. DOI:
10.1007/s10664-016-9437-5.

[77] Vladimir Klebanov et al. “The 1st Verified Software Competition:
Experience Report”. In: FM 2011: 17th International Symposium on
Formal Methods. Limerick, Ireland, June 2011, pp. 154–168.

[78] Gerwin Klein. “Proof Engineering Considered Essential”. In: FM
2014: Formal Methods: 19th International Symposium. Singapore, May
2014, pp. 16–21.

91

http://dx.doi.org/10.1007/s10664-016-9437-5


BIBLIOGRAPHY

[79] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. “Comprehen-
sive Formal Verification of an OS Microkernel”. In: ACM Transac-
tions on Computer Systems 32.1 (Feb. 2014), 2:1–2:70.

[80] Ekaterina Komendantskaya, Jónathan Heras, and Gudmund Grov.
“Machine Learning in Proof General: Interfacing Interfaces”. In:
10th International Workshop On User Interfaces for Theorem Provers.
Bremen, Germany, July 2012, pp. 15–41.

[81] Nikolai Kosmatov, Claude Marché, Yannick Moy, and Julien Sig-
noles. “Static versus Dynamic Verification in Why3, Frama-C and
SPARK 2014”. In: 7th International Symposium on Leveraging Applica-
tions. Corfu, Greece, Oct. 2016, p. 16.

[82] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for
Functional Correctness”. In: Logic for Programming, Artificial Intelli-
gence, and Reasoning: 16th International Conference. Dakar, Senegal,
Apr. 2010, pp. 348–370.

[83] K. Rustan M. Leino and Michał Moskal. “VACID-0: Verification of
Ample Correctness of Invariants of Data-structures, Edition 0”. In:
Tools and Experiments Workshop at VSTTE. Edinburgh, UK, Aug. 2010.

[84] Wei Li and Sallie Henry. “Object-oriented metrics that predict main-
tainability”. In: The Journal of Systems and Software 23.2 (1993),
pp. 111–122.

[85] David J Lilja. Measuring computer performance: a practitioner’s guide.
Cambridge, UK: Cambridge Univ. Press, 2000.

[86] Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf
Sellmann. “Parallel SAT Solver Selection and Scheduling”. In: Prin-
ciples and Practice of Constraint Programming: 18th International Con-
ference. Québec City, QC, Canada, Oct. 2012, pp. 512–526.

[87] Claude Marché and Yannick Moy. The Jessie plugin for Deductive Ver-
ification in Frama-C. 2.35. 2015. URL: http://krakatoa.lri.fr/
jessie.pdf.

[88] Daniel Matichuk, Toby Murray, June Andronick, Ross Jeffery, Ger-
win Klein, and Mark Staples. “Empirical study towards a leading
indicator for cost of formal software verification”. In: 37th Interna-
tional Conference on Software Engineering. Vol. 1. Florence, Italy, May
2015, pp. 722–732.

[89] Thomas J. McCabe. “A Complexity Measure”. In: IEEE Transactions
on Software Engineering SE-2.4 (1976), pp. 308–320.

92

http://krakatoa.lri.fr/jessie.pdf
http://krakatoa.lri.fr/jessie.pdf


BIBLIOGRAPHY

[90] Thomas J. McCabe and Charles W. Butler. “Design Complexity Mea-
surement and Testing”. In: Communications of the ACM 32.12 (1989),
pp. 1415–1425.

[91] David Mentré, Claude Marché, Jean-Christophe Filliâtre, and
Masashi Asuka. “Discharging Proof Obligations from Atelier B us-
ing Multiple Automated Provers”. In: ABZ’2012 - 3rd International
Conference on Abstract State Machines, Alloy, B and Z. Pisa, Italy, June
2012, pp. 238–251.

[92] Tom M. Mitchell. Machine Learning. New York, USA: McGraw-Hill,
1997.

[93] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: a proof assistant for higher-order logic. New York, USA:
Springer, 2002.

