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Abstract 

Falls are a common problem for Ireland’s older adults and stroke survivors, which have 

severe consequences for the individual and high care costs for the state. Current clinical 

interventions that focus solely on musculoskeletal function are not evidenced to be 

consistently effective in the long term, or in those older adults without muscle and bone 

impairments (Cadore, Rodríguez-Mañas, Sinclair, & Izquierdo, 2013; Teasell, McRae, 

Foley, & Bhardwaj, 2002). The role of cognition in gait control and falls has become 

increasingly apparent, with higher-level executive functions exhibiting a clear 

relationship with falls and cognitive decline with ageing (Morris, Lord, Bunce, Burn, & 

Rochester, 2016). This research aims to address a gap in the literature by identifying the 

specific higher-level executive processes that play a role in gait control, and examining if 

these processes are impaired in older adults and stroke survivors with a high risk of falling. 

Behavioural and electrophysiological measures were used to examine walking gait in 

both single- and dual-task conditions, as well as cognitive performances and the 

associated event-related potentials in healthy young and older adult “fallers” and “non-

fallers”, and also in a sample of stroke survivors. The results suggest that executive top-

down processes (working memory in particular), play a role in gait control during dual-

task walking generally, and that executive processes are relied upon more in older age. 

This work suggests that there may also be neural markers of “successful” ageing that 

differentiate fallers from non-fallers, and that there can be substantial recovery of both 

cognition and gait post-stroke. These findings support the resource capacity and 

compensatory theories of neurocognitive ageing, and suggest that executive 

neuropsychological tasks could be developed to offer alternative cognitive/neural fall 

screening assessments and rehabilitation programmes for stroke patients and the wider 

older adult population. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

 

General Introduction 

 

 

I 
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The vertical bipedal locomotion of primates–likened to a highly unstable inverted 

anatomical pendulum–is a remarkable feat, and unparalleled in any other species. Along 

with the large expansion of the frontal cortex (namely the inferior frontal gyrus), this 

unique and highly energy efficient upright gait distinguishes us from apes, and has been 

attributed, by some, to a supposed evolutionary shift in postural control to higher levels 

of the central nervous system and the cerebral cortex (Niemitz, 2010; Skoyles, 2006; 

Wang, Uhrig, Jarraya, & Dehaene, 2015). The ability to remain upright with dynamic 

postural control while walking is a complex operation necessary for everyday functioning, 

and requires the integration of information from multiple sensory, motor and cognitive 

systems. Furthermore, as humans, we display a remarkable ability to navigate while 

multitasking in everyday life. We walk and think, walk and talk, and walk and text. We 

walk with the dog, while carrying toddlers, and balancing groceries. We plan trajectories 

up and down slopes and steps, and navigate around moving and stationary obstacles, both 

human and object. Sometimes we do all of this with apparent automaticity. Sometimes, 

however, we trip, we stumble, we fall.  

 

1.1. The Problem of Falls 

Falls are a global healthcare problem for older adults, with both national and international 

reports estimating that one third of adults over the age of 65, and half of those over the 

age of 80, experience at least one fall each year (Health Service Executive, 2008; World 

Health Organisation (WHO), 2007). Falls account for 40% of all injurious deaths (WHO, 

2007) and are a leading cause of injury-related hospital admission over the age of 65, 

accounting for 44.1% in an Irish population study in 1995 (Laffoy, Igoe, & O’Herlihy, 

1995). Falls also commonly lead to a number of negative outcomes for the individual, 

namely: functional decline (in terms of activities of daily living), physical 
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injury/disability (e.g. hip fracture), negative sociological and psychological consequences 

(fear of falling leads to less activities outside of the home), loss of living independence 

with subsequent admittance to nursing home care, and even death (Rittman, Boylstein, 

Hinojosa, Sberna Hinojosa, & Haun, 2007; Rubenstein, 2006; Vellas, Wayne, Romero, 

Baumgartner, & Garry, 1997).  

 Falls are also a particular problem for older adults who have experienced a stroke, 

with higher incidence rates than community-dwelling older-adults making stroke 

survivors a high fall-risk group of the population (Batchelor, Mackintosh, Said, & Hill, 

2012; Jorgensen & Jacobsen, 2002; Simpson, Miller, & Eng, 2011). Approximately 23-

62% of survivors experience at least one fall post-stroke (Langhorne et al., 2000; Lim, 

Jung, Kim, & Paik, 2012), with some studies reporting that up to 73% of people fall after 

rehabilitation (6+ months post stroke: Forster & Young, 1995; Mackintosh, Goldie, & 

Hill, 2005). Falls also occur most often whilst walking in stroke survivors (Hyndman, 

Ashburn, & Stack, 2002). One Dublin-based study reported that 23.5% of stroke patients 

experienced at least one fall at a 2-year follow up, with 14.2% of the sample reporting 

more than one fall post-stroke (Callaly et al., 2015). In addition to the negative outcomes 

of falls outlined above, falls following a stroke also come with drastic setbacks in 

cognitive and motor recovery or further disability, including longer hospital stays of up 

to 11 days (Teasell, McRae, Foley, & Bhardwaj, 2002; Wong, Brooks, Inness, & 

Mansfield, 2016). Falls post-stroke also have particularly high morbidity and mortality 

rate (Divani, Vazquez, Barrett, Asadollahi, & Luft, 2009; Langhorne et al., 2000). The 

functional recovery goals of stroke survivors, particularly the ability to carry out activities 

of daily living, makes recovery of gait post-stroke a priority (Belda-Lois et al., 2011). 

 In addition to the personal suffering of the individual, falls and their negative 

outcomes also place a severe strain on healthcare services, at a considerable cost to the 
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state. In 2007, the estimated total cost of older adult falls and fractures in Ireland was 

€402 million, a figure which was estimated to be in excess of €500 million by 2010 

(Gannon, O’Shea & Hudson, 2007). Annual stroke care is now estimated to exceed €1 

billion (4% of total health care expenditure), of which 40% accounts for nursing home 

facility costs for dependent patients, with an estimated in-patient cost of  €59 million for 

fall-related injuries in elderly adults (Irish Heart Foundation (IHF), 2010; HSE, 2008). 

The prevalence rates of stroke, and of falls in older adults, are only expected to increase 

with Ireland’s ageing population demographic in years to come (with a 50% increase in 

stroke patients by 2021–IHF, 2010; HSE, 2008). Although Ireland’s population is young 

in comparison to other European countries, the percentage of older adults is increasing. 

In a 2014 report, the number of adults over the age of 85 in Ireland was predicted to 

double by 2025 (National Social Monitor 2014). Therefore, the burden of falls due to 

ageing, stroke and other age-related illnesses is a growing healthcare problem. This 

problem needs to be addressed with improved intervention and rehabilitation protocols 

that aim to understand the complexity of gait and restore functional independence, rather 

than merely offer compensation. 

 

1.1.1. Fall assessment 

Falls are defined as “a sudden, unintentional change in position causing an individual to 

land at a lower level, on an object, the floor, or the ground, other than as a consequence 

of sudden onset of paralysis, epileptic seizure, or overwhelming external force” (Feder, 

Cryer, Donovan, & Carter, 2000, p. 1007). Clinically, traditional subjective and semi-

subjective qualitative medical assessments of gait performance have been used to predict 

fall-risk (Muro-de-la-Herran, García-Zapirain, Méndez-Zorrilla, Garcia-zapirain, & 

Mendez-zorrilla, 2014). Clinicians visually inspect a patient’s gait by observing their 
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walk over a short distance, and consider this in light of the patient history and physical 

examination (Levine, Richards, & Whittle, 2012; Sigman & Dehaene, 2006). Sometimes 

speed may be recorded with a stopwatch, or a video recording of the patient’s gait would 

be taken for further qualitative inspection (Levine et al., 2012). Semi-subjective 

assessments of functional gait and balance performance include the commonly used 

Dynamic Gait Index, Timed up and Go test, and Berg Balance Scale (Hayes & Johnson, 

2003). These performance-based assessments are used to identify functional limitations, 

however research has also shown that these tests fail to predict falls in community older 

adults who are active and independent: i.e. idiopathic fallers (Boulgarides, McGinty, 

Willett, & Barnes, 2003). The subjective nature of these assessments leaves them open to 

human error and inaccuracy, which has negative implications for diagnosis and 

rehabilitation (Sigman & Dehaene, 2006), as they lack validity, reliability, sensitivity, 

and specificity (Krebs, Edelstein, & Fishman, 1985; Saleh & Murdoch, 1985; Toro, 

Nester, & Farren, 2003).  

 However, recent technological advancements now allow for more objective 

quantitative analysis, offering more precise measurement of general spatial and temporal 

parameters of gait: e.g. speed, stride time, stride length (Levine et al., 2012; Sigman & 

Dehaene, 2006). These technologies include a broad range of devices and systems such 

as footswitches, accelerometer and gyroscope sensors, instrumented walkways, force 

platforms, and camera-based motion capture systems (Levine et al., 2012). Optical 

motion systems remain the gold standard of 3D gait analysis (Agostini, Antenucci, Lisco, 

& Gastaldi, 2015; Muro-de-la-Herran et al., 2014). However, many of these systems are 

not accessible or practical in a clinical setting for quick assessment of a patient’s gait 

(Levine et al., 2012). Recent developments in wearable gait analysis systems now provide 

cost-effective wireless accelerometer and gyroscope sensors that are discrete, portable, 
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quick and easy to use. These are comparable to other qualitative and quantitative 

measures in estimates of gait parameters, and may provide an opportunity for quantitative 

gait assessments in the clinic setting in the near future (Agostini et al., 2015; Sant’Anna, 

Wickström, Zügner, & Tranberg, 2012).  

 Many studies have examined the specific spatial and temporal gait parameter 

impairments that predict fall risk in both older adults and post-stroke (Verghese, Holtzer, 

Lipton, & Wang, 2009). The gait cycle is most often analysed with respect to the heel and 

toe events (heel-strike and toe-off), which can be used to determine spatial and temporal 

parameters of locomotion (Levine et al., 2012).  The most commonly reported 

characteristic is gait speed, however there are a number of other gait parameters that are 

independently associated with fall risk: these include cadence, stride time, stride length 

and variability measures (Taylor, Delbaere, Mikolaizak, Lord, & Close, 2013; Verghese 

et al., 2009). Gait speed is calculated as the distance walked in the time taken, and cadence 

as the number of steps per minute. Stride time–often referred to as a single gait cycle–is 

calculated as the time between successive heel-strikes of the same foot. The distance 

covered during a stride is the stride length. Stride time variability and stride length 

variability are also used as parameters of gait for analysis. Variability is calculated as the 

coefficient of variation (CV) of stride time and length, which is the percentage of the 

standard deviation (SD) divided by the mean of all gait trials or cycles (Hausdorff, Rios, 

& Edelberg, 2001). This is a common linear measure of variability that represents the 

magnitude of temporal variations (Lord et al., 2013). However, there are also non-linear 

measures such as maximum Lyapunov exponent and entropy that describe the 

organisation of the temporal variations (Vieira et al., 2017). Other measures include: 

swing time and stance time (calculated as the time the foot is and is not in contact with 

the floor, respectively–toe-off to heel-strike, and heel-strike to toe-off), swing/stance ratio 
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(ratio of time between swing and stance) and asymmetry values of time between left and 

right leg gait events (Levine et al., 2012)–see Chapter 2, section 2.4.2 for more details.  

 Community-dwelling healthy older adults walk slower, with shorter strides, and 

have an increased stride time variability compared to younger adults, when walking at a 

comfortable walking pace (Taylor et al., 2013). However, these age-related changes in 

gait do not necessarily indicate high fall-risk, and may be compensatory to maintain 

balance in the face of declining sensory and motor functioning with age. Normative 

values of gait speed in a nationally representative sample from Ireland show that gait 

speed slows linearly from the age of 50 to 85 years (Kenny et al., 2013). Fall risk and 

cognitive decline in older adults are predicted by slower speeds (Abellan Van Kan et al., 

2009; Holtzer et al., 2007; Mielke et al., 2013; Ostir et al., 2015; Verghese et al., 2009), 

and gait variability has been proposed as a sensitive measure of instability that is 

indicative of fall-risk and future cognitive status (Gomes et al., 2016; Hausdorff et al., 

2001; Lord, Howe, Greenland, Simpson, & Rochester, 2011; Verghese et al., 2009). Older 

adults with cognitive impairment also exhibit shorter steps, slower speed, and greater 

variability–that is predictive of fall-risk–than cognitively intact older adults (Maquet et 

al., 2010; Taylor et al., 2013).  

 More recently, researchers have established distinctive domains of gait consisting 

of different temporal and spatial gait characteristics that group together when factor 

analysis is applied. These domains have been differentially associated with fall-risk and 

cognitive impairment in older adults (Creagh et al., 2016; Verghese et al., 2008). Initially, 

three domains of pace, rhythm and variability were identified (Verghese, Wang, Lipton, 

Holtzer, & Xue, 2007b). However, more recent work has added a domain of asymmetry 

and postural control, resulting in five domains of gait (J. Hollman & McDade, 2011; 

Lord et al., 2013). See Table 1.1. for the five domains and their clusters of gait parameters 
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according to Lord et al. The domains of rhythm and variability have previously been 

associated with fall risk in older adults (Verghese, Holtzer, Lipton, & Wang, 2009), and 

the pace domain has been associated with attention and executive functioning (Inzitari et 

al., 2007; Lord et al., 2011). Executive functions are involved in the temporary 

maintenance and manipulation of sensory information, and goal-oriented planning 

(McCabe, D, & Hambrick, 2010).  

 

Table 1.1 Five factor domains of gait and their clusters of individual gait characteristics, 

as identified by Lord et al. (2013) and Hollman and McDade (2011).  

 

Domain Spatiotemporal Gait Characteristic 

Pace Speed (m/s) 

Step length (m) 

Step time variability (ms %) 

Step swing time variability (ms %) 

Step stance time variability (ms %) 

 

Rhythm Step time (ms) 

Step swing time (ms) 

Step stance time (ms) 

 

Variability Step velocity (m/s %) 

Step length variability (m %) 

Step width variability (m %) 

 

Asymmetry Step time asymmetry (ms) 

Step swing asymmetry (ms) 

Step stance asymmetry (ms) 

 

Postural Control Step width (m) 

Step length asymmetry (m) 
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 1.1.2 Risk factors 

While gait impairments are one of the most important risk factors for falls in both older 

adults and stroke survivors (Campbell, Borrie, & Spears, 1989; Hausdorff et al., 2001; 

Weerdesteyn, de Niet, van Duijnhoven, & Geurts, 2008), it is important to understand 

other predictive factors in order to develop targeted screening and prevention strategies. 

Varying extrinsic/environmental factors and intrinsic individual/personal factors have 

been identified for fall-risk. Extrinsic factors include medications/polypharmacy, 

inappropriate (ill-fitting) footwear, and environmental tripping hazards such as loose 

carpet/rugs or slippery floors, unstable furniture and poor lighting (Ambrose, Paul, & 

Hausdorff, 2013; HSE, 2008; Pasquetti, Apicella, & Mangone, 2014). Intrinsic risk 

factors include advancing age, female gender, gait impairments, history of falls, fear of 

falling, musculoskeletal impairments (lower limb muscle weakness, arthritis), sensory 

deficits, disease symptoms, declining functional abilities and cognitive impairment 

(Ambrose et al., 2013; HSE, 2008). Of these, previous falls, gait and balance impairments, 

polypharmacy, age, female gender, environmental factors and cognitive impairments 

(particularly attention and executive function impairments) appear to be the most 

common risk-factors (Ambrose et al., 2013). Thus, in the following studies we attempted 

to counterbalance the sex of participants and asked in the telephone screening process 

about any medications participants were taking, particularly those stating side effects of 

dizziness or balance impairments, in an attempt to minimise the effects of polypharmacy 

on our findings. Individuals who were taking numerous medications were often excluded 

due to other health issues that met the criteria for exclusion. 
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 1.1.3 Prevention and intervention 

Current fall prevention strategies are targeted towards the above risk factors. 

Unfortunately, many of these risk factors are unmodifiable (such as previous history of a 

fall, gender, age, etc), and cannot be used as targets for modification in falls rehabilitation. 

Thus, current multi-factorial assessments and interventions investigate the various 

modifiable causes of falls and aim to reduce future risk by means of medical treatment, 

training muscles and balance, and modifications in the home to reduce hazards (Segev-

Jacubovski et al., 2011). However, the role of cognition has been largely overlooked. 

Traditionally, walking was considered an automated biomechanical and reflexive motor 

function, with some voluntary control, but primarily relying on central pattern generators 

located at the spinal cord, brainstem and cerebellum (Clark, 2015; Guertin, 2013; Jahn et 

al., 2008). Concomitantly, falls in older adults were largely considered a result of age-

related declines in sensory and musculoskeletal function (e.g. muscle weakness, arthritis, 

osteoporosis, visual impairment). Unfortunately, many of the ensuing musculoskeletal 

interventions (e.g.: strength training, gait re-training, body-weight support, EMG 

biofeedback and splinting of the lower extremity) are not consistently effective in the long 

term (Cadore, Rodríguez-Mañas, Sinclair, & Izquierdo, 2013; Teasell, McRae, Foley, & 

Bhardwaj, 2002). Furthermore, multifactorial interventions also reveal no effects or only 

limited effects on reducing fall risk in older adults with and without cognitive impairment 

(Michael et al., 2010; Shaw et al., 2003). Furthermore, many of these interventions are 

not applicable to idiopathic older fallers without physiological impairments or 

neurological diagnosis (Buchner et al., 1997; Schlicht, Camaione, & Owen, 2001).  

 We know that in addition to sensory and motor decline, cognitive function also 

declines naturally with ageing (Deary et al., 2009; Park, 2000; T. A. Salthouse, 2009b). 

Yet cognition has only recently been recognised as a modifiable risk factor for falls (Muir, 
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Gopaul, & Montero Odasso, 2012; Rubenstein, 2006). Thus, the traditional clinical 

interventions outlined above largely neglected cognitive aspects of gait and locomotion, 

failing to specifically focus on incorporating cognition into physical therapy. However, 

recent research in Parkinsonian rats shows that skill-based exercise requires more cortical 

processing, motor control and flexibility than non-skilled aerobic training with new 

Parkinson’s disease (PD) interventions focusing on dual cognitive and motor exercise for 

improving quality of life (Jakowec, Wang, Holschneider, Beeler & Petzinger, 2016). 

 

1.2 The Cognitive-Motor Link  

Evidence of a cognitive-motor link comes from recent cross-sectional studies identifying 

associations between falls, gait and cognition in normal ageing and neurodegenerative 

disorders such as mild cognitive impairment, dementia and Parkinson’s disease (Demnitz 

et al., 2016; Morris, Lord, Bunce, Burn, & Rochester, 2016; Muir et al., 2012). 

Furthermore, longitudinal studies have also evidenced gait as a predictor of cognitive 

decline (Verghese et al., 2014). Fall incidence appears to progressively increase with 

cognitive impairment in older adults, with 60% of cognitively impaired older adults 

falling each year, and up to 80% of persons with dementia, which is twice that of 

cognitively-intact older adults (Laird, Studenski, Perera, & Wallace, 2001; Shaw et al., 

2003). Data from over five thousand individuals in the Irish Longitudinal Study on 

Ageing (TILDA) have also revealed that mild cognitive impairment (defined by global 

clinical measures) is retrospectively associated with higher incidence of falls in older 

adults over the previous 12 months (Tyrovolas, Koyanagi, Lara, Ivan Santini, & Haro, 

2015). 

 A systematic review by Muir et al. in 2012 found that global cognitive impairment 

(and executive domain impairment) was associated with falls and fall injuries in older 
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adults. The inverse relationship between cognition and disability in older adults also 

seems to be mediated by habitual gait speed (Kuo, Levelle, Yu, & Millberg, 2007), and 

gait speed also independently predicted onset of cognitive impairment better than other 

measures of physical performance over a 4.4 year follow-up (Veronese et al., 2016). The 

mediating role of habitual gait speed in Kuo et al.’s study could indicate a mid-brain 

dysfunction affecting gait, and requiring more cognitive input, as in the case of sub-

clinical Parkinson’s disease. However, this would only apply to habitual gait speed (and 

not goal-directed speed). More recent systematic reviews and meta-analysis studies have 

found positive associations between gait speed and other mobility measures, and different 

cognitive domain performances (Demnitz et al., 2016; Morris et al., 2016). Demnitz et al. 

(2016) conducted a review and meta-analysis of mobility and cognition in older adults 

and found that gait and lower extremity function (and to a lesser extent, balance) were 

positively correlated with cognition. Namely, slower speed was associated with worse 

global cognition (mainly on the Mini Mental State Examination: MMSE) and executive 

function scores, with smaller effects for an association between gait speed and memory, 

and speed of processing. Demnitz et al. concluded that there is a global association 

between mobility and cognition in older adults, but not all cognitive processes (e.g.: 

visuospatial, working memory processes), nor all aspects of gait (e.g.: stride time, stride 

length, gait variability) were included in the reviewed literature.   

 Another recent structured review by Morris et al. (2016) also analysed the 

association between gait and cognitive performances in older adults with and without 

cognitive impairment and Parkinson’s disease. However, this review attempted to focus 

on the discrete relationship between independent gait and cognitive domains, given that 

the commonly reported gait speed is a global gait metric and arguably cannot represent 

the subtle changes in ageing and pathological gait. Using the gait domain classification 
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system proposed by Lord et al. (2013: see Table 1.1above), Morris et al. found that the 

pace domain of gait was most commonly studied in all three samples and predicted 

cognitive decline. In older adults, pace was strongly associated with attention and 

executive functions, and somewhat with processing speed, language and visuospatial 

processing, but not global cognition. The same relationship between pace and attention 

and executive function was evident, albeit less strongly, in the cognitive impaired samples 

(AD, frontotemporal dementia and mild cognitive impairment). For all other gait domains, 

many samples had no associations with various cognitive domains, or the literature had 

inconsistent or contradictory evidence of associations, resulting in no clear trends. Morris 

et al. also attempted to map the underlying pathological neural mechanisms of the gait 

and cognitive associations, and found that some of these common substrates differed 

across age and pathology (see Figure 1.1 below). However, the model does not include 

measures of asymmetry and postural control, and is dominated by links to speed and pace. 

Therefore, this model is arguably too general to guide interpretation of the current 

research as it stands. These findings by Morris et al. call for future studies to examine 

associations between more comprehensive batteries of cognition and gait. This will lead 

to a more specific understanding of the selective rather than global relationship between 

aspects of gait and cognition, and aid in the development of more specific screening and 

rehabilitation protocols.  
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Figure 1.1 A map of associations between domains of gait and cognition, and the 

underlying neural mechanisms in older adults (OA: solid line), CI (cognitive impairment: 

dashed line) and PD (Parkinson’s disease: dotted line), as proposed by Morris et al., 

2016. Permission for reuse obtained from Elsevier on 17/10/2016.  

 

 Morris et al. also reviewed more recent longitudinal studies that have allowed for 

investigation of the direction of the relationship between gait and cognition in older adults. 

Previously, cognitive impairment and dementia have been counted as risk factors for falls 

(Skelton & Todd, 2004; Van Doorn et al., 2003), with global cognition, executive 

function and memory predicting decline in pace domain parameters–primarily gait speed 

(Morris et al., 2016). However, it has also recently become apparent that gait measures 

can longitudinally predict cognitive decline and diagnosis of dementia, with gait speed 

shown to predict cognitive decline in ageing adults (Mielke et al., 2013). Morris et al. also 

highlight that multiple studies of community older adults reveal the pace domain as a 

strong predictor of global cognition (Auyeung et al., 2011; Dodge et al., 2012; Taniguchi 

et al., 2012), with fewer studies showing pace predicts executive function decline and 

processing speed (Inzitari et al., 2007; Verghese et al., 2008).  
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 Work by Verghese et al. has shown that the pace and rhythm domains predict 

memory decline and dementia onset, with only the pace domain predicting executive 

function decline (Verghese et al., 2007b). Verghese et al. have thus proposed a Motor-

Cognitive Risk (MCR) syndrome as a prodome syndrome for dementia diagnosis that is 

characterised by slow gait and cognitive complaints (Verghese, Wang, Lipton, & Holtzer, 

2013). MCR has been evidenced to commonly occur in older adult populations across 

multiple countries (Verghese et al., 2014), and is associated with increased mortality 

(Ayers & Verghese, 2016). Recent work using the TILDA national data set in Ireland 

(Maguire et al., 2016) reveals prevalence rates of 2.3% which are lower than the 

previously reported 7% prevalence by Ayers and Verghese (2016). Furthermore, gait and 

balance measures have been evidenced as predictive markers of cognitive decline in 

stroke survivors up to 2 years post-stroke event (Ben Assayag et al., 2015). This finding 

comes from the Tel Aviv Brain Acute Stroke Cohort study–a large prospective cohort 

study–in which they found that development of cognitive decline after 6 months was 

associated with longer performances on the Timed Up and Go test, lower Berg Balance 

Scale scores, slower gait, and poorer dual-task accuracy while walking. 

 

1.4 Theoretical accounts of the cognitive-motor link 

The mounting evidence above supporting the relationship between cognition, gait and 

falls has challenged the long held belief that gait impairments and falls in older adults are 

solely attributable to sensorimotor decline. Traditionally, walking gait has been 

considered an automated biomechanical process, whereby age-related slowed motor 

responding and declines in musculoskeletal, visual, vestibular and proprioceptive 

functioning were considered responsible for increased falls in older adults (Segev-

Jacubovski et al., 2011). Studies of postural control during quiet standing have shown 
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that older adults are less stable overall than younger adults, and are particularly unstable 

when visual and proprioceptive inputs are altered or unavailable (Teasdale & Simoneau, 

2001). Studies of ageing gait have also revealed that declining sensorimotor functions are 

a factor in gait decline in older adults (Callisaya et al., 2009; Xie, Liu, Anson, & Agrawal, 

9000). Neuroimaging studies of the ageing brain and motor control have suggested that 

motor cortical and corpus callosum atrophy is associated with slower movements and 

poorer coordination, as well as postural balance and gait impairments (Seidler et al., 2010; 

Tang & Woollacott MH., 1996).  

 Older adults also show more widespread brain region activity for the performance 

of motor tasks (including the prefrontal cortex) in comparison to younger adults, 

suggesting that the motor network is adaptive to maintain performance in the face of age-

related degeneration (Ward & Frackowiak, 2003). Furthermore, the case for a stronger 

cognitive-motor link with ageing is evident in positive correlations between frontal region 

activation and motor performances in older adults (Heuninckx, Wenderoth, & Swinnen, 

2008; Seidler et al., 2010). In parallel, neuroimaging studies of cognitive control have 

shown similar differential patterns of brain activity in young and older adults, and a 

number of models and theories have been proposed in the field of cognitive neuroscience 

to explain these age-related changes. Examination of these theories may offer some 

insights into the neural mechanisms underlying the relationship between gait, falls and 

cognition in normal ageing adults and those with cognitive impairment.  

 

1.4.1 Theories of cognitive ageing 

Numerous studies have highlighted that age-related declines in cognitive function 

capabilities are not ubiquitous. There can be simultaneous declines in some cognitive 

abilities (fluid cognition), while older adults can also maintain performance, or have 
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superior performance in other forms of cognitive capacities (crystallized abilities: learned 

skills and knowledge): for example, older adults have more extensive vocabularies and 

world knowledge capacity (Cattell, 1963; Harada, Love, & Triebel, 2013; T. A. Salthouse, 

2009a). However, age-related declines are consistently observed for fluid cognitive 

functions such as memory, executive control (sustained attention, attention regulation and 

decision making), and processing speed after the third decade of life (Glisky, 2007; 

Harada et al., 2013; T. Salthouse, 2012). These functions underlie the ability to process 

and learn new information, solve problems and allocate attention to the environment, all 

of which can be arguably considered important when walking around obstacles and 

navigating an environment. Park (1999) highlights a parallel distinction between 

controlled effortful processing that exhibits age-related declines, and automatic 

processing that remains intact. In light of this, the above evidence of declines in motor 

control of locomotion (instability and falls) in older adults may indicate that walking gait 

is an effortful task, influenced by age-related cognitive declines.  

 A number of cognitive ageing theories attempt to explain some anomalous ageing 

research findings, such as: why only some older adults exhibit declining cognitive 

performance while others appear to maintain performance; why there is differential brain 

activation in young and older adults, and why there can be increased activation in brain 

areas that have been associated with age-related behavioural performance declines 

(Cabeza, Anderson, Locantore, & McIntosh, 2002). The cognitive reserve theory posits 

that a number of factors such as high levels of education, physical activity and mental 

activity may mediate clinical manifestations of cognitive decline due to age-related 

neuropathology (Meng & D’Arcy, 2012; Stern, 2002). This comes from epidemiological 

evidence that not all older adults exhibit the clinical symptoms of cognitive decline (such 

as cognitive impairment and symptoms of dementia), yet evidence of the neural basis of 
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this reserve is still elusive (Steffener & Stern, 2012). This cognitive reserve (akin to brain 

reserve capacity) theory suggests that some older adults can maintain functional abilities 

despite declining neural pathology, due to an ability to adapt and flexibly optimise or 

maximise neural networks, or to recruit additional networks (Jellinger & Attems, 2013; 

Stern, 2002; Whalley, Deary, Appleton, & Starr, 2004).  

 Two key hypotheses have been proposed to explain neurocognitive ageing which 

underpin a theory of cognitive reserve: one of neural compensation and one of neural 

dedifferentiation. The dedifferentiation hypothesis proposes that the ageing process 

results in widespread less distinctive and less efficient neural recruitment, which can 

result in poorer task performances in general (Cabeza et al., 2002). This is supported by 

research that has identified a link between the impaired modulation of monoamines 

(serotonin, neuroadrenaline, and in particular, dopamine) and declining cognitive 

working memory and processing speed in older adults (Arnsten & Li, 2005; S. C. Li, 

Lindenberger, & Sikström, 2001). Furthermore, age-related decline in gross and fine 

motor performances has been associated with degenerating neuromodulation of dopamine 

(Seidler et al., 2010). Thus, Li et al. have proposed a theory of cognitive ageing that cuts 

across neurobiological, neural information processing, and behavioural levels (S. C. Li et 

al., 2001; S. Li, Lindenberger, & Frensch, 2000), which may also explain motor control 

decline in ageing. This theory proposes that deficient neuromodulation is related to noisy 

neural information processing and poor cortical representations of information processing 

functions (working memory and attention regulation), that may underlie the age-related 

cognitive deficits observed at the behavioural level (S. C. Li et al., 2001). This deficient 

neuromodulation could be related to deeper mid-brain dysfunction, representing 

subclinical Parkinson’s disease impairment.  
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 Alternatively, the Hemispheric Asymmetry Reduction in Older Adults 

(HAROLD) model of cognitive ageing (Cabeza, 2002) was proposed to explain why 

cognitive tasks (memory, perception and inhibitory tasks) that are associated with 

lateralised activation in the left prefrontal cortex (PFC) in young adults, are associated 

with increased bilateral PFC activations in ageing adults (Dolcos, Rice, & Cabeza, 2002). 

For example, functional neuroimaging studies have shown more lateralised activity in the 

left PFC of younger adults on tasks of verbal working memory, and right lateralised 

activity on tasks of spatial working memory (P A Reuter-Lorenz et al., 2000; Smith & 

Jonides, 1999). However, in older adults, positron emission tomography (PET) imaging 

shows more global bilateral activation in older adults on both verbal and spatial working 

memory tasks (P A Reuter-Lorenz et al., 2000). These increased bilateral patterns of 

activity may reflect age-related deficient neural processing in specialised and localised 

brain regions, supporting the dedifferentiation hypothesis.  

 However, others have proposed that increased bilateral activation with ageing 

may be a compensatory strategy in which additional or alternative neural networks are 

recruited in order to preserve task performance (Cabeza et al., 2002; Martins, Joanette, & 

Monchi, 2015; P A Reuter-Lorenz et al., 2000). This is in line with the compensatory 

hypothesis view. Recently, Martins et al. (2015) have proposed a Temporal Hypothesis 

for Compensation whereby speed of processing is compromised by delayed cerebral 

responding in order to maintain cognitive function.  However, most compensation 

theories to date propose that the ageing brain is plastic and adapts to the challenges of 

degenerating neural motor control with compensatory network responses to maintain 

cognitive function  (Cabeza et al., 2002). These compensatory models are also supported 

by neuroimaging research evidencing simultaneous cortical shrinking (including loss of 

white matter integrity) and increased neural activation in the frontal and parietal regions 
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of the brain (Greenwood, 2007). However, where cortical atrophy is not always exhibited 

with normal ageing, altered neuronal function and plasticity is commonly manifest 

(Moore & Murphy, 2016).  

 The main compensatory theories attempting to explain this loss of neural integrity 

and adaptation to this loss are the Posterior-Anterior Shift in Aging (PASA) model, the 

Compensation-Related Utilisation of Neural Circuits Hypothesis (CRUNCH) model, and 

the Scaffolding Theory of Aging and Cognition (STAC). The PASA model (Davis, 

Dennis, Daselaar, Fleck, & Cabeza, 2008; Grady et al., 1994) is based on neuroimaging 

evidence of a simultaneous decline in activation of ocipitotemporal regions and increased 

activation of the frontal regions in older adults in comparison to young adults while 

performing the same cogntive tasks. This functional reorganisation was first evidenced 

by Grady et al. (1994) with PET imaging during perceptual processing tasks, who 

suggested that older adults need to recruit more anterior parts of the brain (including the 

PFC) in order to compensate for deficits in sensory regions of the brain and maintain 

cognitive function performances. These findings have been replicated across many 

cognitive domains (including working memory, attention and visuospatial processing), 

where increased age-related frontal and parietal activation correlates positively with task 

performance–regardless of task difficulty or confidence levels of participants–while 

occipitotemporal activity correlates negavtively with task performance (Davis et al., 

2008). Furthermore, the same pattern of compensatory neural reorganisation has been 

evidenced with electrophysiological recordings of reduced P3 amplitude morphologies, 

with an anterior shift in older adults on a working memory task (Steiner, Gonsalvez, De 

Blasio, & Barry, 2016).  

 The CRUNCH model proposes that overactivation in the brains of older adults 

who perform equivalent to younger adults behaviourally is a function of compensation 
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via neural plasticity (Patricia A. Reuter-Lorenz & Cappell, 2008). Specifically, this model 

states that older adults recruit more neural resources than young adults when task 

demands are low, but show less distinctive patterns of activity when task demands are 

high, due to limited resources: i.e. they have reached a resource ceiling (Carp, Gmeindl, 

& Reuter-Lorenz, 2010; Patricia A. Reuter-Lorenz & Cappell, 2008). Numerous 

neuroimaging studies have evidenced this pattern of compensatory overactivation to meet 

working memory task demands in older adults (Berlingeri, Danelli, Bottini, Sberna, & 

Paulesu, 2013; Cappell, K.A., Gmeindl L., 2010; Carp et al., 2010; Mattay et al., 2006).  

 A functional magnetic resonance imaging study by Berlingeri et al. (2013) found 

that older adults recruited alternate additional brain regions to complete semantic 

language and episodic memory tasks. When comparing the HAROLD and CRUNCH 

models, the authors found that the pattern of effects was more compatibale with the 

CRUNCH model of ageing. Carp et al. (2010) investigated verbal and visual working 

memory encoding, maintenance and retrieval in young and older adults using fMRI and 

multi-voxel pattern analysis. Interestingly, the results of this study actually supported 

both the dedifferentatuion hypothesis and compensation CRUNCH model in that they 

observed less distinctive patterns of activity in the sensory cortex during encoding and 

retrieval, but higher prefrontal and parietal dsitinctiveness at lower (simpler) task loads, 

and less distinctveness at higher task loads (the younger adults showed more).  

 The STAC model (Park & Reuter-Lorenz, 2009) of neurocognitive ageing is in 

agreement with the CRUNCH model, and offers one of the most comprehensive accounts 

of age-related neurocognitive decline and plasticity (P. A. Reuter-Lorenz & Park, 2010). 

This theory is unique in that it presents a model of neural activation that is continuous 

across the lifespan, highlighting parallels between neural development in childhood and 

neurodegeneration in later life (Patricia A. Reuter-Lorenz & Park, 2014). This model 
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proposes that compensatory functional reorganisation (including dedifferentiation) in the 

form of alternate neural circuit scaffolds occurs in response to age-related degradation of 

neural structures and networks. This can be evidenced as overactivation primarily in the 

frontal regions of the brain, but also parietal and mediotemporal and occipital regions, in 

order to maintain cognitive functionality (P. A. Reuter-Lorenz & Park, 2010).  

 

1.4.2 Explaining age-related cognitive and motor decline 

In light of these simultaneous age-related declines in cognitive, sensory and motor 

function, three previously proposed theoretical explanations lend themselves to 

elucidating the relationship between cognitive decline and falls in older adults (K. Z. H. 

Li & Lindenberger, 2002). First, it is possible that there is a common cause affecting 

sensory function and cognition (Baltes & Lindenberger, 1997), and gait and cognition in 

ageing adults with MCR syndrome, MCI and dementia. Second, there may be increasing 

overlap in resource capacities for each of these functions with ageing, resulting in cross-

domain resource competition and compensatory trade-offs. This is in line with the brain 

and cognitive resource capacity theories above. The third explanation is a combination of 

both of the above may contribute to falls and declining cognition in older adults.  

 Therefore, it may be the case that cognitive and motor control share the same 

underlying pathological burden with ageing, which would account for combined 

impairments in those with MCR syndrome (Hausdorff & Buchman, 2013). Alternatively, 

as age-related cognitive or motor neural degeneration requires more global recruitment 

of other regions and networks of the brain, this may reduce resource capacity for 

allocation to both cognitive and motor aspects of walking and navigating. Cognition and 

motor function may be interdependent, with musculoskeletal and motor neural 

degeneration requiring more cognitive top-down input to compensate for reduced motor 
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control (K. Z. H. Li & Lindenberger, 2002; Liu, Chan S.Y., & Yan H., 2014). Thus, 

cognition may be a mediating factor of sensorimotor decline and falls, whereby attention 

and executive resources may be allocated to compensate for declining mobility 

(Woollacott & Shumway-Cook, 2002). Although, others have argued that reduced 

mobility could also increase the speed of cognitive decline due to reduced physical 

activity, social engagement and leisure activities (Demnitz et al., 2016). As with all 

associative research (including the cross-sectional and longitudinal studies above), the 

problem of causality remains a limitation for interpretation and generalisability that 

cannot be overlooked.  

 

1.5 Cognitive-Motor Dual-Task Research 

The dual-task (DT) paradigm has been employed to investigate the effect of 

simultaneously completing a cognitive task while walking (see Chapter 2 for theoretical 

explanations of the dual-task effect). This paradigm allows for the examination of the role 

of higher-level cognitive processes on walking gait control, by examining the dual-task 

“cost” or change in performance from single-task to dual-task conditions. The role of 

attention and other higher-level cognitive functions in gait control have become apparent 

in the DT literature (Woollacott & Shumway-Cook, 2002; Yogev-Seligmann, Hausdorff, 

& Giladi, 2008). Numerous studies have evidenced greater DT costs on gait performance 

in older adults compared to young adults, that are more pronounced in older adults with 

a history of falls, MCI, dementia and post-stroke (Bowen et al., 2001; Montero-Odasso 

et al., 2009; Segev-Jacubovski et al., 2011; Yang, Chen, Lee, Cheng, & Wang, 2007). 

These impaired groups most commonly exhibit slower gait speed and increased gait 

asymmetry while walking with a dual-task (J. H. Hollman, Kovash, Kubik, & Linbo, 2007; 

Morris et al., 2016). The above shared capacity theories would suggest that these changes 
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in DT gait performance are a result of shared cognitive resources being redirected from 

gait control to the secondary task (Pashler & Johnston, 1998). Recent reviews highlight 

the numerous cognitive tasks affecting gait control during dual-tasking, and these findings 

are discussed further in the following chapter introductions (Chapters 3, 4, 5 and 6).  

 In sum, many varied cognitive tasks have been evidenced to affect dual-task gait, 

while others still have not (Bock, 2008). However, it appears that executive domain tasks 

specifically play an important role in gait control during dual-tasking (Al-Yahya et al., 

2011; Chu, Tang, Peng, & Chen, 2013; Gomes et al., 2016; Hsu, Nagamatsu, Davis, & 

Liu-Ambrose, 2012). This corroborates cross-sectional and longitudinal research 

highlighting that executive control abilities predict fall status, gait ability and progression 

of decline in older adults (Herman, Mirelman, Giladi, Schweiger, & Hausdorff, 2010; 

Killane et al., 2014; Mirelman et al., 2012; Muir, Gopaul, & Montero Odasso, 2012b). 

However, executive control is a broad system, as outlined above, and is comprised of 

numerous attentive control processes, and associated with various cortical inputs (Yogev-

Seligmann et al., 2008) that are targeted by distinct and varied tasks (tasks of sustained 

attention, inhibitory control, visuospatial processing, working memory and information 

updating). Very few studies have compared the relative impact of various executive or 

non-executive domain tasks, and thus the specific mechanisms underlying gait control 

remain unclear.  

 

1.6 Neuroimaging single and dual-task gait 

Recently, neuroimaging techniques–such as functional magnetic resonance imaging 

(fMRI), functional near-infrared spectroscopy (fNIRS) and electroencephalography 

(EEG)–have also been utilised to probe the neural mechanisms underlying the cognitive-

motor link for gait control and falls. Electrophysiological research has revealed an 
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association between physical activity in older adults and the P3 event-related potential 

(ERP) associated with executive functions of working memory and inhibition (Chang, 

Huang, Chen, & Hung, 2013; Fong, Chi, Li, & Chang, 2014). More specifically, fall-risk 

in older adults has been associated with greater N1 and P3 ERP amplitudes for poorer 

inhibition of task-irrelevant stimuli on a visuo-spatial attention task (Nagamatsu, 

Munkacsy, Liu-Ambrose, & Handy, 2013). Research using MRI has also shown that 

reduced matter volumes in the prefrontal areas of the brain are associated with slower gait 

speeds in undiagnosed older adults, and that slower gait may be a result of age-related 

changes in cognitive processing speeds (Rosano et al., 2012; Rosano, Aizenstein, et al., 

2008; Rosano, Brach, Studenski, Longstreth, & Newman, 2007).  

 Some studies have also undertaken the difficult task of measuring patterns of 

neural activity during single-task and dual-task walking in older adults. A functional near-

infrared spectroscopy (fNIRS) study by Harada et al. (2009) found single-task gait speed 

control in older adults was associated with increased activation (oxy haemoglobin) in the 

supplementary motor area (SMA) and left prefrontal cortex (LPFC) of the brain, of which, 

the latter appeared dependent on age-related gait capacity. While other fNIRS studies 

have shown increased frontal activation (including the PFC) during dual-task walking 

with specific executive function tasks (Holtzer et al., 2011; Meester, Al-Yahya, Dawes, 

Martin-Fagg, & Piñon, 2014; Mirelman et al., 2014). Furthermore, stimulation of the 

LPFC in the form of transcranial direct current stimulation (tDCS) has evidenced 

improved postural control and dual-task gait performance in both healthy young and older 

adults (Manor et al., 2016; Zhou et al., 2014). EEG studies of walking reveal increased 

alpha and beta band frequencies in frontal and central brain regions, with modulated 

executive function-related N2 and P3 components during dual-task walking with an 

inhibitory control task (Beurskens, Steinberg, Antoniewicz, Wolff, & Granacher, 2016; 
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De Sanctis, Butler, Malcolm, & Foxe, 2014). Furthermore, spectral power analyses of 

EEG data reveal gait-related changes in the anterior cingulate cortex, posterior parietal 

cortex and sensorimotor cortex (Gwin, Gramann, Makeig, & Ferris, 2011). 