[94] Lawrence C. Paulson and Jasmine Christian Blanchette. “Three
Years of Experience with Sledgehammer, a Practical Link between
Automatic and Interactive Theorem Provers”. In: 8th International
Workshop on the Implementation of Logics. Yogyakarta, Indonesia, Oct.
2010.

[95] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[96] James F. Power and Brian A. Malloy. “Metric-based analysis of
context-free grammars”. In: 8th International Workshop on Program
Comprehension. Limerick, Ireland, June 2000, pp. 171–178.

[97] J. R. Quinlan. “Induction of decision trees”. In: Machine Learning 1.1
(1986), pp. 81–106.

[98] Luis Reynoso, Marcela Genero, and Mario Piattini. “Towards a met-
ric suite for OCL Expressions expressed within UML/OCL models”.
In: Journal of Computer Science and Technology 4.1 (2004), pp. 38–44.

[99] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Model-
ing Language Reference Manual, The (2nd Edition). New York, USA:
Pearson Higher Education, 2004.

[100] Forrest Shull, Janice Singer, and Dag I. K. Sjoberg. Guide to advanced
empirical software engineering. London, UK: Springer, 2010.

[101] Liyan Song, Leandro L. Minku, and Xin Yao. “The Potential Benefit
of Relevance Vector Machine to Software Effort Estimation”. In: 10th
International Conference on Predictive Models in Software Engineering.
PROMISE ’14. Turin, Italy, Sept. 2014, pp. 52–61.

93



BIBLIOGRAPHY

[102] Mark Staples, Rafal Kolanski, Gerwin Klein, Corey Lewis, June An-
dronick, Toby Murray, Ross Jeffery, and Len Bass. “Formal Spec-
ifications Better Than Function Points for Code Sizing”. In: 2013
International Conference on Software Engineering. San Francisco, CA,
USA, May 2013, pp. 1257–1260.

[103] Geoff Sutcliffe. The TPTP Problem Library. Tech. rep. Dept. of Com-
puter Science, University of Miami, 2016. URL: www.cs.miami.
edu/~tptp/TPTP/TR/TPTPTR.shtml.

[104] Geoff Sutcliffe. “The TPTP Problem Library and Associated Infras-
tructure: The FOF and CNF Parts, v3.5.0”. In: Journal of Automated
Reasoning 43.4 (2009), pp. 337–362.

[105] Geoff Sutcliffe and Christian Suttner. “Evaluating general pur-
pose automated theorem proving systems”. In: Artificial Intelligence
131.1-2 (2001), pp. 39–54.

[106] Geoff Sutcliffe and Christian Suttner. “The TPTP Problem Library”.
In: Journal Automated Reasoning 21.2 (Oct. 1998), pp. 177–203.

[107] Asma Tafat and Claude Marché. Binary Heaps Formally Verified in
Why3. Research Report RR-7780. INRIA, Oct. 2011. URL: https:
//hal.inria.fr/inria-00636083.

[108] Varun Tulsian, Aditya Kanade, Rahul Kumar, Akash Lal, and Aditya
V. Nori. “MUX: algorithm selection for software model checkers”.
In: 11th Working Conference on Mining Software Repositories. Hy-
drabad, India, May 2014, pp. 132–141.

[109] Bruce W. Weide, Murali Sitaraman, Heather K. Harton, Bruce Ad-
cock, Paolo Bucci, Derek Bronish, Wayne D. Heym, Jason Kirschen-
baum, and David Frazier. “Incremental Benchmarks for Software
Verification Tools and Techniques”. In: Verified Software: Theo-
ries, Tools, Experiments: Second International Conference, VSTTE 2008.
Toronto, Canada, Oct. 2008, pp. 84–98.

[110] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo de
Moura. “A Concurrent Portfolio Approach to SMT Solving”. In:
Computer Aided Verification, 21st International Conference, CAV 2009.
Grenoble, France, June 2009, pp. 715–720.

[111] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engineer-
ing. New York, USA: Springer, 2012.

[112] Jim Woodcock and Jim Davies. Using Z: specification, refinement, and
proof. London, UK: Prentice Hall, 1996.