 Taken together, these findings suggest a strong link between higher-level 

cognitive processes, their associated frontal cortical regions of the brain, and the control 

of gait during both single- and dual-task walking. Overall, this is in line with the resource 

capacity central executive model of dual-tasking and the PASA, CRUNCH and STAC 

compensatory theories of neurocognitive ageing presented above, suggesting a greater 

need for adaptive frontal cognitive control of gait with ageing, and increased cognitive-

motor load in both young and older adults. 

 

1.7 Knowledge Gap and Implications 

A fundamental problem with the cognitive-motor research presented above is that neither 

gait nor cognition are unitary constructs, and the problem of methodological variability 

has been highlighted in recent reviews. As was outlined above, gait performance can be 

defined by a number of spatiotemporal characteristics falling within distinct gait domains 

(Lord et al., 2013). Equally, cognition is a term that encompasses a myriad of mental 

processes ranging from language to memory and executive functions (to name a few). 

Much of the cross-sectional and longitudinal research has considered gait speed as a 

global parameter of gait, while many have used MMSE® scores as indicators of global 

cognition (Demnitz et al., 2016). It is important to note that the MMSE® was designed 

and validated as a screening tool for MCI and dementia, and not as a global measure of 

cognitive ability. Furthermore, much of the earlier DT research has only used one 

cognitive task, without justification or discussion of the specific cognitive domain being 

targeted, or the complexity of the task. Where studies have made comparisons between 
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tasks, they tend to compare tasks within the same domain, or tasks which tax multiple 

domain functions (Wrightson, Ross, & Smeeton, 2016), without comparative control 

dual-tasks. For example, Wrightson et al. compared two tasks to examine the effects of 

cognitive-task type, but used two tasks of working memory (serial subtraction and n-back 

tasks), finding no differences between the tasks, with no comparison to a different EF 

domain task or a non-EF control task.   

 The dual-task research reviews have also highlighted that the problem of high 

methodological variability in both the gait assessment and dual-task protocol (Al-Yahya 

et al., 2011; Holtzer, Wang, & Verghese, 2012; Patel & Bhatt, 2014). This heterogeneity 

makes comparison across studies difficult, thus limiting our understanding of the role of 

cognition in falls, and hindering the translation of this body of research to the clinical 

setting for novel interventions and rehabilitation (Worden, Mendes, Singh, & Vallis, 

2016). While cognition has recently been considered a risk-factor for falls, initial attempts 

to apply general or non-specific cognitive screening and intervention training tasks have 

revealed varying effects and inconsistent results (Menant, Schoene, Sarofim, & Lord, 

2014; Plummer-D’Amato et al., 2008). The vital gap in the research lies in establishing 

which specific higher-level cognitive processes underlying gait control. 

 

1.8 Thesis aims and overview 

Overall, this research aims to advance our understanding of the specific cognitive and 

neural processes underlying walking gait control, and how these processes are impaired 

in older adults and stroke survivors with a high risk of falling. Stroke survivors have a 

higher fall incidence rate than age-matched controls (Jorgensen & Jacosen, 2002; 

Simpson, Miller, & Eng, 2011), with one study reporting that up to 73% fall post-

discharge: i.e. +6 months post-stroke, at the motor recovery plateau and after 
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physiotherapy discharge (Forster & Young, 1995; Mackintosh, Goldie, & Hill, 2005). 

Community-dwelling chronic stroke survivors have also previously been evidenced to 

require disproportionate attention while walking (Smulders, van Swigchem, de Swart, 

Geurts, & Weerdesteyn, 2012), and while more studies are now investigating the effects 

of dual-task tests and interventions in stroke patients, the role of cognition in chronic 

stroke is still largely understudied. For this reason, we extended our inquiry beyond 

diagnosis-free older adults to clinical stroke survivors as a higher fall-risk sample.  

With a better understanding of the specific cognitive processes underlying gait, 

we hope to identify a neuropsychological computer-based task targeting the specific 

higher-level cognitive processes required for successful gait. Such a task could be 

developed further as a screening measure for falls in older adults. If we can identify a 

specific cognitive or neural marker of gait impairment and fall-risk, this could then lead 

to the informed development of alternative cognitive/neural fall screening assessments 

and rehabilitation programmes for stroke patients and the wider older adult population of 

Ireland. 

 

The specific thesis aims are: 

 To compare specific higher-level cognitive performances across healthy older 

 adults, older adults with a history of falls, and high fall-risk stroke survivors, and 

 relate these to specific measures of linear walking gait (e.g. speed, stride time, 

 variability, etc); 

 To identify the specific impaired cognitive functions in older adult fallers and 

 adults post-stroke; 
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 To investigate the underlying neural markers of cognitive decline associated 

 with gait and fall-risk, using electrophysiological event-related potential (ERP) 

 analysis during cognitive task performance; 

 To evaluate the efficacy of specific PC-based neuropsychological cognitive 

 assessments to identify fallers from non-fallers (across older adult and clinical 

 stroke samples). 

 

1.8.1 Thesis overview 

Chapter 2 provides a comprehensive overview and detailed discussion of the 

methodologies used throughout this thesis, including details of the cognitive, 

electrophysiological and gait assessment and analysis techniques. Chapter 3 describes a 

dual-task experiment in two groups of healthy young adults that compares the effects of 

multiple cognitive tasks (executive and non-executive) on dual-task gait performance 

over two different walkway distances (5m and 15m). The following experiment in 

Chapter 4 compares the same cognitive dual-tasks as Chapter 3, but in a group of healthy 

young and older adults, assessing the effect of age and specific cognitive domain 

processes on DT gait capacities. Chapter 5 presents an experiment comparing healthy 

young adults, healthy community older adults, and community older adult fallers on 

single-task gait performances, multiple executive task abilities, and the executive-

associated neural ERPs. Chapter 6 describes an experiment investigating single and dual-

task gait and cognitive performances on different executive tasks in healthy older adults 

and stroke survivors, with comparisons of cognitive-associated ERPs recorded during 

single-task cognitive performances. Finally, Chapter 7 will provides a general discussion 

of the overall results and conclusions of the work presented in this thesis, with 

consideration of some general limitations and suggestions of future directions. 
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Overview 

A number of measures were employed repeatedly throughout the experiments of this 

thesis. These key measures used can be broadly categorised as control measures, tasks of 

cognitive performances, electrophysiological measures of brain activity, and quantitative 

measures of gait. The purpose of this chapter is to provide an outline of each of these 

measures, to provide more detail than is feasible within the individual experimental 

chapters for some, and to give some justification for why these particular methodologies 

were employed in this thesis. 

 This chapter commences with a description of the control measures that were used 

for all experiments in this thesis; including details on the materials, administration and 

scoring of each (section 2.1).  Discussion of the dual-task paradigm employed and the 

behavioural cognitive measures used therein follows in section 2.2. The software used to 

generate and record responses for these computer-based tasks is detailed here. However, 

as the choice of specific cognitive tasks (or features of these tasks) varied across 

experiments, further details will be provided within the experimental chapters as 

necessary. Section 2.3 discusses electrophysiological measures of neural activity. 

Electroencephalogram (EEG) signal recording, the neurophysiological basis of this 

measure, equipment application, and event-related potential (ERP) data processing are all 

described. Section 2.4 details the measurement of quantitative gait, including 

specifications of the hardware, its application, and recording process. An outline of the 

data processing algorithm employed to extract meaningful gait outcomes from the raw 

data is also provided. A brief overview of the statistical analysis procedures used for all 

variables is then outlined in section 2.5. Finally, participant recruitment procedures and 

ethical approval protocols are discussed, as relevant to this thesis (section 2.6).   
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2.1 Control Measures 

2.1.1 Mini Mental State Examination 

The Mini-Mental State Examination, 2nd Edition™ (MMSE®-2™: Folstein, Folstein, & 

McHugh, 1975), was used in this research as a measure of global cognitive function in 

older adults and patients post-stroke. The MMSE®-2™ has the same assessment structure 

and scoring as the original MMSE®, which was first formalised as an applicable 11-item 

screening measure for cognitive mental impairment in psychiatric patients, and for 

persons with dementia (Folstein, Folstein & McHugh, 1975). Today, the MMSE® is one 

of the most widely used objective screening tools of dementia, and is also used in clinical 

research for screening inclusion/exclusion criteria, and as a clinical outcome measure 

(Spreen & Strauss, 1998). The test can be administered in 5-10 minutes, with one point 

scored per question item or task (total score: 30), with failures to respond marked as errors. 

Higher scores are indicative of higher cognitive functioning. One major advantage of this 

instrument is that it is easy to administer with pen and paper, and can be administered in 

many different settings (community and care). For copyright issues, this assessment 

cannot be included in the Appendices. 

 The MMSE® includes measures of orientation to time and place, language, 

attention, calculation, and immediate and delayed recall (Spreen & Strauss, 1998). 

Folstein et al. originally devised the instrument to consist of 5 domains: orientation, 

registration, attention and calculation, recall, and language. Further factor analysis studies 

of the MMSE® have revealed 5 common core components consisting of concentration/ 

working memory; language and praxis; orientation; verbal recall/memory; and attention 

span (Jones & Gallo, 2000; Banos & Franklin, 2002), which are in line with the measures 

originally outlined. 
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 Initial studies showed high test-retest reliability in non-demented and demented 

patients (Folstein, Folstein & McHugh, 1975). However, the MMSE® is most effective 

at ruling out dementia diagnosis only, with very limited value in diagnosing mild 

cognitive impairment (MCI) among healthy controls (Mitchell, 2009). The first validation 

study reported that no cognitively healthy older adult patients (n=63) with 8 or more years 

of education scored below 24, and so this became a cut-off value for identifying 

impairment (Folstein, Folstein & McHugh, 1975; Lezak, Howieson & Loring, 2004). 

However, age and education have been shown to have a strong influence on MMSE® 

scores: scores decrease with age, and increase with education (Lezak & Howieson, 2004). 

Some cut-off points for age and education levels have been suggested, but these 

alterations affect the sensitivity and specificity of the measure (Spreen & Strauss, 1998), 

with cut-off scores now varying between 23-27 (Bryant et al., 2009; Lopez, Charter, 

Mostafavi, Nibut & Smith, 2005). The MMSE® has also been criticised as being biased 

towards verbal language items (Staruss, Sherman & Spreen, 2006), and evidences poor 

sensitivity in detecting MCI (Mild Cognitive Impairment; with MCI scores above 26; 

Nasreddine et al., 2005) and subtle impairments in samples such as patients post-stroke 

(Duffin, Collins, Coughlan, O’Neill, Roche & Commins, 2012).  

 However, the MMSE® still remains one of the most widely used objective 

screening measures of cognitive impairment. Kenny et al. (2013) recently provided 

normative values of MMSE® scores for community-dwelling older adults (5,842 adults 

aged 50+ years), without Parkinson’s disease or severe cognitive impairment, living in 

Ireland. These normative values (as part of The Irish Longitudinal Study on Ageing: 

TILDA) are stratified by age and education level, and showed no effect of sex within this 

Irish sample. Kenny et al. conclude that MMSE® scores do not discriminate cognitive 

functions well in cognitively intact individuals, but can identify the lowest performing 
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percentiles in most subgroups (at the 5th and 10th percentile). MMSE® scores are used 

in this thesis solely as an indicator of global cognitive functioning for comparison 

between groups (to ensure homogeneity), and not as a variable of interest.  

 

2.1.2 Montreal Cognitive Assessment 

The Montreal Cognitive Assessment (MoCA: Nasreddine et al., 2005) is a more recently 

developed clinical tool of global cognitive assessment. The MoCA was devised as a more 

sensitive additional or alternative tool for the MMSE®, specifically for detecting MCI in 

people scoring between 24 and 30 on the MMSE®. Similar to the MMSE®, the MoCA 

is a one-page test containing 30 possible points, can be administered in approximately 10 

minutes, and is also available in multiple languages (see Appendix A). The cut-off point 

of 26 is suggested for the MoCA for identifying MCI from normal ageing (Nasreddine et 

al., 2005). This test is more akin to a neuropsychological assessment, containing questions 

and tasks across the eight domains of: visuospatial/executive, naming, memory, attention, 

language, abstraction, delayed recall, and orientation.  

 The MoCA evidences good construct validity, corroborating the 6 cognitive factor 

domains of the task (Freitas, Simoes, Maroco, Alves & Santana, 2012).  Furthermore, the 

increased focus on the executive and attention domains within the MoCA may increase 

its sensitivity for detecting forms of dementia other than Alzheimer's disease (Smith, 

Gildeh & Holmes, 2007). One study in the United Kingdom prospectively validated the 

MoCA for predicting dementia diagnosis within a memory clinic (Smith et al., 2007). 

More recently, the MoCA was tested in MCI (n=90) and AD patients (n=90) matched 

with healthy older adult controls (Freitas, Simoes, Alves & Santana, 2013). The findings 

revealed consistently higher accuracy in discrimination between MCI and AD diagnosis–

in comparison to the MMSE®–with increased sensitivity, specificity, predictive value 
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and classification (using a cut-off of 22 for MCI and 17 for AD). When tested in both 

clinical and non-clinical populations, one study showed MoCA reliability to be very low 

in non-clinical groups, but high in the clinical group (Bernstein, Lacritz, Barlow, Weiner 

& DeFina, 2011). This indicates that while the test is useful beyond the clinic, the MoCA 

may work best for identifying and quantifying cognitive impairment in clinical patients 

(Bernstein e al., 2011). However, initial validity and test-retest reliability reports of the 

MoCA (using a cut-off of 26; 2005) and further studies since have corroborated that the 

MoCA shows more sensitivity and higher classification accuracy for detecting MCI from 

healthy ageing, when compared to the MMSE® (Damian et al., 2011; Nasreddine et al., 

2005; Roalf et al., 2013).  

 On the whole, the MoCA has been shown to be an appropriate tool for cognitive 

screening, and was used within this thesis (in combination with the MMSE®) for 

comparison of global cognitive scores, to compare the homogeneity of the groups on 

broad cognitive function.  Kenny et al. (2013) have also provided normative values of 

MoCA scores within an Irish community-dwelling older adult sample (5,802 individuals 

aged 50+ years). These normative values showed median scores 1 to 2 points higher than 

those previously reported in the Dallas Heart Study (Rossetti, Lacritz, & Cullum, 2011), 

highlighting the need for nationally representative normative values.  

 

2.1.3 National Adult Reading Test 

The National Adult Reading Test (NART; Nelson, 1982) is a widely used vocabulary-

based measure of premorbid intellectual function. Participants are asked to orally read a 

list of 50 phonetically irregular English language words from a sheet of paper (see 

Appendix B). The everyday frequency of use of the words varies so that some words are 

likely to be unfamiliar to most adults. Responses are either correct or incorrect. Accuracy 
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scores give an indication of range of vocabulary, which correlates best with overall mental 

ability. The number of errors is recorded and can be used to estimate (via regression 

equations) Verbal IQ, Performance IQ and Full Scale IQ via a conversion table in the 

NART manual (Nelson & McKenna, 1975; Nelson & Willison, 1991; see Appendix C).  

 The high correlation between reading ability and intelligence in the normal 

population (Crawford, Stewart, Cochrane, Parker & De Lacey, 1998) allows the NART 

to determine estimates of intellectual function. NART scores correlate significantly with 

education (r = 0.51) and social class (r = 0.36; Crawford, Moore, Cameron, 1992), and 

have been shown to be a better predictor of premorbid functioning than the WAIS-R 

Vocabulary subtest (Collins, 2000; Petito, 2000). While age has also been correlated with 

NART scores, this factor accounted for very little of the variance (Crawford, Stewart, 

Garthwaite, Parker, & Besson, 1988).  

 

2.1.4 Falls Efficacy Scale-International 

The Falls Efficacy Scale-International (FES-I: Yardley et al., 2005) was used for all older 

adult sample participants in this thesis. Yardley et al. developed this international scale, 

building on the FES (Tinetti, Richman & Powell, 1990), to measure level of concern about 

falling during everyday indoor and outdoor activities, and social activities. Fear of falling 

has previously been identified as a psychological factor associated with increased risk of 

falls in older adults (Delbaere et al., 2010; Friedman, Munoz, West, Rubin & Fried, 2002; 

Young & Williams, 2015). This measure was used to ensure that fear of falling was not a 

factor in differentiating between faller and non-faller groups in the current thesis.  

 The questionnaire consists of 16 items of daily living activities (e.g. getting 

dressed or undressed, preparing simple meals, walking on a slippery surface) and asks the 

participant to indicate on a 4-point Likert scale how concerned they usually are about 
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falling while completing the activities (see Appendix D). A score of 1 indicates “not at 

all concerned”; 2 indicates “somewhat concerned”; 3 indicates “fairly concerned”; and 4 

indicates “very concerned” (total score = 64). Delbaere et al. (2010) provided cut-off 

scores for the 16-item FES-I used here: low concern = 16-19, moderate concern = 20-27, 

high concern = 28-64. The FES-I is a short and easy to administer measure that has been 

shown to be highly valid and reliable (Delbaere et al., 2010; Yardley et al., 2005) even 

across different cultures and languages (Kempen et al., 2008).  

 

2.1.5 Fall History 

A fall history was obtained using a one-page self-report questionnaire that was designed 

to identify fall events in the previous 12 months (See Appendix E). A definition of a fall 

(adapted from Feder et al., 2000; and Tinetti, Baker, Dutcher, Vincent & Rozett, 1997) 

was provided at the top of the questionnaire and explained by the experimenter: “A sudden, 

unintentional change in position resulting in landing at a lower level (floor, ground or on 

an object), other than as a consequence of health/medical issues (sudden paralysis, 

epileptic seizure, medications, other sicknesses) or overwhelming external force”. 

Following this definition, the first question asks if the participant has experienced a fall 

in the previous 12 months ("yes"/"no" check box answers were required). If the response 

is “no”, all other questions were not applicable (N/A). If the response is “yes”, four 

follow-on questions ask if there were multiple falls, if there were any fall-related injuries, 

if medical attention was sought for a fall (as indicators of severity), and what they 

considered to be the primary cause of the fall. This questionnaire was solely designed to 

determine fall occurrence/frequency, severity, and suspected cause, in order to categorise 

participants into “faller” and “non-faller” groups. A participant was classified as a faller 

if they experienced at least one fall in the previous 12 months. 
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2.2 The Dual-Task Paradigm 

The dual-task paradigm allows us to empirically examine the role of higher-level top-

down cognitive processes on gait and balance control, and numerous studies and reviews 

have been conducted to date (Al-Yahya et al., 2011; Hausdorff, Schweiger, Herman, 

Yogev-Seligmann, & Giladi, 2008; Woollacott & Shumway-Cook, 2002, also see 

relevant Chapters 3, 4 and 6). The DT paradigm examines behavioural performances 

while two tasks are being carried out simultaneously: for example, assessing a 

participant’s gait while they walk and complete a secondary attention-demanding 

cognitive task. By also measuring performances on each task individually (under single-

task conditions), we can investigate the impact of one task on the other and the overlap 

of attentional resources needed for both during dual-tasking. The change in performance 

from single to dual-task conditions is calculated as the performance on the single-task 

minus performance on the dual-task, divided by the single-task performance, and 

represented as a percentage change (Bock, 2008). If performances deteriorate from the 

single- to the dual-task condition, this is referred to as a dual-task “cost” (DTC). Two 

main theoretical accounts have been proposed to explain the inability to perform two or 

more tasks at the same time: central bottleneck theories and resource capacity theories of 

attention.   

 

1.5.1 Central bottleneck theories 

Broadbent proposed a bottleneck “filter” model of information processing that prevents 

over-taxation of limited attentional resources (Broadbent, 1958). This model suggested 

that all sensory information must pass through a buffer, and then be filtered in sequence 

for further processing based on their physical properties. This proposes a single-channel 

model in which we can only attend to one type of information (or task) at a time, and so 
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two stimuli presented together would elicit sequential responses. This model also states 

that if information is not attended to or prioritised by the filter, it will decay. This was 

initially supported by a series of dichotic listening experiments in which participants 

listened to an auditory message that was shadowed by another stream of audio. While 

participants reported that they could hear a second auditory message, they could not recall 

the content of the information, thereby suggesting selective listening. Therefore, dual-

task performance is impaired by the need to switch between both tasks, and keep one “on 

hold” in the buffer until it can be attended to (see Figure 2.1).  

 

 

Figure 2.1. The central bottleneck theory of attention when presented with two tasks. 

 

 While Broadbent proposed that attention is filtered in the early stage of 

information processing, Treisman argued that all information is attended to, but that a 

filter attenuates processing of the secondary streams of information at a later stage of 

processing (Treisman, 1964; Treisman, Columbia, & Nagle, 1980). This was supported 

by evidence of the “cocktail party effect” in which secondary information, which appears 

unattended to, suddenly receives attention when relevant or important properties are 

identified. For example, this explains how at a party we can focus on the one conversation 

we’re engaged in, but then suddenly be aware of someone using our name in another 

conversation across the room (Driver, 2001). This proposes that the second conversation 

was being partially processed, until personally relevant information (your name) is 
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detected and attention is switched to the secondary conversation. These filter theories 

would thus predict slowed walking or poorer cognitive task performance during dual-

tasking, as one task is prioritised above the other, or impaired performance on both as the 

participant attempts to switch attention between both channels.  

 

1.5.2 Resource capacity theories 

An alternate theory of processing capacity was proposed by Kahneman et al. (1973) in 

which there is a limited mental resource capacity for flexibly allocating attention to 

multiple tasks simultaneously. When two tasks are completed simultaneously (dual-

tasking), resources must be divided between both tasks (Styles, 1997). Kahneman 

proposed that attention can be flexibly allocated, moment to moment, but that task 

demands would differentially tax the limited resource capacity (Styles, 1997): i.e. two 

easy tasks may be sustained simultaneously, while two difficult tasks may place too much 

demand on available processing resources and result in poor task performances. However, 

it was suggested later that instead of one general resource for all processing functions, 

there are multiple task-specific capacities which may not overlap (Pashler & Johnston, 

1998): i.e. two tasks taxing different resource capacities could be performed 

simultaneously without interference. Therefore, dual-task costs while walking and 

completing a secondary cognitive task would indicate taxation of shared underlying 

processes and finite overlapping resource capacities.  

 

1.5.2.1 The Central Executive 

Baddeley (1996) proposed that the ability to perform two or more tasks at the same time 

is a function of the central executive (or executive control) which facilitates processing 

of different streams of information, but within a limited capacity system. The central 
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executive system is one part of the “working memory” multicomponent system for the 

active maintenance of information (Baddeley, 1996, 2002; Baddeley & Hitch, 1974). The 

central executive is sub-served by the articulatory/phonological loop and the visuospatial 

sketchpad, which temporally store auditory, verbal and visuospatial information, 

respectively (see Figure 2.2). Working memory is considered as a system of both 

information maintenance by combining storage and processing capacities, and cognitive 

control which is considered one’s ability to allocate limited attention where necessary and 

inhibit irrelevant information (Shipstead, Lindsey, Marshall, & Engle, 2014). 

 The central executive operates as the orchestrating control centre (or supervisory 

attentional system), allocating attention and resources to subsystems, or the different tasks 

completed concurrently during dual-tasking (Diamond, 2013). In the case of a walking 

dual-task, the central executive manages processing and integrating (or inhibiting) 

incoming bottom-up sensorimotor information, while allocating top-down attentional 

resources to the sensory and motor systems, and the secondary task, all while 

continuously tracking performance and updating information as the cognitive and 

walking tasks progress. Recently, a more fractional working memory system has been 

considered, that consists of multiple components, domains and resource capacities, 

associated with different brain regions, and which allows for more individual differences 

in strategies recruited for allocating attention (Logie, 2011; see Figure 2.1). 
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Figure 2.2.The central executive receiving input from sensory memory, subserved by the 

visuospatial sketchpad and phonological loop (Baddeley & Hitch, 1974). Retrieved and 

adapted from http://www.simplypsychology.org/working%20memory.html#ce: Accessed 

23/10/2016.  

 

 The umbrella term “executive functions” is used to describe the varied top-down 

control processes of the central executive to manage incoming sensory information and 

task responses, for reasoning, problem solving and goal-oriented planning and motivation 

(Diamond, 2013). These control functions include working memory, cognitive flexibility 

(adaptability) and inhibitory control processes such as task switching (or shifting), 

selective attention and inhibition, information monitoring and updating (Baddeley, 1996; 

McCabe et al., 2010; Miyake et al., 2000): see Figure 2.3 below. The limited resource 

capacities of working memory and attention deteriorate with age and cognitive 

impairment (Baddeley, Logie, Bressi, Della Sala, & Spinnler, 1986; Verhaeghen, Steitz, 

Sliwinski, & Cerella, 2003), and have been associated with executive function-associated 

frontal cortical regions of the brain (Hartley, Jonides, & Sylvester, 2011).  
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Figure 2.3 Top-down higher-level cognitive control processes and executive functions. 

Taken from Lemke and Scherpiet (2015). Accessed 25/10/2016. 

 

2.2.1 Behavioural Cognitive Assessments 

Each experiment in this thesis included a number of cognitive tasks for comparison within 

and between groups. Table 2.1 shows an overview of the cognitive processes assessed 

and tasks used in each experimental chapter. While some cognitive domains are assessed 

repeatedly across chapters, the specific task used or task details vary across experiments; 

thus, full detail of the tasks will be given within each experimental chapter. For example, 

the n-back task was a commonly used test of working memory in all experiments. 

However, for one experiment a 1-back version of this task was used, while in the others 

a 2-back version was employed. Furthermore, some n-back tasks used visual stimuli, 

others were auditory (depending on whether the task was conducted while seated or 

walking), and varying response windows were set depending on whether young, older 
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adults, or patients post-stroke were partaking, in order to set an appropriately challenging 

level for each sample.  

 Participant performance on the serial subtraction (SS) task and alphabet recitation 

(ABC) task was recorded with pen and paper by the experimenter (these tasks will be 

described later within the relevant experiment chapters). All other cognitive tasks were 

computer-generated, using E-Prime© presentation software (version 1.0 and 2.0). Tasks 

were built and run in E-Prime©, whereby visual or auditory stimuli were presented and 

responses (keyboard or mouse button press) were automatically logged. Accuracy (ACC) 

and reaction time (RT) were automatically recorded, and were the key dependent 

variables for statistical analyses. Accuracy (%) was measured as the number of correct 

responses divided by the total number of response trials, multiplied by 100. Reaction time 

(ms) was measured as the time between stimulus presentation and participant response, 

and each participant’s mean RT to all trials in a task block was collated in E-Prime©. 

Where concurrent EEG recordings were taken, commands were also coded into the E-

Prime presentation tasks to send Transistor-Transistor Logic (TTL) voltage triggers to the 

EEG acquisition computer. This was done via a parallel port cable connection, linking 

the presentation and EEG acquisition computers. These triggers allowed stimulus 

presentation and participant responses to be logged in real-time during EEG recording. In 

this way, post hoc time-locked ERP analysis could be carried out with the EEG signal 

data.    
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Table 2.1: Cognitive processes assessed in each experiment of the current thesis. 

Cognitive Process Experiment 1a+1b Experiment 2 Experiment 3 Experiment 4 

Working 

Memory 

n-Back 

(auditory 2-back) 

n-Back 

(auditory 2-back) 

n-Back 

(visual 1-back) 

n-Back 

(auditory 2-back) 

Motor 

Processing 

Motor Response task 

(auditory: 2 tones) 

Motor Response task 

(auditory: 1 tone) 

Motor Response task 

(auditory: 1 tone) 

Motor Response task 

(auditory: 1 tone) 

Mental Tracking/ 

Working Memory 

Serial Subtraction task 

(100-3s) 

Serial Subtraction task 

(100-3s) 
  

Visuo-Spatial 

Decision Making 

Clock task 

(auditory) 

Clock task 

(auditory) 
  

Verbal 

Recitation 
 Alphabet Recitation   

Sustained Attention/ 

Conflict Monitoring/ 

Response Adaptation 

  
Stroop task 

(visual: word-colour) 

Stroop task 

(auditory: word-pitch) 
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2.3 Electrophysiology 

Electroencephalography is one of the oldest non-invasive extracellular recording 

techniques for the investigation of the electrical activity of the brain (Buzsaki, 

Anastassiou & Koch, 2012). Human electroencephalography stems from Hans Berger’s 

first publications of “Elektenkephalogramm” measurements of the human brain in 1929. 

An electroencephalogram (EEG) records and amplifies electrical voltage currents 

measured at the scalp, via electrodes, and plots this over time. This scalp-recorded signal 

is considered a measure of electrical current fluctuations resulting from the summed 

activity of synaptic excitations in the cortex (Luck, 2014).  

 ERPs are time-locked EEG signals that are extracted by averaging across 

numerous trials, and are used to identify associated neural responses to sensory, cognitive 

and motor events (Luck, 2014). The first sensory-evoked potential (ERP) recordings in 

conscious humans were published by Davis and Davis in 1939 (Davis, Davis, Loomis, 

Harvey & Hobart, 1939; Davis, 1939). EEG-recorded ERP analysis is currently one of 

the most widely used methods in cognitive neuroscience to non-invasively examine the 

neural correlates of information processing (Nidal & Malik, 2015). A more detailed 

outline of the principles of EEG and the ERP analysis technique follows below.  

 

2.3.1 Neurophysiological Basis 

A scalp-recorded voltage (Ve) is generated by all active cell electrical processes within a 

given volume of brain tissue (Buzsaki, Anastassiou & Koch, 2012). The scalp potential 

is mainly elicited by synchronised post-synaptic activity from multiple neurons in the 

cortex (Luck, 2014). When cells fire perpendicular to the cortex, the post-synaptic 

potential generated from polarisation of the nerve cell membrane (referred to as local field 

potential: LFP), results in an accumulated voltage observable at the scalp. These post-
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synaptic potentials are a result of neurotransmission, which is the process of information 

transfer, or communication, in the central nervous system.  

 

 2.3.1.1 The nerve cell 

The two key types of cells in the central nervous system (CNS) which communicate via 

transmissionary electrical signals are nerve cells and glia cells. Nerve cells consist of the 

soma (or cell-body), dendrites, and the axon which makes contact with other nerve cells 

or other organs (Niedermyer & Lopes da Silva, 2005; see Figure 2.4(a) for the structural 

features of a common neuron). The soma contains the nucleus and houses most of the 

cell’s protein synthesis. These proteins are transported to the cell ends and dendrites by 

the cylindrical axon (Sanei & Chambers, 2013). Transmission of electrical signals is 

enhanced by an insulating myelin sheath surrounding the electrically conductive interior 

of the cell (Buzsaki, Anastassiou & Koch, 2012). Electrical signals are transmitted 

between axons and dendrites, or dendrites and the dendrites of other cells at the synapse.  

 The largest contributors to EEG signals are the cortical pyramidal cells, which are 

mostly radially aligned and perpendicular to the cortex (see Figure 2.4(b)). Pyramidal 

cells in particular have a set of tree-like basal dendrites at the base of the soma, which are 

closer to the white matter, and an apical dendrite at the apex of the soma, which is in the 

direction of the cortical surface (Luck, 2014). The glia cells (surrounding the neuron soma 

and cell structures) also make contact with other nerve cells and vessels, and feature 

excitable membranes (Lopes da Silva, 2005; in Niedermeyer & Lopes da Silva, 2005).  
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Figure 2.4: Diagram of cell structure of (a) Common neuron and (b) Pyramidal neuron, 

with soma and nucleus, dendrites and apical dendrites, axon, and myelin sheath. Adapted 

from: http://www.wisegeek.com/what-is-a-pyramidal-neuron.htm#. Accessed: 11th 

August, 2016. 

  

 2.3.1.2 Electrical potentials 

Neurons produce two main types of electrical activity; action potentials (AP) and post-

synaptic potentials (PSP). While a single-unit microelectrode recording can capture the 

action potential of a single neuron in vivo, the array of EEG electrodes on the scalp records 

the summed PSP voltage from multiple neurons. When penetrated with a microelectrode, 

the membrane of a cell body gives a reading of -60 to -70 mV which is more negative 

than outside the cell (Sanei & Chambers, 2013). This negative resting potential is 

maintained by a larger number of negative protein ions (anions) within the cell, balanced 

by sodium (Na+) and potassium (K+) positive ions (cations) in the intracellular and 

extracellular space of the neuron. Transient deviations from this negative resting potential 

(via voltage-gated Na+ and K+ channels) resulting in a more positive transmembrane 
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potential, indicate action potential firing or synaptic activity (Speckmann & Elger, 2005; 

in Niedermyer & Lopes da Silva, 2005).  

 An AP is a rapid (1ms) electrical current which transmits information from a nerve 

cell to the surrounding axons and dendrites of other nerve cells. An AP can only occur 

when an event causes the cell membrane to depolarise: i.e. become more positive than the 

resting state of -70 mV (Purves, Augustine, Fitzpatrick, et al., 2004). When this occurs, 

Na+ channels open and more sodium ions flow inward, making the cell depolarise further. 

If a cell gradually depolarises to a threshold potential of -50 mV to -55 mV, depolarisation 

will increase suddenly, resulting in the generation of an AP in the soma in an all-or-

nothing fashion. Na+ channels will start to close at the peak of the AP, while K+ channels 

open. Potassium ions move out of the cell and the membrane quickly repolarises, with a 

brief hyperpolarisation (i.e. falls below -70 mV) sometimes occurring before returning to 

the resting state potential (see Figure 2.5).  

 

Figure 2.5: Illustrative graph depicting the stages of an action potential in microvolts 

(mV: y-axis) over time (ms: x-axis), including stages: 1. depolarization; 2. repolarization; 

3. hyperpolarization and resting state. Retrieved from: 

https://www.premedhq.com/skeletal-muscle-action-potential. Accessed 11th August, 

2016. 
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 This AP is a discrete voltage spike generated in the soma that travels down to the 

axon terminals, resulting in the release of neurotransmitters into the synapse (Luck, 2014). 

As the neurons do not actually touch, an AP cannot transfer directly from one cell to the 

other (the synaptic cleft is too large). However, the chemical process of synaptic 

transmission elicits a subsequent excitatory or inhibitory change in the next axon 

membrane potential, which determines if an AP is generated in the post-synaptic cell 

(Luck, 2014; Sanei & Chambers, 2013). This PSP can last for approximately 10-100ms.  

 When an action potential travels along the nerve cell ending in an excitatory 

synapse, an excitatory post-synaptic potential (EPSP) will occur in the following neuron 

due to cell depolarisation (the post-synaptic cell becomes more positive than the resting 

state potential).  Two action potentials travelling together, or in short succession, along 

the same fibre will result in a summation of EPSPs in the following neuron, which may 

generate an action potential in the post-synaptic cell if the membrane potential threshold 

is reached. Likewise, if the fibre ends in an inhibitory synapse, an inhibitory post-synaptic 

potential (IPSP) will occur due to hyperpolarisation, decreasing the chances of an action 

potential occurring in the next cell (Purves, Augustine, Fitzpatrick, et al., 2004; Sanie & 

Chambers, 2007; Speckmann & Elger, 2005; in Niedermyer & Lopes da Silva, 2005).  

  

 2.3.1.3 Synaptic transmission 

The generation of an EPSP or IPSP depends on the type of neurotransmitter that is 

released into the synaptic cleft and its interaction with the corresponding receptor on the 

post-synaptic membrane (Lopes da Silva, 2005; in Niedermyer & Lopes da Silva, 2005). 

Neurotransmitters are released from the pre-synaptic neuron when an action potential 

arrives at the terminal, causing an influx of calcium cations (Ca2+) through voltage-gated 

channels in the plasma membrane (Purves, Augustine & Fitzpatrick et al., 2004). This 
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influx triggers exocytosis, causing the neurotransmitter vesicles to fuse with the pre-

synaptic terminal membrane and release their contents into the synaptic cleft (see Figure 

2.6 for an illustration of neurotransmission at the synaptic cleft). 

 

 

Figure 2.6: Diagram of synaptic transmission at a chemical synapse, with pre- and post-

synaptic membranes, and neurotransmitter vesicles and receptors. Adapted from: 

http://www.dbbe.fcen.uba.ar/contenido/objetos/NeuroscienceDalePurves.pdf. Accessed 

10th August, 2016. 

 

 These neurotransmitters diffuse across the synaptic extra-cellular space and bind 

to receptors on the post-synaptic membrane. This interaction triggers the opening and 

closing of ion channels, which changes the conductance of the membrane, and usually 
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produces a PSP. If an EPSP causes the post-synaptic membrane to depolarise to the -50 

mV threshold, then an action potential will occur (Sherwood, 2004). The 

neurotransmitters that don’t bind to the post-synaptic membrane are removed from the 

synaptic cleft by diffusion, degradation by surrounding enzymes, or reuptake by the pre-

synaptic membrane or surrounding glia cells in the extra-cellular space (Purves, 

Augustine & Fitzpatrick et al., 2004).  

 EPSPs and IPSPs are differentially associated with specific ion channels which 

let positive or negative ions flow in and out of the cell (Lopes da Silva; in Niedermyer & 

Lopes da Silva, 2005). EPSPs occur when the neurotransmitter (most commonly 

glutamate) binds to the protein receptors AMPA and NMDA on the dendrites, opening 

ion channels that allow cations such as Na+ or Ca2+  into the cell (Spruston, 2008). 

However, IPSPs occur at the soma and axon when the inhibitory neurotransmitter GABA 

(gamma-aminobutyric acid) opens channels for anions such as chlorine (Cl-) to flow in, 

or cations such as K+ to flow out (Buzsaki, Anastassiou & Koch, 2012). Consequently, 

when ions flow in or out of the post-synaptic cell, a sink-source configuration occurs in 

the extra-cellular space around the neuron. The terms sink and source are used for the 

sites where current flows into and out of the cell. When positive ions flow into the cell 

(EPSP), an active sink (negative current) is left in the synapse area, and passive sources 

along the soma-dendritic membrane. However, when negative ions flow into the post-

synaptic membrane (IPSP), the opposite occurs: an active source remains at the synapse 

with passive sinks along the soma-dendritic membrane (Lopes da Silva; in Niedermyer 

& Lopes da Silva, 2005).  

 If an excitatory neurotransmitter is released at the apical dendrite of a pyramidal 

cell, positively charged ions will flow into the cell from the extracellular space, resulting 

in cell depolarisation (EPSP) and a net negativity in the surrounding area (i.e. a sink). 
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Current will also flow out of the basal dendrites and soma leaving a net positivity (source) 

in the surrounding area, and this creates a dipole of positive and negative charge. In this 

instance, if multiple surrounding neurons (all oriented the same) released an excitatory 

neurotransmitter at the apical dendrite, the summed current voltage recorded at the scalp 

would show a negative potential. However, there would also be a simultaneous positivity 

on the remainder, because the dipole has two sides (Luck, 2014). Therefore, the scalp-

recorded EEG reflects the summed positive and negative current dipoles from a large 

group of neurons (called an equivalent current dipole).  

 

2.3.2 ERP Components 

ERP waveforms are embedded in the EEG signal and can be extracted by event-locking 

the EEG signal to a stimulus or response event, and averaging this across numerous trials 

(Luck, 2014). These averaged waveforms across trials are then averaged across all 

subjects to generate grand average ERP waveforms. As outlined above, these ERP 

waveforms are widely considered to reflect electrical potentials in the extracellular fluid 

generated when ions flow across pyramidal cell membranes via neurotransmission 

(Woodman, 2010). These waveforms reveal the temporal changes in the equivalent 

current dipole, and are plotted in microvolts (µV), over time (ms). The way in which these 

electrical currents propagate through the brain to the scalp is direct, instantaneous and 

offers millisecond resolution, making ERP measurement an excellent tool of temporal 

resolution for many sensory, perceptual and cognitive processes (Nunez & Srinivasan, 

2006; Woodman, 2010). However, the distribution of the scalp signal is affected by the 

soft and hard tissues (e.g. the resistance of the skull) the signal must traverses from the 

local source potential to the recording electrode (Buzsaki, Anastassiou & Koch, 2012). 
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Therefore, the cortical location of a generated ERP cannot be determined by the voltages 

recorded by electrodes on the scalp (Luck, 2014).  

 The positive and negative voltage deflections (ERP components) are labelled with 

P and N, respectively, and a numerical indication of the order or time (ms) of the peak in 

the waveform sequence: e.g. N1/100, P1/P100, N2/N200 (Woodman, 2010; see Figure 

2.7 for an illustrative example of some ERP components (negativity is displayed upwards 

in this figure). Furthermore, some components can be subdivided; for example, the P3 

ERP can exhibit an earlier P3a and later P3b component which are associated with 

different processes and neural structures. Early ERP components, such as P1, are 

considered to be exogenous (externally evoked by sensory stimuli), with little influence 

from top-down/voluntarily-driven processing. Later components are considered to be 

more endogenous, influenced by top-down, controlled processes, and associated with 

perceptual processing, motor responding, and higher-level cognitive processes (for e.g.; 

discrimination, memory and decision making). In this way, ERP components are 

considered to exhibit how the brain processes information (the relevant components will 

be discussed in more detail within the experimental chapters). With an appropriate 

experimental design, any differences in ERP waveforms between groups or different 

stimulus conditions can be interpreted as differences in the underlying neural activity of 

information processing (Luck, 2012).  
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Figure 2.7. Illustrative example of some common ERP components and their latencies, 

with their functional interpretation: vertical axis unit: scalp potential in microvolts (μV) 

with negativity upward; horizontal axis unit: time from the stimulus onset in milliseconds 

(ms). Adapted from:  

http://journal.frontiersin.org/article/10.3389/fnhum.2014.00437/full. Accessed 11th 

August, 2016 

 

2.3.3 Advantages and Disadvantages of EEG/ERP analysis for Research 

One of the strengths of electrophysiological measures is that the underlying biophysics is 

well understood, and rigorous mathematical models have been developed to explain the 

relationship between the scalp-recorded ERPs and cellular currents (Grewer, Gameiro, 

Mager & Fendler, 2013;Buzsaki, Anatassiou & Koch 2012). However, the utility of 

neuroimaging techniques is usually determined by the spatial and temporal resolution of 

their recordings. As mentioned above, the major advantage of EEG/ERP analysis is the 

direct, unlimited temporal resolution of neural electrical activity in the brain. The 

temporal resolution of ERPs is far greater than many other techniques such as positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI: Luck, 

2014). These neuroimaging techniques measure regional cerebral blood flow (rCBF) 



56 

 

which occurs after neuronal firing, thus acting as a secondary measure indicating 

increased neural activity. These measures have poor temporal resolution due to the time 

it takes for rCBF to increase before it is recorded (taking seconds). Therefore, ERPs are 

useful for determining the millisecond-to-millisecond stages of information is processing 

in the brain.  

 However, the spatial resolution of PET and fMRI three-dimensional 

representations is far greater than the EEG signal, and these techniques can also examine 

activity in deeper sub-cortical regions that EEG cannot. Electrical currents diffuse, in a 

non-linear fashion, as they propagate through the brain, skull, meninges and scalp 

(following the path of least resistance). This leads to a very broad voltage distribution at 

the scalp (Luck, 2014). It is very difficult to definitively reverse calculate the location and 

orientation of the underlying equivalent current dipole (called the inverse problem). This 

is because there are an infinite number of dipole configurations which could account for 

the observed scalp-recorded potential: i.e. there is no unique solution to the inverse 

problem. This means that the EEG signal has very low spatial resolution, and this is the 

major methodological drawback of this technique. Some complex algorithms and 

computational models have been developed to attempt to localise a single equivalent 

current dipole generator (Grech et al., 2008). However, these methods only offer 

approximate solutions. Therefore, ERPs remain fundamentally better suited for 

determining the temporal resolution of brain processes (Luck, 2014).  