94

www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml
www.cs.miami.edu/~tptp/TPTP/TR/TPTPTR.shtml
https://hal.inria.fr/inria-00636083
https://hal.inria.fr/inria-00636083


BIBLIOGRAPHY

[113] Lin Xu, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.
“Evaluating Component Solver Contributions to Portfolio-Based Al-
gorithm Selectors”. In: Theory and Applications of Satisfiability Testing
– SAT 2012. Trento, Italy, June 2012, pp. 228–241.

[114] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“SATzilla: Portfolio-based Algorithm Selection for SAT”. in: Journal
of Artificial Intelligence Research 32.1 (2008), pp. 565–606.

[115] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
“SATzilla2012: Improved Algorithm Selection Based on Cost-
sensitive Classification Models”. In: Proceedings of SAT Chal-
lenge 2012; Solver and Benchmark Descriptions. System Description.
Helsinki, Finland, 2012.

[116] Du Zhang and Jeffrey J. Tsai, eds. Machine learning applications in soft-
ware engineering. Vol. 16. Series on software Engineering and Knowl-
edge Engineering. Hackensack, N.J, USA: World Scientific, 2005.

95


	Abstract
	Acknowledgements
	List of Abbreviations & Acronyms
	List of Figures
	List of Tables
	Introduction
	Introducing Why3
	A developer-facing front-end
	An intermediate logic language
	PO-discharging back-end

	Thesis Statement
	Contributions
	Organisation of this thesis

	Literature Review
	Why3 and Software Verification Systems
	Measurement and Metrics in Software Verification
	Software Verification Competitions and Benchmark Repositories
	Proof Engineering


	Software Measurement and Metrics
	Measurement and Machine Learning

	Machine Learning
	Software Verification and Machine Learning
	Where4, portfolio-solving, and the intersection of all three disciplines

	Conclusion

	Where4 System Overview and Data Collection
	Selection of tools and programs
	Selection of Why3 programs
	Selection of SMT solvers

	Independent/Predictor variables
	Extracting static metrics from Why3 proof obligation formulæ
	Example: first_last lemma


	Dependent/Response variables
	Execution time
	Accounting for randomness with confidence intervals

	Prover output
	Setting a timeout limit for measurement


	Summary

	Choosing a Prediction Model
	The benefit of portfolio-solving in Why3
	The relative utility of solver responses

	Classification and regression
	Predicting the single best solver
	Predicting the best ranking of solvers
	Predicting solver runtime and response separately
	Combining the prediction of solver response and runtime
	The Cost Function

	Choosing the most effective algorithm for rank prediction
	The ML algorithms we used for model training
	ML Algorithm 1: Support Vector Machines
	ML Algorithm 2: Decision Trees
	ML Algorithm 3: Random Forests
	ML Algorithms 4 & 5: Linear and Ridge Regression
	ML Algorithm 6: k-Nearest Neighbours Clustering

	Experimental Configuration

	Ranking strategies
	Best Ranking
	Worst Ranking
	Random Ranking
	Quantifying Solver Contributions Using Ranking Strategies

	Predictor Selection Results
	EC1: Time
	EC2: R2 Score
	EC3: Normalised Distributed Cumulative Gain
	EC4: Mean Average Error
	EC5: Regression Error
	Properties of multi-output problems
	The chosen model

	Summary

	OCaml Implementation
	Finding the minimal number of trees
	Encoding the random forest
	Extracting features
	Integration with Why3
	Summary

	Evaluating Where4 on Test Data
	EQ1: How does Where4 perform in comparison to the eight SMT solvers?
	Use of a cost threshold

	EQ2: How does Where4 perform in comparison to the three theoretical strategies?
	EQ3: What is the time overhead of using Where4 to prove Why3 goals?
	Threats to Validity
	Internal
	External

	Discussion

	Conclusion
	Future Work

	Ocaml Interfaces
	Where4 command-line options
	The Where4 command given to Why3

	Where4 installation options
	Bibliography