 There are a number of other advantages to using ERPs as a measure of neural 

activity. One is the non-invasive nature of EEG recording and ERP analysis, meaning 

there is very little discomfort for the participant. Similarly, the metal restrictions of MRI 

techniques do not apply to EEG testing (participants who they have metal implants can 

still partake). Another advantage is the relatively low cost in comparison to other imaging 
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techniques (such as fMRI). Furthermore, with the development of active electrodes and 

portable EEG recording systems, EEG testing is no longer restricted to specific laboratory 

settings (testing can be carried out at different sites, including the bedside).   

 

2.3.4 EEG Application and Recording 

For all experiments in which EEG was recorded for ERP analysis (Chapters 5 and 6), a 

BioSemi ActiveTwo measurement system was used (BioSemi, Amsterdam, Netherlands). 

This system consists of a 32 sintered Ag-AgCl Active-electrode ribbon for recording EEG 

from the scalp. These pin-type electrodes have low output impedance and mount onto a 

specifically designed 32-channel BioSemi head cap (fastened with a chin strap) which 

uses the International 10-20 system for electrode placement (American 

Electrophysiological Association, 1999: see Figure 2.8). In addition, 5 flat-type Active-

electrodes were used for placement on the face: 1 reference electrode and 4 electrodes for 

recording electrooculogram signals resulting from eye movements.   
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Figure 2.8. BioSemi 32 channel cap montage according to the International 10-20 system 

for electrode placement. Adapted from BioSemi website: 

http://www.biosemi.com/pics/cap_32_layout_medium.jpg. Accessed 11th August, 2016. 

  

 The first step was to place the head cap on the participant, taking care to ensure 

the midline electrodes (Fz, Cz, Pz and Oz) were positioned along the sagittal axis. A non-

abrasive electro-conductive electrolyte gel (Signa Gel®) was then applied to each of the 

32 electrode sites in the cap, and the 32 pin-type electrodes placed in the corresponding 

site. The flat-type electrodes were attached to the skin on the face using adhesive disks, 

with a small amount of gel applied to the electrode gel cavity to reduce motion artifacts. 

One electrode was placed on the nose, midpoint between the nasion and the tip of the 

nose, and used as a baseline reference for the scalp electrodes. Vertical electrooculogram 

(VEOG) signals from eye movements were recorded from an electrode placed above and 

below the left eye, and horizontal eye movements (HEOG) were recorded from two 
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electrodes placed at the temple of the face, on the outer canthus of the left and right eye 

(see Figure 2.9). 

 The 32 electrode scalp ribbon and 5 facial electrode cables connect to an AD-box 

(with detachable rechargeable battery) which digitises sensor signals at a 24 bit sampling 

resolution. These digital outputs are then sent to a Receiver ̶ via an optical fibre cable ̶ 

which converts the incoming optical data to an USB2 output. This Receiver also obtains 

triggers from the E-Prime presentation software on the presenting PC via a 37 pin Dub-

D connector which plugs into the Receiver trigger port. Both the electrode optical data 

and trigger outputs are sent via a USB2 cable to the recording PC running the BioSemi 

ActiView acquisition program (see Figure 2.9 for BioSemi ActiveTwo system set-up). 

The EEG data were sampled at a rate of 1024 Hz, with a pass band filter from 0.16 Hz to 

100 Hz. Analogue event triggers received from the stimulus-presentation laptop were 

concurrently recorded by the ActiView program. 
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Figure 2.9. BioSemi ActiveTwo recording system set-up with electrodes and head cap 

applied to participant’s head. Permission for use of this image was obtained from the 

participant at the Department of Psychology, Maynooth University, 2014. 

 

2.3.5 Data Processing and Averaging 

The EEG data were analyzed off-line using Brain Electrical Source Analysis software 

(BESA version 5.3; GmbH, Germany). The data were referenced to the nasion electrode 

as has been the standard practice in this lab in the past, to subtract the electrical signal 

and noise recorded at this base site from the current potentials recorded at each of the 

scalp electrodes. A notch filter at 50Hz and a 30 Hz high cut-off filter were applied off 

line. The four electrooculogram (EOG) electrodes were used to monitor vertical and 

horizontal eye movements, which were averaged offline and automatically attenuated 

using an algorithm in BESA (which uses an internal model of artifact topographies; Berg 

and Scherg, 1991; Ille et al., 2002).  
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 Following this, the data file was visually examined for any movement artifacts to 

be manually removed. Any particularly noisy channels identified were interpolated from 

surrounding electrodes, or removed, depending on the location of electrode. Stimulus-

locked ERP epochs were set and averaged in BESA. Each epoch started 200ms before 

stimulus presentation as a baseline correction interval. The baseline of -200ms was used 

as a neutral mean voltage and was subtracted from the mean ERP voltage, to control for 

random pre-stimulus fluctuations. The end of the epoch was determined by the 

behavioural response times of participants. 

 ERPs were averaged for each individual participant across all trials for each task 

condition, at each electrode site. Grand averages were then calculated across all 

participants in a group for each task condition. ERP components and their time windows 

were identified from visual inspection of an ERP waveform topography (voltage map) 

generated in the BESA software. ERP topographies calculate values for intermediary 

spatial points between electrodes on the scalp in relation to neighbouring electrodes, by 

means of mathematical interpolation (Handy, 2005).  However, we cannot assume that 

the location of peak voltages on the scalp map are related to a current source generator, 

because we do not know how many neural generators are simultaneously active and 

contributing to any given ERP component (Woodman, 2010). Electrode sites showing 

maximal peak amplitudes were also selected for comparative analysis via visual 

inspection of these grand averaged waveforms. Mean amplitudes and peak latencies were 

the dependent variables for all statistical comparisons. 
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2.4 Quantitative Gait Analysis 

Quantitative gait data was collected using wearable inertial measurement unit (IMU) 

sensors, with temporal and spatial gait variables extracted, post hoc, via an event-

detection algorithm. The use of wearable sensors for gait analysis has advanced 

considerably in the past two decades, due to improved motion sensing technology, smaller 

sensor size, and the development of complex algorithms for processing movement signals 

(Tao, Liu, Zheng, Feng, 2012). IMUs can be placed on the feet or legs, and can measure 

various characteristics of human gait. For example, IMUs consisting of accelerometers 

and gyroscopes, placed on the lower limbs, can measure the acceleration and angular 

velocity of foot or leg movement. A kinematic analysis of the lower limb movement 

signal can then detect gait phases and obtain temporal and spatial characteristics of the 

gait cycle (Tao, Liu, Zheng, Feng, 2012).  

 Wearable IMU sensors were employed because they are inexpensive, can be 

applied easily and quickly for recording, and can be used outside of a specialized 

laboratory, unlike other gold-standard gait analysis methods (such as camera motion 

capture systems and force platform systems). The quick and non-cumbersome set up of 

wireless sensors was particularly important for Experiment 4 (Chapter 6), in which 

patients were tested in a hospital setting on a number of measures, and it was important 

to keep protocol time to a minimum (no more than 2 hours) for participant comfort.  

 

2.4.1 Data Acquisition 

For all instances of gait measurement, two SHIMMER™ kinematic sensor units 

(SHIMMER2R: Shimmer Research Ltd, Dublin, Ireland) were used. SHIMMER™ 

sensor units are commercially available, allow for non-invasive wireless data collection, 

and have been previously validated against gold-standard gait-sensing mats. Each unit 
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contains a tri-axial accelerometer, gyroscope, and magnetometer, allowing for integrated 

9 DoF inertial sensing. After initial calibration, these units were used to transmit raw 

kinematic data from the accelerometer (acceleration), and gyroscope (angular velocity) 

to a recording computer, via Bluetooth, for off-line analysis. One unit was secured to the 

shank of the left and right leg using custom elasticised Velcro straps. The sensors were 

placed on the anterior of the shank, midway between centre of the knee joint and the 

lateral malleolus (see Figure 2.10 below). Each gait assessment saw participants walk 

along a straight, unobstructed pathway (5m, 15m or 20m in length) 4 times per trial. 

Participants were instructed to walk at a normal self-selected speed. The sensors were 

programmed in MATLAB® programming environment (http://www.mathworks.com/, 

Natick, VA, USA) to: start recording, sample each axis at a rate of 102.4Hz, stop 

recording, and save the raw data to .txt output files.  

 

 

Figure 2.10. SHIMMER Bluetooth sensor placement on the shank for gait measurement. 

Adapted from: https://nextlife8.files.wordpress.com/2011/06/walking.jpg. Accessed 11th 

August, 2016. 
 

2.4.2 Data Processing 

All data processing was carried out by collaborator Dr Matthew Patterson of the Insight 

Centre for Data Analytics (University College Dublin), using a previously validated 
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algorithm developed in MATLAB®.  This algorithm identifies gait events (heel-strike 

and toe-off) in the inertial data of the sagittal plane gyroscope signal from the shank 

(Patterson et al., 2014a; Patterson et al., 2014b). The algorithm then calculates temporal 

and spatial gait metrics from these gait events. This method is based on previously 

validated algorithms using gyroscope signals recorded from the shank (Doheny et al. 

2010; Greene et al., 2010). In addition, this algorithm excluded from analysis any initial 

small steps before steady state walking, turns at the end of the walkway, and small steps 

around the turns.  

 The following gait metrics were calculated from the extracted gait events: gait 

speed (m/s), stride time (s), stride time variability (%), stride length (m) and stride length 

variability (%). Gait speed was defined as the distance walked in the walking time for 

each trial. Stride time was calculated as the time between successive heel-strikes. This is 

known as a single gait cycle (see Figure 2.11). Stride length was then defined as the 

distance covered during stride time (using knowledge of the total distance and the number 

of gait cycles detected from gait events). Stride time and stride length values were 

averaged for each foot, and then averaged across both feet for each participant. Gait cycle 

values were averaged, to give an overall mean value for each gait variable, for each 

subject.  Coefficient of variation (CV) values were calculated for stride time and stride 

length, to determine within-subject variability. CV values were calculated using the 

formula: 𝐶𝑉% = (
𝑆𝐷

𝑀
) ∗ 100.  
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Figure 2.11. The Gait Cycle: heel strike and toe-off gait events, and step and stride 

measures of a single right stride gait cycle. Adapted from: 

http://www2.warwick.ac.uk/fac/sci/eng/meng/nongps/rnd/gait/. Accessed 11th August, 

2016. 

 

 These five gait characteristics have been commonly used for evaluating gait in the 

past and have been associated with cognitive function in ageing and MCI studies (Lord 

et al., 2013; van Iersel et al., 2004; Verghese et al., 2007b; Verghese et al., 2008). These 

characteristics have also been identified to fall within different distinct domains of gait 

characteristics. Verghese et al. (2007; 2008) previously identified 3 gait domains of pace, 

rhythm and variability in older adults and MCI. More recently, Lord et al. have identified 

5 domains in older adults without cognitive impairment (using an MMSE® cut-off score 

of 24): pace, rhythm, asymmetry, variability and postural control. Stride length, stride 

time variability and gait speed load onto the pace domain which is associated with 

attention and executive function (Lord et al., 2013; Inzitari et al., 2007). Whereas stride 

time loads onto the rhythm domain, and stride length variability loads onto the variability 

domain.  
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2.5 Statistical Analysis 

All data collected from participants were entered into computerised files and analysed 

using the IBM SPSS© (version 21 and 22) statistical package (SPSS Software, Seattle, 

WA, USA). For each experiment, the data were tested for normality using Shapiro-Wilk 

tests. A small number of extreme outliers sitting at 3 times the interquartile range (3xIQR) 

were investigated and manually removed from analysis to avoid undue skew of the data. 

The 3xIQR rule in a normal distribution identifies cases that appear with a probability if 

less than 1%.  Demographic characteristics and control measure data were compared 

between groups, where relevant, using independent t-tests and one-way analyses of 

variance (ANOVAs). Where a dual-task paradigm was employed, an additional variable 

of dual-task change (DTC) was calculated. The DTC is a percentage measure of 

interference. The DTC% was calculated by taking the difference in performance between 

single-task and dual-task conditions, dividing it by the single-task performance, and then 

multiplying this number by 100 (Bock, 2008): 𝐷𝑇𝐶% = (
𝑆𝑇−𝐷𝑇

𝑆𝑇
) ∗ 100 . Using this 

formula when larger values indicate better performance (cognitive accuracy, gait speed 

and mean stride length) with the ST as a baseline, a positive DTC value indicates worse 

performance in the DT condition. However, when lower values indicate better 

performance (such as reaction times, mean stride time, stride time variability and stride 

length variability), a positive DTC value would mean performance was better in the DT 

condition. With these data, the formula was altered slightly: 𝐷𝑇𝐶% = (
−(𝑆𝑇−𝐷𝑇)

𝑆𝑇
) ∗ 100. 

Therefore, all positive DTC values indicate worse performance in the DT condition.  

 Group comparisons and within-group task comparisons were made using 

independent and paired-samples t-tests, and appropriate analyses of variance (ANOVAs). 

Appropriate post-hoc analyses were carried out where main effects were observed. A 
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significance level of 0.05 was set for all analyses initially, with a Bonferroni corrected 

alpha utilised where multiple t-tests were conducted to compare between or within groups. 

The Bonferroni correction divides the original alpha value (0.05) by the number of 

comparisons being tested, giving a more conservative cut-off value for determining 

statistical significance and reducing the increased risk of a Type I error. In addition to 

significance values, measures of effect size were also calculated.  

 

2.6 Ethical Approval and Participant Recruitment 

All experiments were carried out in accordance with the ethical standards of the American 

Psychological Association (APA) and the Declaration of Helsinki (World Medical 

Association, Inc). Ethical approval was obtained from Maynooth University Ethics Board 

for all experiments (see Appendices F-H). For Experiment 4, additional approval was 

granted from the Research Ethics Committee at Tallaght Hospital (see Appendix I).  

 A number of different population samples were recruited ad hoc for the 

experiments conducted in this thesis. Samples recruited for Experiments 1-3 consisted of 

healthy young adults, healthy community-dwelling older adults, and (otherwise healthy) 

community-dwelling idiopathic fallers. These participants were recruited from Maynooth 

University, the local Maynooth community and the towns surrounding Maynooth in Co. 

Kildare. Participants responded to notices and advertisements on campus, in local 

publications and on local radio, as well as announcements made on campus and at local 

community group meetings (e.g. active retirement groups, Maynooth University Mature 

Students society). For Experiment 4, persons who had experienced a stroke were recruited 

from the William Stokes Stroke Unit patient database at Tallaght Hospital, south Co. 

Dublin. Past patients were contacted by letter initially (including a patient information 

leaflet and consent form; see Appendix N), inviting them to take part in a study being 
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carried out by Maynooth University and the William Stokes stroke unit at Tallaght 

Hospital. A comparative healthy older adult control group was recruited for Experiment 

4 from the surrounding south Co. Dublin area of the hospital, and also from the 

surrounding areas of Maynooth University in Co. Kildare.  

 In all cases, participants were informed that volunteers were being sought to take 

part in a study investigating the role of different brain processes in walking and falls, 

taking place at Maynooth University or Tallaght Hospital.  Anyone who responded to the 

recruitment call was given verbal and/or written information regarding the nature of the 

study, what types of tasks and measures would be used, what participation would entail 

on their part, and the expected duration of their participation (approximately). Exclusion 

and inclusion criteria were screened via telephone prior to making an appointment to take 

part (see Table 2.2 for the inclusion and exclusion criteria for each sample).  

 Written consent was obtained before the time of participation, or on the day, 

before the experiment commenced (following prior verbal consent via telephone; see 

Appendices J-N for consent forms used for Chapters 3, 4, 5 and 6). Where EEG measures 

were utilised, participants were informed of the equipment, how it is applied, the 

procedure of EEG measurement, and a general summary of what it measures. Participants 

were also warned that due to the use of conductive gel on the scalp, they may need to 

wash their hair after taking part, and facilities to do so were provided at each testing site. 

SignaGel® is a highly conductive water-soluble gel that is bacteriostatic and sensitive on 

skin (non-irritating and non-gritty). However, a patch test was carried out on the wrist of 

each participant (to test for potential skin allergies) at least 20 minutes before it was 

applied to the scalp.  

 Participants were made aware that their data and results would be coded 

confidentially for anonymity, with all collected data stored separately to consent forms. 
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Furthermore, participants were informed that they could stop the experiment at any time, 

and could withdraw their participation or their data at any point without question or 

consequence. If a participant expressed concerns about their performance on any 

measures (e.g. memory and recall), they were advised to contact their medical care 

provider or general practitioner, and informed that none of the measures utilised in this 

research could be used for diagnostic purposes. A full debriefing was provided at the end 

of participation, with any and all queries and questions answered by the experimenter.  
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Table 2.2: Key inclusion and exclusion criteria for all experiment sample groups. 

Criteria Healthy Young Adults (Y) Healthy Older Adults (OA) Patients post-Stroke (PPS) 

Inclusion: a) Age 18+ years; 

b) Independently mobile. 

a) Age 55+ years; 

b) Ability to walk upright for at least 15m. 

c) Community dwelling 

a) Aged 55+ years 

b) Ability to walk upright for at least 15m 

c) At least 6 months post-stroke/CVA 

Exclusion: a) Severe uncorrected sensory 

impairment 

b) History of 

psychological/neurological 

impairment 

c) Severe head trauma (with 

unconsciousness) 

d) Currently on psychoactive 

or balance-impairing 

medication 

e) History of epilepsy 

f) History of drug or alcohol 

problems 

g) Any relevant vestibular or 

musculoskeletal conditions 

h) Labyrinthectomy 

a) Unable to walk 15m, with or without aid 

b) MMSE® score < 10 

c) Dementia, or moderate-severe aphasia 

d) Severe uncorrected sensory impairment 

e) History of psychological/neurological 

impairment 

f) Severe head trauma (with 

unconsciousness) 

g) Currently on psychoactive or balance-

impairing medication 

h) Unstable blood pressure/heart condition 

i) History of epilepsy 

j) History of drug or alcohol problems 

k) Lower limb amputation, recent joint 

replacement 

l) Other relevant vestibular or 

musculoskeletal conditions 

m) Labyrinthectomy 

a) Unable to walk 15m, with or without aid 

b) Less than 6 months post stroke/CVA 

c) MMSE® score < 10 

d) Unable to provide consent 

e) Severe hemiplegia 

f) Dementia, or moderate-severe aphasia; 

g) Severe uncorrected sensory impairment 

h) History of prior psychological/ neurological 

impairment 

i) Severe head trauma (with unconsciousness); 

j) Currently on psychoactive or balance-

impairing medication; 

k) Unstable blood pressure/heart condition 

l) History of epilepsy 

m) History of drug or alcohol problems 

n) Lower limb amputation, recent joint 

replacement 

o) Other relevant vestibular or musculoskeletal 

conditions 

p) Labyrinthectomy 
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Abstract 

Dual-task studies are often used to examine the cognitive-motor link underlying gait 

control. Previous work has indicated a role for higher-level cognitive processes (namely 

executive functions) in gait control within young adults and those with a higher risk for 

falls (e.g. older adults). However, due to considerable methodological variability in the 

literature, it is not clear which specific executive processes (e.g. attention, working 

memory, inhibition) play a role, and if the length of the walkway (5m, 10m, 15m) used 

for testing has an impact on measuring dual-task interference. This chapter presents an 

experiment investigating the effects of different dual-tasks on gait performance in healthy 

young adults over two different walking distances (5m and 15m). Forty healthy young 

adults were recruited; 20 participants were allocated to the 5m distance group and 20 to 

the 15m distance group. Within each group, gait and cognitive performances were 

analysed during single-task and various dual-task conditions. The dual-tasks targeted 

simple divided attention and motor responding (Motor task), visuospatial processing 

(Clock task), executive working memory (2-back task) and executive attention and 

updating/working memory (Subtraction task). Results found that there were more 

changes in stride time (longer) and gait speed (slower) for the executive tasks, with the 

Subtraction task and Clock task exhibiting comparatively more interference on gait 

performance over a 15m walking distance. These findings help clarify the specific 

processes underlying cognitive-motor inference during dual-task walking.  
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3.1 Introduction 

The ability to maintain stability while navigating various terrains and obstacles, attending 

to environmental information and distractions, all while processing sensory feedback, 

distinguishes gait control as a highly complex behaviour requiring cognitive flexibility 

and multidimensional processes (Hausdorff, Yogev, Springer, Simon, & Giladi, 2005; 

Szturm et al., 2013). Oftentimes, in everyday life, we carry out this complex behaviour 

while multitasking: when we walk while carrying multiple objects, or while talking or 

texting on a mobile phone. The long held assumption that walking is an automated motor 

function has been disregarded, with a growing body of evidence demonstrating a 

relationship between cognitive and motor processing in the brain while walking 

(Woollacott & Shumway-Cook, 2002; Yogev-Seligmann, Hausdorff, & Giladi, 2008). 

For example, older adults and clinical samples (e.g. persons with dementia) who exhibit 

cognitive impairments also have an increased risk for falls (Al-Yahya et al., 2011; Muir, 

Gopaul, & Montero Odasso, 2012; Shaw, 2002). Research into this cognitive-motor link 

suggests that walking gait requires attention and is, at least in part, governed by top-down 

higher-level cognitive processes (Hausdorff et al., 2005).  

The overlap of cognitive and motor processing during walking is often examined 

using the dual-task (DT) paradigm (Al-Yahya et al., 2011; Woollacott & Shumway-Cook, 

2002; Yogev-Seligmann et al., 2008). In DT studies, participants walk while performing 

a secondary task, and the DT change or interference (mainly for gait performance) is 

assessed. Cognitive theories argue that these decrements in gait performance are a result 

of shared cognitive resources being redirected from gait control to the secondary task 

(central capacity-sharing model: Pashler & Johnston, 1998). The effect of a DT load 

should be measured in both directions (on cognitive and motor performance) as 

deterioriarion of performance in one task could indicate task prioritisation. However, 
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many studies in the past have focused solely on costs to gait performance (Al-Yahya et 

al., 2011).  

A systematic review and meta-analysis of the cognitive-motor DT literature has 

shown that cadence, gait speed and stride length all decrease during dual-tasking, while 

stride time and stride time variability increase (Al-Yahya et al., 2011; Gomes et al., 2016). 

In particular, variability measures are considered to be indicators of gait control (i.e. 

stability and automaticity) in the DT literature (Allali, Kressig, Herrmann, & Beauchet, 

2007; Hausdorff, Edelberg, Mitchell, Goldberger & Wei, 1997; Lassoe et al., 2008). 

However, the effects of DTs on variability measures is unclear in studies of young adults. 

A review from 2008 reported that during DT walking, young adults generally maintain 

gait variability dynamics equivalent to single-task (ST) walking (Yogev-Seligman et al., 

2008). More recently, some studies report that variability increases during DT walking in 

healthy adults (Asai, Doi, Hirata, & Ando, 2013; Szturm et al., 2013), while others report 

that variability decreases (Wrightson, Ross & Smeeton, 2016), highlighting the 

complexity of this measure. Szturm et al. (2013) found that variability of temporal gait 

parameters generally increased, as cognitive performance decreased in young adults 

simultaneously performing a visuospatial cognitive task. However, Wrightson, Ross & 

Smeeton (2016) found that both a serial Subtraction task and 2-back working memory 

task were equivalent in significantly reducing stride time variability in healthy young 

adults (suggesting that participants prioritised cognitive performance, by redirecting 

cognitive resources away from the motor gait performance).   

 The most robust and commonly reported gait impairment during DT conditions is 

reduced gait speed (Al-Yahya et al., 2011; Gomes et al., 2016). Healthy young adults 

have been reported to generally walk slower when completing a secondary task, 

sometimes with concurrent decline in cognitive task performance (Yogev-Seligman et al., 
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2008). When sufficient cognitive resources are taxed or impaired, a slower gait speed is 

likely a compensatory strategy for maintaning stability and avoiding falls, particularly 

when navigating challenging environments (Van Iersel, Ribbers, Munneke, Borm & 

Rikkert, 2007).  Despite this evidence for speed change, a more recent systematic review 

and meta-analysis revealed that DT walking speed was not a better predictor of falls in 

older adults in comparison to ST walking speed (Menant, Schoene, Darofim & Lord, 

2014). Yogev-Seligman et al. (2008) also reported that some DT studies show no effect 

of cognitive task on gait performance in healthy young adults, and argued that this may 

be due to participants being explicitly told to priortise the walking task or due to low 

cognitive task difficulty. Others have also shown that the type and complexity of both the 

walking and cognitive task, will affect DT performance costs in healthy young adults (Al-

yahya et al., 2011; Beurskens & Bock, 2012; Patel, Lamar & Bhatt, 2014).  

These mixed findings may be attributed to the large methodological variability in 

the DT literature, particularly regarding the choice of secondary cognitive task (e.g. 

memory recall tasks, motor tray carrying task, spontaneous speech, Stroop task: Al-Yahya 

et al., 2011; Beurskens & Bock, 2012). It is important to remember that cognition is not 

a unitary construct, but rather a complex system of multiple and varied processes, 

including sub-domains, which can often be targeted with many variations of tasks. The 

use of general cognitive tasks, or tasks that are not domain-specific, adds little to our 

understanding of the cognitive-motor link and makes comparison across studies difficult 

(Worden, Mendes, Singh & Vallis, in press, 2016). Furthermore, this also has 

ramifications for translating this knowledge to the clinical setting (for the effective use of 

DTs as a screening and/or intervention tool). However, recent systematic reviews (Al-

Yahya et al., 2011; Chu, Tang, Peng & Chen 2013; Gomes et al., 2016; Hsu, Nagamatsu, 

Davis & Liu-Ambrose, 2012) and other studies seem to indicate that higher-level 
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executive function (EF) processes may be the key contributor to gait control, as tasks of 

executive control affect gait more than simple divided attention or discrimination tasks 

(Beurskens & Bock, 2012; Hausdorff et al., 2005). For example, performance on EF 

measures has been shown to correlate with gait speed in both ST and DT conditions, as 

well as to predict falls in older adults (Killane et al., 2014; Mirelman et al., 2012). 

However, executive control can also be subdivided into multiple processes involving 

various cortical inputs (Yogev-Seligman et al., 2008). These processes include goal-

directed decision making, planning, purposive action, action monitoring/information 

updating, and inhibition. Many previous studies have often employed only one executive 

DT, or have failed to include non-executive simple attention demanding tasks for relative 

comparisons (van Iersel, Kessels, Bloem, Verbeek, & Olde Rikkert, 2008; Szturm et al., 

2013).  

To gain a better understanding of the specific higher-level processes underlying 

gait control, this study compared the effects of multiple secondary tasks, within the same 

testing session, on DT gait in healthy young adults. A Subtraction task and an n-back task 

(2-back) were utilised as they are commonly used in the DT literature, and are known to 

target executive processes. The Subtraction task taxes higher-level executive attention, 

information updating and working memory (Baetens et al., 2012; Mertens et al., 2006; 

Moneterro-Odasso et al., 2009; Srygley, Mielman, Herman, Giladi & Hausdorff, 2009), 

while the 2-back task targets executive working memory processing (Owen, McMillan, 

Laird & Bullmore, 2005). We also used the Clock task, which requires visualisation and 

visuospatial executive processes (adapted from Haggard et al., 2000). In addition, we 

included a simple motor response task as a control DT, allowing relative comparisons 

between tasks targeting higher-level executive processes, and simple divided attention for 

tone discrimination and motor responding. We also recorded cognitive responses in both 
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the ST and DT condition, to assess the DT effect on both gait and cognitive performance 

(which has not always been the case in previous literature: Al-Yahya et al., 2011).  

We also wished to investigate the effect of walkway length on DT effects. While 

some studies have looked at the effect of different walking speeds, walkway width, and 

treadmill or over ground walking on DT performances (Beurskens & Bock, 2012; Patel, 

Lamar & Bhatt, 2014; Wrightson, Ross, Smeeton, 2015), few have examined the effect 

of the length of the walkway on DT interference. Previous studies have shown that 

walking distance can affect spatiotemporal parameters of gait in both young and older 

adults during normal (ST) walking (Najafi, Helbostad, Moe-Nilssen, Zijlstra & Aminian, 

2009; Najafi, Khan & Wrobel, 2011). Specifically, these authors show that young adults 

walk faster over longer distances (7m vs. 14m, and 14m vs. 20m). Other laboratory 

studies have suggested that speed and measures of variability are only valid at longer 

distances of 10m and 15m (Montero-Odasso, 2006; Hollman et al., 2010), as longer 

distances provide more data points and step cycles, allowing for more consistent 

calculations of variability and test-retest reliability (Koenig, Singh, von Beckerath & 

Taylor, 2013; Monaghan, Delahunt & Caulfield, 2007). 

However, more recently there has been a focus on examining walking gait during 

daily living, and these studies have shown that walking bouts are short, with low numbers 

of sequential steps (Orendurff, Schoen, Bernatz, Segal & Klute, 2008). Furthermore, we 

are more likely to walk while conducting a secondary task over a short distance in the 

home. Clinical gait assessments at normal pace are also mostly conducted over a short 

distance (4m) for predicting adverse outcomes (Abellan van Kan et al., 2009). Here we 

compared DT changes over two different walkway distances with one group of young 

adults walking a 5m walkway, and another group walking over a 15m walkway. 
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3.1.1 Aims and Hypotheses 

It is necessary to understand the cognitive-motor interference of different DTs in young 

healthy adults first, so that we may make comparisons to older adults and other clinical 

samples at a higher risk of falling. This will help us understand how gait control changes 

with ageing and impairment. The first aim is to assess the relative role of different higher-

level cognitive processes by directly comparing the DT effects of explicitly different 

executive domains and attention-demanding tasks. The second aim is to identify if DT 

effects are different when measured over a 5m and 15m walkway distance. The role of 

each cognitive process will be determined by the amount of interference it has on walking 

gait and cognitive performance under DT conditions (relative to baseline ST 

performance). Given the healthy and capable nature of this sample (without fall-risk), it 

is hypothesised that overall, there will be limited impairments in gait while conducting 

the secondary tasks. We predict that participants will adopt a more stable gait to cope 

with the demands of the Clock, Subtraction and 2-back tasks. Therefore, we expect to see 

a slower gait speed and decreased variability while dual-tasking (in line with the work by 

Wrightson et al., 2016). By contrast, we expect very few changes (or none at all) in gait 

during the Motor DT. We predict that these healthy young adults will have adequate 

cognitive resources for maintaining cognitive performances while walking, so we do not 

expect cognitive performance to deteriorate from ST to DT conditions. We also predict 

that gait parameters will be different in the 5m and 15m walkway, as the 15m walkways 

will allow for a longer period of steady state walking (more gait cycles). However, we do 

not expect any differences in cognitive interference between the 5m and 15m groups.   

 

 

 



79 

 

3.2 Methods 

3.2.1 Participants 

A sample of 40 healthy young adults was recruited from the student population at 

Maynooth University, and split into two groups of 20 participants. One group completed 

the experiment protocol with a 5m walkway (9 male; age range 20-32 years; mean age 

24.20 years) and the other group with a 15m walkway (8 male; age range 18-27 years; 

mean age 21.95 years). We did not use one group to complete the protocol over the 2 

distances as there would be significant repetition of cognitive tasks in both the single and 

dual-task condition, which would cause practice effects. All participants gave written 

informed consent (see Appendix F), and reported that they were in good health, with no 

known conditions or impairments which may affect their walking or balance. This study 

was approved by the NUI Maynooth University Ethics Board, and conducted in 

accordance with the Code of Ethics of the World Medical Association and the ethical 

standards of the APA.  

 

3.2.2 Gait Assessment 

A straight, wide, well-lit, and obstacle-free walkway was mapped out with floor markings 

at beginning and end for both distances. The walkway was measured at 5m for one group 

(5m group) and 15m for the other (15m group). Kinematic data were recorded from two 

SHIMMER™ wireless sensors attached to the left and right shank, which were 

programmed to record data for 45s for the 5m group and 60s for the 15m group: these 

times were long enough for walking trials to be completed in each case, before the sensors 

stopped transmitting. All participants made 4 passes of the walkway in each condition.  

Spatial and temporal gait parameters were extracted from the data using an event-

detection algorithm (see Chapter 2, section 2.4) that excluded initial and turning small 
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steps at each end of the walkway. Gait speed (m/s), stride time (s), stride time variability 

(%), stride length (m) and stride length variability (%) were analysed for all walking trials.  

 

3.2.3 Dual-Tasks 

Four tasks were employed for the DT condition. Three of these tasks were auditory 

stimulus-response tasks generated in E-Prime (Clock task, Motor task and n-back task 

conditions). These E-Prime tasks were presented on a Dell Latitude 2.1GHz Intel Pentium 

Processor laptop, with Dell external USB plug-in speakers. These tasks ran for 45s for 

the 5m group and 60s for the 15m group. The fourth cognitive task was a numerical 

Subtraction task recorded with pen and paper. All cognitive DTs were also carried out 

while seated (the ST condition) in order to investigate the bidirectional effects of dual-

tasking on gait and cognitive performances.  

 

3.2.3.1 Motor task  

A motor response task was used as a simple attention-demanding task that should not tax 

working memory or EF processing (to be used as a relative control task for more 

demanding DTs). In this task, 2 different auditory tones (16-Bit WAV file; 1411kbps; 

1000ms long) were presented via the speakers. Participants were instructed to respond 

quickly to each tone by clicking the left or right button of a wireless mouse (held in their 

dominant hand). A sample of the two tones was played before the task commenced, and 

participants were told which mouse button (left or right) was paired with each tone. 

Stimuli were presented in a randomized order for both the DT and ST condition, at 

randomly varied delay intervals (500ms, 750ms or 1000ms), with a 3000ms response 

window from stimulus onset. Response accuracy and reaction times were automatically 

logged in E-Prime.  
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3.2.3.2 Clock task  

The Clock task is a visuospatial task which taxes executive control and working memory 

(adapted from Haggard, Cockburn, Cock, Fordham, & Wade, 2000). Auditory stimuli 

were presented via the speakers, which consisted of a female voice reading a series of 

times: e.g. “one-oh-five”; “three-fifteen”; “seven-forty”. The stimuli were 16-Bit WAV 

files, 1000ms long, with a 1411kbps bit rate. There was a 3000ms response window from 

stimulus onset, and a 500ms stimulus interval. Participants were required to visualise a 

round-faced clock as each time was announced, and visualise where the hour and minute 

hands of the clock would be for that particular time. If both clock hands were on the same 

left or right vertically bisected half of the clock (between 1 and 5, or 7 and 11), 

participants were required to verbally respond “YES” (e.g.: 1:15). Participants were 

required to respond “NO” if the clock hands were on opposite sides of the clock (e.g.: 

3:45). Times bisecting the clock (6 and 12 o’clock and 0 and 30 minutes) were not 

included in the stimuli. There was an equal chance of either a “YES” or “NO” trial being 

presented each time. Stimuli were randomised each time the task was run so that the order 

varied for participants, and across the DT and seated ST conditions. Participant responses 

were logged by the experimenter on the laptop to measure accuracy.  

 

3.2.3.3 n-back task  

An auditory 2-back task was used to also tax higher-level executive control working 

memory processing (Owen et al., 2005). A series of nouns (e.g.: “channel”, “errand”, 

“jacket”, “garden”), read by a female voice, were played one at a time with a 100ms inter-

stimulus delay, from the speakers (Toronto Noun Pool; 16-Bit WAV file; 1411kbps bit 

rate; 1500ms response window). Some words were repeated after a 1-word interval in the 
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sequence: e.g. “dog”–“table”–“pen”–“table”. Participants were instructed to listen to the 

nouns and to respond by saying the word “MATCH” when they heard a word that was a 

repeat (or match) of the word presented two trials previously. In this way, the task 

required participants to hold the previous 2 words in their memory (2-back), while 

listening and deciding whether or not to respond to the currently played word. Twenty-

seven percent of the trials were target trials, and responses were logged on the computer 

by the experimenter. The stimulus sequence was different for ST and DT conditions to 

control for learning effects. 

 

3.2.3.4 Subtraction task 

The serial Subtraction task is a commonly used as a general cognitive load task in studies 

of gait, but is argued to specifically tax working memory and information updating 

(Mertens, Gagnon, Coulombe, & Messier, 2006). Participants were instructed to start at 

the number 100 and subtract in intervals of 3, aloud, for 45s in the 5m group, and 60s in 

the 15m group (e.g. 100, 97, 94...). Participants were told to restart the task at 100 if they 

counted to 0 before the 45 or 60 seconds had elapsed. Accuracy was measured, and a 

correct response rate (CRR) was calculated as number of correct responses divided by 

time (45s and 60s respectively).  

 

3.2.4 Procedure 

Informed written consent was obtained from each participant at the start of the session, 

before commencing any testing, with a full verbal debriefing provided by the 

experimenter upon completion.  In total, participants conducted 2 separate walking ST 

trials, 4 cognitive DTs and 4 cognitive STs in each distance group. Participants completed 

one ST walking trial at the beginning, followed by the cognitive ST and DT conditions, 
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and finally the second ST walking trial. In order to minimize the effects of learning, the 

cognitive ST and DT conditions were counterbalanced across participants (50% 

completed the sit-down cognitive tasks first). See Figure 3.1. Within the DT condition, 

the order of the cognitive DTs was also varied. All tasks were completed in one session 

lasting approximately 45mins in total (with shorts breaks offered to participants between 

tasks).  

 

Figure 3.1 Experiment procedure of tasks and conditions, ordered from left to right.  

 

Participants were instructed to walk the length of the walkway 4 times for each 

walking ST and DT trial, with 180° turns after each length of the pathway. Participants 

were asked to start walking with their right leg, to walk at what they considered to be 

their normal everyday pace (self-selected walking speed: SSWS), and asked to stand still 

upon completion of each trial (until the sensors stopped transmitting). Two ST walking 

trials were conducted so that an average of both could be taken as a measure of usual pace 

steady-state gait. All cognitive DTs were also performed while seated in a cognitive ST 

condition. Participants were not instructed to prioritise walking or the cognitive 

performance in the DT condition. The DT change (DTC) was calculated to assess the 
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effect of dual-tasking on both cognitive and gait performances (percentage change from 

ST to DT trials: see Chapter 2, section 2.5).   

 

3.2.5 Statistical analysis  

Cognitive accuracy, correct response rate and reaction time values (where applicable), 

spatiotemporal gait values, and the cognitive and motor DTC values were analysed. The 

DTC values reflect the relative change in gait and cognitive scores from baseline ST trials 

to DT trials. Positive values indicate worse performance on DT trials, and negative values 

indicate better performance on DT trials (see Chapter 2, section 2.5). A small number of 

extreme outlying points falling outside 3 times the interquartile range were removed from 

the data set.  

One-way ANOVAs were used to analyse the effect of the different cognitive DT 

conditions on the various gait measures (1x5 repeated measures ANOVA). Paired 

samples t-tests were used to investigate changes in cognitive performance between the 

sitting ST and walking DT conditions. Mixed factorial ANOVAs were also used to 

examine the effect of walkway distance (between factor: 5m vs 15m) and effect of task 

type (within factor) on the relative change DTC values for cognitive and motor 

performances (2x4 ANOVA). Homogeneity of variances was examined using Levene’s 

tests, and the Greenhouse-Geisser correction was employed where the assumption of 

sphericity was violated. Bonferroni-corrected alpha values were used to avoid a Type 1 

error, where multiple comparisons were made.  
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3.3 Results 

3.3.1 Group comparisons 

Although the mean age of the 5m and 15m groups were similar (5m group: M = 24.20, 

SEM = 0.78, range: 20-32 years; 15m group: M = 21.95, SEM = 0.57, range: 18-27 years), 

there was a statistically significant difference in these means when compared using an 

independent t-test: t(38) = 2.35, p = .02. When compared on baseline ST walking, the two 

distance groups also had significantly different walking speeds and mean stride times 

[speed: t(38) = -4.57, p < .001; stride time: t(38) = 5.55, p < .001]. Gait speed and stride 

time were significantly slower and longer, respectively, in the 5m walkway group (speed: 

M = 1.02, SEM = 0.03; stride time: M =1.07, SEM = 0.01), compared to the 15m walkway 

group (speed: M = 1.17, SEM = 0.02; stride time: M = 0.96, SEM = 0.01). Baseline 

cognitive performances in the seated ST condition were also compared across groups, 

which showed a significant difference between the groups on Motor reaction times (RT) 

and Subtraction task accuracy: [motor: t(38) = 6.19, p < .001; Subtraction: t(22.08) = 2.65, 

p = .011]. Motor RTs were faster for the 15m group (M = 599.09, SEM = 22.47 vs. 5m 

group: M =904.54, SEM = 43.95), and accuracy was higher in the 5m group on the 

Subtraction task (M =99.32, SEM = 0.38) compared to the 15m group (M =95.48, SEM = 

1.33). Due to these differences, direct comparisons were not made between the groups on 

measures of DT gait or cognitive function (walkway distance was not used as a between-

groups factor). However, the groups were compared on DTC values which represent 

relative change from their respective baseline performances.  

 

3.3.2 Gait Analysis  

The mean (M) and standard error of the mean (SEM) values for all gait variables across 

the walking conditions are shown in Table 3.1 for the 5m and 15m groups. There was a 
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significant main effect of DT task-type on gait speed and mean stride time in both the 5m 

[speed: F(4, 72) = 3.01, p = 0.024, ƞ2 = 0.143; stride time: : F(2.033, 38.63) = 11.02, p < 

0.001, ƞ2 = 0.367] and 15m group [speed: F(4, 76) = 8.01, p < 0.001, ƞ2 = 0.297; stride 

time: F(2.57, 48.75) = 20.93, p < 0.001, ƞ2 = 0.524]. However, there were no changes in 

stride time variability [5m group: F(4, 76) = 1.66, p = 1.69, ƞ2 = 0.66; 15m group: F(4, 

76) = 0.66, p = .621, ƞ2 = 0.034], mean stride length [5m group: F(4, 76) = .73, p = 0.57, 

ƞ2 = 0.037; 15m group: F(4, 76) = 0.77, p = .55, ƞ2 = 0.039] or stride length variability 

[5m group: F(4, 76) = 0.85, p = 0.5, ƞ2 = 0.043; 15m group: F(4, 76) = 1.26, p = .292, ƞ2 

= 0.062].  

Follow-up analyses of main effects were conducted for speed and stride time. In 

the 5m group, gait speed was significantly slower (p = .048) on the 2-back DT (M = 0.93, 

SEM = 0.02) compared to baseline ST walking (M = 1.02, SEM = 0.03). See Figure 3.2. 

Stride time was also significantly longer than baseline (M = 1.07, SEM = 0.01) on all DT 

trials (all p < .007): Motor DT: M = 1.17, SEM = 0.02; Clock DT: M = 1.19, SEM = 0.03; 

Subtraction DT: M = 1.23, SEM = 0.05; 2-back DT: M = 1.17, SEM = 0.03 (see Figure 

3.3).  

However, in the 15m group, participants walked significantly slower than baseline 

(M = 1.17, SEM = 0.02) on the Clock task (M = 1.11, SEM = 0.02, p = .009) and 

Subtraction task (M = 1.07, SEM = 0.02, p < .001), as well as the 2-back task (M = 1.10, 

SEM = 0.03, p = .019). See Figure 3.2. Similarly to the 5m group, the 15m group also had 

longer stride times (all p < .001) than baseline (M = 0.96, SEM = 0.01) on all DTs: Motor 

DT (M = 0.99, SEM = 0.02), Clock DT (M = 1.01, SEM = 0.02), Subtraction DT (M = 

1.03, SEM = 0.02) and 2-back task (M = 1.00, SEM = 0.02). However, stride time on the 

Clock task and the Subtraction task were also significantly greater (all p < .038) than the 

Motor task, as well as the ST, in the 15m group (see Figure 3.3).  
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Table 3.2. Mean (and standard error of the mean) values for speed, stride time, CV 

stride time (variability), stride length and CV stride length (variability) values for each 

DT (DT) conditions in the 5m and 15m groups.  

 

5m Group 

Gait Measure ST 
Motor  

DT 

2-back  

DT 

Clock  

DT 

Subtraction 

DT 

Speed (m/s) 
1.02 

(0.03) 

0.98 

(0.03) 

0.93 

(0.02) 

0.94 

(0.03) 

0.91 

(0.03) 

Stride Time (s) 
1.07 

(0.01) 

1.17 

(0.02) 

1.17 

(0.03) 

1.19 

(0.03) 

1.23 

(0.05) 

CV Stride Time (%) 
9.15 

(0.77) 

10.02 

(1.15) 

8.42 

(0.66) 

9.43 

(0.91) 

11.70 

(1.34) 

Stride Length (m) 
1.08 

(0.02) 

1.14 

(0.02) 

1.10 

(0.02) 

1.10 

(0.03) 

1.10 

(0.02) 

CV Stride Length 

(%) 

51.19 

(1.86) 

46.57 

(1.95) 

48.82 

(1.53) 

49.05 

(2.18) 

47.75 

(1.75) 

15m Group 

Gait Measure ST 
Motor  

DT 

2-back  

DT 

Clock  

DT 

Subtraction 

DT 

Speed (m/s) 
1.17 

(0.02) 

1.13 

(0.02) 

1.10 

(0.03) 

1.11 

(0.02) 

1.07 

(0.02) 

Stride Time (s) 
0.96 

(0.01) 

0.99 

(0.02) 

1.00 

(0.02) 

1.01 

(0.02) 

1.03 

(0.02) 

CV Stride Time (%) 
6.98 

(0.28) 

6.76 

(0.28) 

6.73 

(0.34) 

6.71 

(0.30) 

7.08 

(0.38) 

Stride Length (m) 
1.11 

(0.01) 

1.11 

(0.01) 

1.10 

(0.02) 

1.11 

(0.01) 

1.09 

(0.01) 

CV Stride Length 

(%) 

47.77 

(0.82) 

49.86 

(1.26) 

49.44 

(1.18) 

47.22 

(0.95) 

49.45 

(0.95) 
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Figure 3.2. Mean gait speed (m/s: +/- SEM) across single (ST) and DT (DT) conditions 

in both the 5m and 15m group (*indicates significance at the Bonferroni corrected alpha). 

 

 

Figure 3.3. Mean stride time (ms: +/- SEM) for single (ST) and DT (DT) conditions in 

both the 5m and 15m groups (* indicates significance at the Bonferroni corrected alpha).  
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3.3.2.1 Gait DTC 

The mean (and SEM) gait DTC values for each task type are presented in Table 3.2. DTC 

values (relative change from ST to DT) for each of the gait variables were compared 

between the 5m and 15m group and across the 4 DTs (2x4 mixed factorial ANOVA).  

 

3.3.2.1.1 Speed DTC 

There was a significant main effect of task type on speed DTC [F(3, 111) = 3.21, 

p = .026, ηp2 = 0.08], but no main effect for walkway distance [F(1, 37) = 0.76, p = .390, 

ηp2 = 0.02] and no significant interaction between task type and distance [F(3, 111) = 

0.34, p = .795, ηp2 = 0.009]. See Figure 3.4. Follow up within-group comparisons 

revealed no significant main effect for task type on speed DTC in the 5m group: F(3, 54) 

= 1.44, p = .243, ηp2 = 0.074. Conversely, in the 15m group, speed DTC on the 

Subtraction task (M = 8.69, SEM = 1.47) was significantly greater (p = .038) than on the 

Motor task (M = 3.74, SEM = 1.41): F(3, 57 ) = 3.03, p = .037, ηp2 = 0.137]. 
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Table 3.2. Motor DT change (DTC %) values for speed, stride time, CV stride time 

(variability), stride length and CV stride length (variability) values for each DT (DT) 

conditions in the 5m and 15m group.  

 

5m Group 

Gait DTC 
Motor  

DT 

2-back  

DT 

Clock  

DT 

Subtraction 

DT 

Speed DTC% 
2.21 

(3.73) 

7.62 

(2.09) 

6.77 

(3.84) 

9.63 

(3.27) 

Stride Time DTC% 
9.63 

(1.85) 

9.88 

(1.86) 

12.03 

(2.51) 

15.77 

(3.91) 

CV Stride Time DTC% 
8.76 

(12.97) 

-5.89 

(8.18) 

10.44 

(10.70) 

35.86 

(16.27) 

Stride Length DTC% 
-6.58 

(3.53) 

-3.02 

(2.79) 

-3.51 

(3.66) 

-3.39 

(3.69) 

CV Stride Length DTC% 
-7.08 

(4.84) 

-2.28 

(4.58) 

-2.14 

(5.13) 

-4.28 

(4.87) 

15m Group 

Gait DTC 
Motor  

DT 

2-back  

DT 

Clock  

DT 

Subtraction 

DT 

Speed DTC% 
3.74 

(1.41) 

5.97 

(1.65) 

5.10 

(1.32) 

8.69 

(1.47) 

Stride Time DTC% 
3.76 

(0.77) 

4.85 

(0.80) 

5.48 

(0.75) 

7.67 

(1.20) 

CV Stride Time DTC% 
-1.92 

(3.96) 

-2.96 

(3.91) 

-3.30 

(2.64) 

1.74 

(3.34) 

Stride Length DTC% 
0.18 

(1.33) 

1.48 

(1.55) 

-0.06 

(1.32) 

1.83 

(1.37) 

CV Stride Length DTC% 
4.88 

(2.98) 

3.94 

(2.79) 

-0.76 

(2.30) 

4.35 

(3.16) 
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Figure 3.4. Mean (+/- SEM) dual-task change (DTC) in speed for each dual-task in both 

the 5m and 15m groups (* indicates significance at the Bonferroni corrected 

alpha).Larger values indicate more relative change in speed (speed slowed most for the 

Subtraction dual-task). 
 

 

 3.3.2.1.2 Stride time DTC 

Similarly to speed DTC, there was a significant main effect of task type on stride 

time DTC [F(1.79, 68.10) = 6.30, p = .004, ηp2 = 0.142]. There was also a main effect for 

distance [F(1, 38) = 7.33, p = .01, ηp2 = 0.162], but no interaction effect [F(1.79, 68.10) 

= 5.37, p = .568, ηp2 = 0.014]. The change in mean stride time on the motor task was 

significantly greater in the 5m walkway group (M = 9.63, SEM = 1.85) than the 15m (M 

= 3.76, SEM = 0.77) walkway group: t(25.33) = 2.94, p = .007). Within the 5m group 

there were no main differences between task type [F(1.78, 33.84) = 2.88, p = .076, ηp2 = 

0.132]. For the 15m group, the stride time DTC was significantly greater on the Clock 

task (M = 5.48, SEM = 0.75, p = .02) and Subtraction task (M = 7.67, SEM = 1.20, p 
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= .006) in comparison to the Motor task (M = 3.76, SEM = 0.77): F(1.80, 34.11) = 7.71, 

p = .002, ηp2 = 0.289 (see Figure 3.5).  

 

 

Figure 3.5. Mean (+/- SEM) dual-task change (DTC) in stride time for each dual-task in 

both the 5m and 15m groups (* indicates significance at the Bonferroni corrected alpha). 

Larger values indicate more relative change in stride time (stride time increased the most 

for the Subtraction dual-task). 

 

3.3.2.1.3 Other gait variable DTC 

There was no significant main effect for task type [F(2.66, 95.90) = 2.51, p = .70, 

ηp2 = 0.065] or distance [F(1, 36) = 1.88, p = .179, ηp2 = 0.05] on CV stride time DTC. 

There was also no interaction effect [F(2.66, 95.90) = 1.44, p = .237, ηp2 = 0.039]. For 

stride length DTC, there was no significant interaction between task type and distance 

[F(3, 114) = 0.30, p = .829, ηp2 = 0.008], and no main effect for task type [F(3, 114) = 

0.80, p = .496, ηp2 = 0.021], or group [F(1, 38) = 2.82, p = .101, ηp2 = 0.069]. There was 

also no significant main effect for task type [F(3, 114) = 0.23, p = .877, ηp2 = 0.006] or 
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distance [F(1, 38) = 2.90, p = .097, ηp2 = 0.071], on CV stride length DTC, and no 

interaction effect [F(3, 114) = 1.03, p = .383, ηp2 = 0.026].  

 

3.3.3 Cognitive Analysis 

The mean (and SEM) reaction time (RT) scores for the Motor task, and mean (and SEM) 

accuracy scores for the 2-back and Clock task, and CRR for the Subtraction task are 

shown in Table 3.4. Within group comparisons revealed no significant differences 

between ST and DT cognitive performances in the 5m group on the motor [t(19) = -2.55, 

p = .02], Clock [t(19) = -0.05, p = .96] or 2-back task [t(17) = 0.00, p = 1.00]. However, 

there was a significant decrease in Subtraction task performance from the ST (M = 0.61, 

SEM = 0.04) to the DT (M = 0.52, SEM = 0.04) condition: t(19) = 3.23, p = .004. In the 

15m group, there was a significant difference between ST and DT performance for the 

Motor task [t(18) = -5.57, p < .001] and 2-back task [t(16) = 2.80, p = .013]. See Figure 

3.6. Motor task reaction times were slower on the DT condition (M = 653.99, SEM = 

24.49) than the ST (M = 599.09, SEM = 22.47). Accuracy on the 2-back task was also 

poorer on the DT (M = 93.12, SEM = 1.58) compared to the ST (M = 98.94, SEM = 0.52).  

 

3.3.3.1 Cognitive DTC  

Analysis of cognitive DTC values revealed no significant main effect for task type 

[F(1.42, 51.20) = 2.40, p = .116, ηp2 = 0.063], or distance [F(1, 36) = 0.23, p = .638, ηp2 

= 0.006]. There was also no interaction effect [F(1.42, 51.20) = 0.94, p = .369, ηp2 = 

0.025]. See Table 3.4 for M and SEM DTC (%) values.  



94 

 

Table 3.3. Mean (and SEM) DT performance values (RT and ACC) for each task in 

single-task (ST) condition and DT (DT) condition and DT change relative change values 

(DTC%) for each, in the 5m and 15m group.  

 

 5m Group 15m Group 

Task ST DT DTC% ST DT DTC% 

Motor RT (ms) 
904.54 

(43.95) 

975.40 

(37.79) 

9.71 

(3.26) 

599.09 

(22.47) 

653.99 

(24.49) 

10.22 

(1.75) 

2-back ACC (%) 
98.80 

(0.59) 

98.32 

(0.71) 

0.80 

(1.49) 

98.94 

(0.52) 

93.12 

(1.58) 

2.56 

(1.39) 

Clock ACC (%) 
69.00 

(6.42) 

69.33 

(5.08) 

-9.74 

(15.62) 

77.82 

(5.01) 

78.87 

(4.74) 

-5.63 

(8.16) 

Subtraction CRR 
0.61 

(0.04) 

0.52 

(0.44) 

14.40 

(4.72) 

0.50 

(0.05) 

0.51 

(0.06) 

-2.86 

(5.81) 

 

 

 

Figure 3.6. Differences between single-task (ST) and DT (DT) for; a) Motor task reaction 

times (RT) in ms (+/- SEM); and b) 2-back task percentage accuracy (ACC: %: +/- SEM), 

in both the 5m and 15m group (* p ≤ 0.13). 
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3.4 Discussion 

This experiment examined walking gait and cognitive performances under ST and DT 

conditions in healthy young adults, across a 5m and 15m walkway distance. The main 

aims were; 1) to compare the relative effects of varied secondary tasks (executive and 

non-executive) on DT walking gait; and 2) to examine if there are differences in gait DTC 

or cognitive DTC between a short (5m) and longer (15m) walkway distance.  

There were no changes in stride length or measures of variability (CV stride 

time/length) from ST to DT for any secondary task over the 5m or 15m walkways. This 

is in contrast to our predictions that variability would decrease to support a more secure 

gait during DT walking (Wrightson et al., 2016). However, as previously mentioned, the 

complexity of gait variability measures is evident in the literature with mixed patterns of 

changes (increasing or decreasing), with some authors reporting no variability changes in 

healthy young adults (Al-Yahya et al., 2011; Yogev-Seligman et al., 2008). This may be 

due to the very capable nature of a healthy young adult sample, whereby changes in 

variability are not necessary to maintain a steady gait while dual-tasking.  

However, there were significant reductions in speed and stride time while dual-

tasking in over both walkway distances. The Motor task elicited a longer stride time over 

both the 5m and 15m walkway distance, with participants in the 5m group also showing 

slower reaction times on the Motor task, compared to ST baseline performances. Perhaps 

the slower reaction times on the 5m walk may be due to a shorter walkway between turn 

points, requiring more frequent adjustments to the walking task (step length and speed 

entering and leaving turns) compared to the 15m walkway group.  However, no change 

was observed in gait speed overall. Therefore, the attentional demands of this basic Motor 

response task were enough to alter mean stride time, but not mean speed or the other 

characteristics of the DT gait. Perhaps participant response times were slower due to 
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resources being directed away from responding on the task to maintaining gait speed. 

However, as response times were not recorded for the EF tasks (only accuracy), we cannot 

make comparisons across tasks (there may have been changes in RT on these other DTs 

also).  The limited stride time changes while conducting the Motor task may indicate that 

the attentional resources and motor function processes required for this task are not 

primarily essential to the control of gait. In this instance, the Motor task can act as a 

“control” task, allowing us to compare lower-level attention/discrimination processes and 

motor response functions–needed for most secondary tasks in the literature–to the 

additional, specifically higher-level executive processes taxed in the other three tasks. 

This is a strength of the current study design, allowing us to addresses the problem of 

methodological variability regarding the use of secondary tasks in the DT literature (Al-

Yahya et al., 2011). 

The EF tasks elicited more changes in gait performance than the Motor task, as 

predicted. The 5m and 15m groups both showed slower stride times for the Clock task, 

Subtraction task and 2-back task during DT walking (as for the Motor task). Additionally, 

the 15m group also had slower gait speeds on all executive tasks in comparison to the 

Motor response task. Overall gait speed was also slower than baseline for the 15m group 

on all tasks (and slower for the 2-back over 5m) during DT walking. This change in speed, 

with the related longer stride time, despite the maintenance of variability and stride length, 

might suggest that these gait changes do not necessarily reflect impairment. Rather, this 

could indicate that participants may have adopted a more stable and secure gait (slower 

speed and step times) to compensate for their divided attention, and the increased taxation 

of EF processes/resources (Beauchet et al., 2009; Van Iersel et al.,  2007). This is in line 

with our predictions that there would only be minor changes to gait while dual-tasking. 

The maintenance of cognitive performance on the Clock and Subtraction tasks suggests 
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that participants prioritised cognitive performance over walking (without instruction to 

do so), or that these tasks were not challenging enough to affect both gait and cognitive 

performance in this young adult sample.  Interestingly, accuracy on the 2-back task did 

deteriorate in the DT condition for the 15m group, in addition to the gait changes in speed 

and stride time. These bidirectional effects suggests that the underlying faculty of 

working memory was necessary for both the cognitive task completion and walking task 

performance, indicating shared processing resources.  

More crucially, when we examined the relative change in performance from 

baseline to DT conditions (speed and stride time DTC), there was comparatively greater 

gait interference on the Subtraction and Clock task than the Motor response task in the 

15m group.  These findings indicate a gradient effect of DT interference across these 

secondary tasks, as hypothesised, and as supported by previous work (Al-Yahya et al., 

2011; Beurskens & Bock, 2012; Hausdorff et al., 2005). Thus, visuospatial, working 

memory and information updating processes appear to each play a role in gait control that 

goes beyond divided attention and simple motor response discrimination.   

In particular, the Subtraction task in our study appears to have caused the most 

motor interference in relation to baseline and the Motor task. This Subtraction task 

targeted higher-level attention, working memory and constant concentration/information 

updating (Mertens et al., 2006). Therefore, these processes may play a greater role in 

controlling gait than the visuospatial processes taxed in the Clock task.  However, it is of 

note that the n-back task, which also targets EF working memory, did not affect gait 

comparatively more than the Motor task (as the Subtraction task did). This is contrary to 

what we would have expected, as working memory has previously been associated with 

greater DT costs, and correlated with fall-risk (Beurskens & Bock, 2012). Wrightson et 

al. (2016) recently showed that the Subtraction and n-back tasks were equivalent in 
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reducing stride time variability in young adults. However, the Subtraction task required 

constant responding throughout the walking trial, and this may have taxed working 

memory and updating more than the recognition response type of working memory 

targeted in the 2-back task (where participants only had to identify when a word was 

repeated, and not respond on every trial). Alternatively, considering the 2-back task also 

showed decreased accuracy in the DT condition, some resources may have been preserved 

for the gait performance, explaining why the gait DTC were not equivalent to the 

Subtraction task in comparison to the Motor task. Automatic verbal responses recording 

technology is now available which can be used to automatically record response times as 

well as accuracy, and could offer more detail of responses in a study such as this.  

Analysis of ST baseline measures of gait and cognitive performance revealed 

several differences between the 5m and 15 groups. The 5m group had a slower mean gait 

speed, higher Subtraction task accuracy and faster Motor task RTs. These differences may 

be explained by the physically shorter (5m) walkway. Regarding the accuracy and RT 

differences, the shorter ST trial time used to match the shorter 5m DT walking trial may 

account for this; participants only had to subtract for 45s instead of 60s in the 15m group. 

The Subtraction task may increase in difficulty the longer concentration, working 

memory and information updating are taxed: i.e. the further from the start of the task you 

go, the more attention and working memory are taxed to continuously update the current 

number position, and the longer the participant must continuously subtract without 

distraction or lapses in attention. The slower ST gait speed in the 5m group may be due 

to the fact that there is considerably less time for steady state walking between turns, and 

also due to turn-related acceleration and deceleration. A 5m walkway may be too short to 

build up to a faster normal walking speed, in comparison to 15m. However, it should be 

noted that the ST speed reported in both distance groups here is slower than previously 
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reported normative data. Bohannan and Andrews (2011) published reference data 

showing mean speeds of 135.8cm/s (range: 127-144.7) for men and 134.1cm/s (range: 

123.9-144.3) for women aged 20-29years. However, there is also much methodological 

variability in how these walking tests for normative data are conducted (e.g. variations in 

length of walkway used and gait analysis technology), and Bohannon and Andrews 

suggest these data may not be useful for normal gait tests that involve a turn. Thus, it was 

more pertinent here to examine the relative change in gait (DTC values) within the 5m 

and 15m groups.  

 Finally, we observed more DT changes in mean gait speed, speed DTC and stride 

time DTC values over the 15m walkway, with evidence of a hierarchical trend between 

the tasks. These findings indicate that the Subtraction and Clock tasks caused 

comparatively more interference than the Motor task alone. Therefore, it may be the case 

that a 5m walkway is too short (with too few steady state gait cycles and a less time for 

cognitive trials on the secondary task), to identify the changes in speed and DTC values 

observed over the 15m walkway. Some authors suggest that gait speed can only be 

measured reliably at distances of 6-10m (Montero-Odasso, 2006), yet these distances 

would be generally larger than what is feasible within a home. This has implications for 

generalising laboratory DT study findings over longer distances to multitasking during 

daily living in the home. While stride time changes were still observed at the shorter 

distance, it may be necessary in the laboratory to use a longer walkway to identify changes 

in performances, in order to further our understanding of the cognitive-motor link.  

 

3.4.1 Conclusion 

This controlled experimental design allowed us to assess the relative impacts of different 

secondary tasks, and helped to tackle many of the methodological variability problems 
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reported in the DT literature (Al-Yahya et al., 2011). As hypothesised, the executive DTs 

significantly affected walking gait, yet there was little evidence of walking interfering 

with cognitive accuracy (except on the 2-back task). There were also more changes from 

ST gait on the Clock, Subtraction and 2-back task in comparison to the Motor task, as 

expected. This highlights the relative role of higher-level attention and executive function 

in the control of gait, even within a young healthy adult sample. However, we cannot 

generalise these findings in young healthy adults to older adults or fall-risk clinical 

samples. Gait control has been evidenced to change with ageing, and so there is a need 

for further research to investigate the different executive processes underlying older adult 

gait control. This will require more controlled and comparative DT study designs, which 

could lead to more effective clinical DT screening assessment and rehabilitative training 

techniques, as reported in the next chapter.



 

 

 

Chapter 4 

 

Executive domain dual-

task effects on gait in 

healthy young and 

community-dwelling 

older adults.  
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Abstract 

Executive processing has been associated with gait and falls in older adults. However, 

due to much methodological variability in the literature, it is still unclear which specific 

executive processes play a role in older adult gait control. The following chapter details 

an experiment using the dual-task paradigm in healthy young (n = 20) and community-

based older adults (n = 17). This study analysed cognitive and gait performances in single-

task and 4 different dual-task conditions. We directly compared two non-executive 

control tasks (motor response task and alphabet recitation task) to three different 

executive domain tasks (visuospatial Clock task, 2-back working memory task, and 

mental tracking/working memory Subtraction task). There were more changes in speed 

(slower) and stride time (longer) for the executive tasks, and particularly so in the older 

adult group. However, there were no differences between the young and older groups on 

baseline (single-task) or dual-task walking. This may be due to our sample of a relatively 

young (M = 61.88 years) and healthy older adult group, who may not have to compensate 

much to maintain gait control while dual-tasking. Further work should specifically 

compare older adults with and without a history of falls to examine the link between age-

related cognitive declines.   
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4.1 Introduction 

Falls while walking are a common problem for older adults globally, with fall-risk found 

to be associated with cognitive decline in older adults (Shaw, 2002; Sheridan & Hausdorff, 

2007). Consideration of top-down processing mediating gait has grown with increasing 

evidence of a cognitive-motor link, through the use of the dual-task paradigm (Woollacott 

& Shumway-Cook, 2002; Yogev-Seligmann, Hausdorff, & Giladi, 2008). This paradigm 

allows us to specifically examine the relationship between cognition, gait and falls, by 

asking participants to perform an attention-demanding task while walking (Montero-

Odasso, Muir & Speechley, 2012). The change, or “cost”, to performance is thus an 

indicator of limited shared cortical resources required for both tasks (Monterro-Odasso et 

al., 2012), and has been strongly linked to fall-risk in older adults (Lundin-Olsson et al., 

1997; Verghese et al., 2002). Dual-task studies have shown that more attention and 

higher-level cognitive resources are required to maintain or control gait in older adults, 

presumably to compensate for or adapt to age-related decline in sensorimotor functions 

(Beurskens & Bock, 2012; Woollacott & Shumway-Cook, 2002). Liu, Chan and Yan 

(2014) propose that increased falls in older adults are a consequence of age-related 

impairments in neural motor outputs. This results in walking gait becoming more 

attention-demanding, necessitating increased cognitive control. This argument relates to 

compensation hypotheses of neural ageing, whereby high-functioning older adults 

counteract age-related sensorimotor decline by reorganized neurocognitive networks 

(Cabeza, Anderson, Locantore, & McIntosh, 2002; Park & Reuter-Lorenz, 2009).  

Generally, older adults have a slower gait speed, reduced stride length and 

increased stride time variability in comparison to young adults during single-task walking 

(Beurskesn & Bock, 2012; Smith, Cusack & Blake, 2016). Slower usual gait speed has 

been shown to predict falls and fall-risk in community-dwelling adults (Abellan Van Kan 
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et al., 2009; Verghese, Holtzer, Lipton, & Wang, 2009). Kenny et al. (2013) provided 

normative values for usual gait speed in a nationally-representative sample of 

community-dwelling adults over the age of 50 (and without cognitive impairment) living 

in Ireland. The mean speed at 60 years of age for men was 141.0 cm/s (men shorter than 

173cm) and 144.4 cm/s (taller than 173cm), and 134.7 cm/s (shorter than 160cm) and 

138.7 cm/s (taller than 160cm) for women. In young adults, normative speeds have been 

reported as 135.8cm/s (range: 127-144.7) for men and 134.1cm/s (range: 123.9-144.3) for 

women aged 20-29years (Bohannan & Andrews, 2011). However, there are no accepted 

values for speed during dual-task walking, which is more akin to daily life where one or 

more concurrent tasks are carried out while walking (Smith et al., 2016). The growing 

body of dual-task research does show that older adults have greater dual-task changes in 

gait than younger adults which has been associated with future fall-risk (Beurskens & 

Bock, 2012; Beauchet et al., 2009; Dubost et al., 2006; Muir-Hunter & Wittwer, 2016). 

Most commonly, a greater reduction in gait speed is observed, with some studies reporting 

an increased stride time and stride time variability, and decreased stride length (Beauchet, 

Dubost, Aminian, Gonthier, & Kressig, 2005; Beurskens & Bock, 2012; Hollman, 

Kovash, Kubick & Linbo, 2007). 

Two studies comparing the dual-task costs of a working memory subtraction task 

(counting backwards and serial subtracting) and a semantic working memory task (animal 

naming) found that cognitively healthy older adults slowed down for both DTs, and 

exhibited an increased stride variability (Montero-Odasso, Muir & Speechley, 2012; 

Theill, Martin, Schumacher, Bridenbaugh, & Kressig, 2011). These studies also assessed 

cognitively impaired older adults and found exacerbated effects during dual-tasking, in 

comparison to the healthy older adults. Dubost et al. (2006) also showed that a verbal 

fluency task was associated with a reduction in gait speed, and increase in mean stride 
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time and stride time variability in healthy older adults. However, other studies have found 

that gait variability is not affected by a subtraction task in healthy young or older “non-

faller” adults, but it is for idiopathic older adult fallers (Springer et al., 2008).  

In some cases, a reduction in speed (also seen in young adults and other samples) 

is considered to be an appropriate compensatory strategy for maintaining balance while 

attention and cognitive resources are taxed by the secondary task (Dubost et al., 2006). 

However, a recent review by Gomes et al. (2016) found that gait speed and stride 

variability are both considered good indicators of fall risk (and are most often assessed 

together in the literature). Dubost et al. (2006) established that stride time variability 

under dual-task conditions is not solely a by-product of reduced gait speed during dual-

tasking in older adults, but is also significantly associated with the attention-demanding 

dual-task. Furthermore, increased stride time variability in usual and dual-task walking 

has been associated with both cognitive decline and fall-risk in older adults, and in some 

cases has been shown to be a more sensitive marker of falls than gait speed alone 

(Hausdorff, Edelberg, Mitchell, Goldberger & Wei, 1997). Therefore, increased stride 

time variability during dual-task walking in older adults indicates decreased stability due 

to the demands of the cognitive task (Hollman et al., 2007).  

 Recent reviews and meta-analyses of dual-task studies in older adults reveal that 

the type of secondary task matters in terms of its effects on gait performance, and that 

executive function tasks seem to incur greater dual-task costs in older adults (Al-Yahya 

et al., 2011; Chu, Tang, Peng & Chen 2013; Gomes et al., 2016). Chu et al.’s (2013) 

recent analysis suggests that mental tracking tasks are best evidenced to predict falls (in 

comparison to reaction time tasks and discrimination or decision-making tasks). 

Executive visuospatial processing has also been evidenced to have a greater effect on 

dual-task performance (Menant, Sturnieks, Brodie, Smith & Lord, 2014), and play a 



106 

 

greater role in determining fall-risk, in comparison to mental verbal task loads in older 

adults (Barra, Bray, Sahini, Golding & Gresty, 2006). Within an Irish older adult sample, 

neuropsychological tests of processing speed, short-term memory and sustained attention 

contributed to slower gait speed on both single and dual-tasks, with an additional specific 

role of executive function for the dual-task, but not single-task performance (Killane et 

al., 2014). Executive function and attention (but not visual-spatial, memory or global 

cognition) have also been shown to correlate with, and prospectively predict, falls in 

undiagnosed older adults (Mirelman et al., 2012a; see also Buracchio et al., 2011; Herman 

& Mirelman, 2010; Holtzer, Stern, & Rakitin, 2005). Some studies also report a dual-task 

cost on cognitive performance in addition to gait costs in older adults. Theill et al. (2011) 

showed a reduction in cognitive dual-task performance on the subtraction task (reduced 

number of subtractions), in addition to reduced speed, but no reduction in performance 

on a semantic dual-task (animal naming). These mixed findings may speak to the issue of 

apparent differential effects of varied dual-tasks.  

 Recent reviews also note the problem of large methodological variability in the 

literature in terms of the type of secondary task used, which makes comparisons across 

studies challenging (Al-Yahya et al., 2011; Chu, Tang, Peng & Chen 2013; Gomes et al., 

2016). While executive domain tasks appear to have a greater impact on dual-task gait in 

older adults, executive control can be further subdivided into different processes, and 

different tasks can target different executive functions (e.g. visuo-spatial processing, 

semantic working memory, numerical tracking working memory). The overuse of general, 

non-specific cognitive or distractor tasks and the broad variability in the choice of target 

task have contributed to ongoing ambiguity regarding the relative contribution of specific 

higher-level processes to walking in older adults. Consequently, preliminary clinical 

screening and dual-task training studies have yielded mixed efficacy (Plummer-D’Amato 



107 

 

et al., 2008; Plummer-D’Amato et al., 2012; Taylor-Piliae, Latt, Hepworth, & Coull, 

2012). For example, while some studies have shown improvements in gait speed 

following dual-task training (Silsupadol et al., 2009), Plummer-D’Amato et al. (2008) 

found that once weekly dual-task training had no greater effect on gait outcomes than 

balance training alone. However, the training dual-tasks used were not domain-specific, 

with no clear executive cognition components (spontaneous speech, alphabet recitation 

and a coin transfer task). Furthermore, a recent systematic review (Menant, Schoene, 

Sarofim & Lord, 2014) found that single and dual-task gait speed were equivalent in 

predicting falls. However, the authors do allude to the methodological variability of the 

literature perhaps influencing their findings (not all secondary tasks affect gait).  

To address this ambiguity in the literature, this experiment employs a comparative 

dual-task paradigm to probe the effects of varied secondary higher-level executive tasks 

on young and older adult gait. We utilise domain-specific tasks to compare different 

executive function tasks, and non-executive motor and verbal responding tasks. A motor 

response (Motor) task and verbal alphabet recitation (ABC) task were used as simple 

attention-demanding control tasks without stimulus differentiation or decision-making 

components, while a visuospatial task (Clock task), noun working memory task (2-back 

task) and numerical tracking and working memory task (Subtraction task) were used to 

target executive functioning processes. 

 

4.1.1 Aims and Hypotheses 

The focus of this experiment is to examine the top-down cognitive control of gait during 

dual-tasking in older adults. The overall aim is to identify which higher-level cognitive 

function is most utilized or relied upon during dual-task gait performance (evident in 

linear measures of gait) in healthy older adults. Further, we aim to examine age-related 
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changes in gait control in order to make comparisons to fall-risk older adults, cognitively 

impaired older adults, and other clinical samples. We predict that older adults will have 

slower ST (baseline) gait speeds. We hypothesise that there will be a reduction in speed, 

an increase in stride time, and some increase in stride time variability (for the older 

group) during dual-tasking. We also predict that older adults will show a greater dual-

task change in gait parameters than young adults. We hypothesise that higher-level 

executive dual-tasks will effect linear measures of gait (speed, stride time, stride time 

variability) comparatively more than basic attention-demanding motor and verbal 

response tasks, with greater effects in older adults.  
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4.2 Methods 

4.2.1 Participants 

A sample of 20 healthy young adults aged 18+ years (range: 19-28 years, M = 21.10, 

SEM = 0.40; 10 male) and 17 older adults aged 55+ years (M =61.88, SEM = 1.51; 6 

male) was recruited as volunteers from Maynooth University campus and surrounding 

locality. Two older adult participants were identified as 52 years of age after recruitment, 

but their data were retained within the sample as their scores did not unduly influence the 

data, or fall outside 3xIQR of the group mean (only extreme outliers at 3xIQR were 

removed from the data set, to avoid loss of data). Demographically, it was noted that 6 of 

the older adults reported experiencing a fall in the 12 months previous (aged: 52, 61, 63, 

68, 68, and 74). Exclusion criteria were screened by telephone checklist prior to the 

experiment and included: history of clinically diagnosed cardiovascular, psychological or 

neurological impairments (including any diagnosis of MCI or Dementia); any muscular 

or bone problems likely to cause balance/gait impairments, or severe uncorrected sensory 

impairments. The Maynooth University Research Ethics Committee approved all 

experiments, which were conducted in accordance with the Code of Ethics of the World 

Medical Association and the ethical standards of the APA. All participants gave written 

informed consent (see Appendix K) at the commencement of their participation. 

  

4.2.2 Control Measures 

For comparison between the age groups, the National Adult Reading Test (NART: Nelson, 

1982) was used as a measure of pre-morbid intelligence (see Chapter 2 section 2.1.3). 

The older adults also completed the Falls Efficacy Scale-International (FES-I: Yardley et 

al., 2005), the Mini Mental State Examination (MMSE-2: Folstein, Folstein, & McHugh, 

1975) and the Montreal Cognitive Assessment (MoCA: Nasreddine et al., 2005). See the 
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relevant sections in Chapter 2 for more detail and discussion of these measures (MMSE: 

section 2.1.1, MoCA: section 2.1.2, FES-I: section 2.1.4). Participant height (in 

centimetres) was also recorded to ensure there were no mean differences between the 

groups.  

 

4.2.3 Gait Assessment 

Participants completed 2 single-task (ST) walking gait trials, and 5 dual-task (DT) 

walking trials in total, walking along a straight 20m walkway on an empty open corridor. 

Each trial consisted of walking at a self-selected walking speed (SSWS) along the 

walkway four times, with an about-turn at each end; this allowed for enough steady-state 

gait cycles on each pass, to analyze normal walking gait outside of start/stop and turn 

slowing and acceleration. Gait data were recorded using two wireless inertial 

measurement sensors attached to the shank of the left and right leg (see Chapter 2, section 

2.4) that were set to record for 75s and then stopped transmitting (this allowed enough 

time for the walking trials to be completed to the end). Gait data processing yielded 5 gait 

variables for analysis: gait speed (m/s); stride time (s); stride time variability (Coefficient 

of Variability: CV %); stride length (m); and stride length variability (CV %).  

 

4.2.4 Dual-Tasks 

Five tasks (described below), each 60s in length, were used in both seated cognitive trials 

and DT walking trials. A motor response (Motor) task and alphabet recitation (ABC) task 

were used as simple attention-demanding control tasks without stimulus differentiation 

or decision-making components. In contrast, a Subtraction task, an n-back (2-back) task 

and Clock task were utilized to target higher-level executive processes. The Motor, 2-

back and Clock stimulus-response tasks were PC-generated (Dell Latitude 2.1GHz Intel 
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Pentium Processor laptop) in E-Prime. Auditory stimuli were presented via Dell USB 

plug-in speakers and which response accuracy and reaction time data were automatically 

logged. Participants completed the tasks while seated in the cognitive ST condition. In 

both ST and DT conditions, the participant held a wireless mouse in their dominant hand 

for tasks that required a button-press response. The ABC and Subtraction tasks required 

verbal responses without laptop-presented stimuli; these responses were manually 

recorded (with pen and paper) by the experimenter.  

 

4.2.4.1 Motor task  

The Motor task presented a single auditory tone (16-Bit WAV file; 1411kbps; 1000ms 

long) at randomly varied delay intervals, (500ms, 750ms or 1000ms). There was a 

3000ms response window from stimulus onset. Participants were instructed to quickly 

respond with a wireless mouse button click (held in their dominant hand) and RTs were 

automatically logged in E-Prime. The single-stimulus and single-response made this task 

a simple attention-demanding control task without stimulus differentiation or decision-

making components. Therefore, it was used as a control DT for comparison with the 

specific executive tasks.  

 

4.2.4.2 ABC task  

The ABC task required participants to verbally recite the alphabet, out loud, at a self-

selected even pace for 60s. The number of correct letter recitations were logged by the 

experimenter, and a correct response rate (CRR) was calculated as number of correct 

responses divided by time (60s).  This task, taxing basic verbal articulation, was also used 

as a comparative control task for comparison with the executive tasks that required verbal 

responses.  
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4.2.4.3 Clock task  

The Clock task, was used to target visuospatial working memory decision task (adapted 

from Haggard, Cockburn, Cock, Fordham, & Wade, 2000). This task was carried out as 

described in Chapter 3: see section 3.2.3.2 for details.  

 

4.2.4.4 n-back task  

An auditory 2-back task was also employed to assess executive working memory (Owen, 

McMillan, Laird & Bullmore, 2005). This task was used as described in Chapter 3 section 

3.2.3.3.  

 

4.2.4.5 Subtraction task  

The Subtraction task was used to specifically assess executive working memory (Mertens, 

Gagnon, Coulombe, & Messier, 2006). This task was used as described in Chapter 3, 

section 3.2.3.4. The experimenter recorded the number of correct responses and divided 

this by the time, to generate the CRR. 

 

4.2.5 Procedure 

After obtaining informed written consent, participants completed each of the control 

measures.  Following this, the participants conducted two separate ST normal walking 

trials (averaged for regular pace characteristics), the seated ST cognitive condition, and 

combined walking plus cognitive DT trials. This design allows for the investigation of bi-

directional DT effects on both gait and cognitive performance. All tasks were completed 

in one session lasting approximately 45mins in total (with shorts breaks offered to 

participants between tasks). One ST walking trial was completed before and after the 

cognitive ST and DT conditions, the order of which were counter-balanced across 
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participants (half completed cognitive ST condition first, half completed the DT condition 

first). Participants were instructed to walk the length of the walkway 4 times for each 

condition trial, at what they considered their normal pace (SSWS). No instruction was 

given regarding which task to prioritise in the DT condition.  The dual-task change (DTC) 

was calculated as the relative percentage change from ST to DT performances for both 

the cognitive and gait measures (see Chapter 2, section 2.5).  Participants were thanked 

for their time and debriefed at the end of the experiment session.  

 

4.2.6 Statistical analysis  

A MANOVA was used to compare the groups of the three NART-predicted IQ scores, 

and independent t-tests were used to compare the two age groups on height. Cognitive 

variables (accuracy, correct response rate, and/or RT), the 5 extracted gait variables, and 

the DTC values for both were analysed between and within the two age groups. A small 

number of values lying beyond 3 times the interquartile range were removed. Mixed 

between-within ANOVAs were used to analyse the effect of age group (between) and the 

tasks type (ST and DTs: within) on each of the individual gait measures (five 2x6 

ANOVAs were conducted). Changes in performance between ST and DT were examined 

using paired samples t-tests, with differences between the groups on cognitive 

performances analysed using independent t-tests. DTC values (cognitive and gait) were 

also analysed using mixed factorial ANOVAs examining the effect of age group and task 

type (2x5 ANOVAs). Where there were significant main effects, follow-up analyses were 

conducted using one-way ANOVAs and independent t-tests. Levene’s test of 

homogeneity of variances and Mauchly's test of sphericity were used, and the 

Greenhouse-Geisser correction was employed where the assumption of sphericity was 



114 

 

violated. Bonferroni-corrected alpha values were used where multiple comparisons were 

made, in order to avoid a Type 1 error.   
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4.3 Results 

4.3.1 Group comparisons 

There were no significant differences between the groups on NART scores [F(3, 33) = 

0.90, p = 0.453, ƞ2 = 0.075], and no differences between the age groups in height [t(35) 

= 1.46, p = 0.153]. See Table 4.1 for all control measure mean and SEM values. All older 

adults had an MMSE score > 28 (M = 29.41, ± 0.19) and MOCA score > 23 (M = 26.29 

± 0.44). The older adult group reported a mean FES-I score of 25.76 (± 7.34) indicating 

only moderate concern of falling (Delbaere et al., 2010).  

 

Table 4.1. Mean and standard error of the mean (SEM) values for the NART based 

predicted IQ scores and height (cm) in both young and older groups, and the MMSE 

scores, MoCA scores and FES-I scores for older adults alone.  

 
 Young Older  

Measure 
M 

(SEM) 

M 

(SEM) 

NART Full Scale IQ 
115.45 

(1.56) 

110.18 

(2.93) 

NART Verbal IQ 
113.30 

(1.43) 

108.47 

(2.72) 

NART Performance IQ 
114.20 

(1.40) 

109.53 

(2.61) 

Height (cm) 
174.00 

(2.09) 

168.47 

(3.28) 

MMSE - 
29.41 

(0.19) 

MoCA - 
26.29 

(0.44) 

FES-I - 
25.76 

(1.78) 
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4.3.2 Gait Analysis  

The mean (M) and standard error of the mean (SEM) values for all gait variables in each 

of the walking conditions (ST and DT) are shown in Table 4.2. There was a significant 

main effect of type of dual-task on gait speed and mean stride time only [speed: F(5, 175) 

= 10.32, p < .001, ƞ2 = 0.228; stride time: F(3.12, 109.31) = 22.90, p < 0.001, ƞ2 = 0.396]. 

However, there was no main effect for group [speed: F(1, 35) = 0.94, p < .339, ƞ2 = 0.026; 

stride time: F(1, 35) = 0.77, p = 0.386, ƞ2 = 0.022] or interaction effects [speed: F(5, 175) 

= 2.06, p = .73, ƞ2 = 0.056; stride time: F(3.12, 109.31) = 0.85, p = 0.475, ƞ2 = 0.024].  

Follow up comparisons revealed that the younger group had a significantly slower 

speed (p = .019) on the ABC DT (M = 1.14, SEM = 0.03) compared to baseline ST 

walking (M = 1.22, SEM = 0.02): F(5, 95) = 3.77, p = .004. ƞ2 = 0.166. For the older 

group, gait speed was slower than baseline (M = 1.23, SEM = 0.04) on all DTs [F(5, 80) 

= 7.92, p < .001. ƞ2 = 0.331]; Motor (M = 1.15, SEM = 0.03, p = .016); ABC (M = 1.14, 

SEM = 0.04, p = .048);  2-back (M = 1.10, SEM = 0.03, p < .001); Subtraction (M = 1.10, 

SEM = 0.04, p < .001); Clock (M = 1.10, SEM = 0.04, p = .001). See Figure 4.1.  
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Table 4.2. Mean (and standard error of the mean) values for speed, stride time, stride 

time variability (CV stride time), stride length and stride length variability (CV stride 

length) values for the single-task (ST) and dual-task (DT) conditions in the young and 

older adult groups: * indicates a significant change from ST to DT condition, ** indicates 

a significant difference from the Motor DT. 

 

Young Adults 

Gait Measure ST 
Motor  

DT 

ABC  

DT 

2-back 

DT 

Clock 

DT 

Subtraction 

DT 

Speed (m/s) 
1.22 

(0.02) 

1.21 

(0.03) 

 1.14* 

(0.04) 

1.16 

(0.03) 

1.16 

(0.03) 

1.16 

(0.03) 

Stride Time (s) 
0.91 

(0.02) 

0.93 

(0.02) 

 0.98* 

(0.03) 

 0.97* 

(0.02) 

  0.98** 

(0.02) 

  0.98** 

(0.02) 

CV Stride Time (%) 
6.69 

(0.18) 

6.39 

(0.13) 

7.13 

(0.25) 

7.54 

(0.50) 

7.33 

(0.29) 

6.84    

(0.28) 

Stride Length (m) 
1.10 

(0.01) 

1.11 

(0.01) 

1.10 

(0.01) 

1.11 

(0.01) 

1.13 

(0.01) 

1.13    

(0.01) 

CV Stride Length (%) 
48.61 

(0.90) 

47.90 

(0.78) 

48.54 

(1.00) 

47.14 

(0.84) 

47.22 

(1.04) 

47.68  

(1.02) 

Older Adults 

Gait Measure ST 
Motor  

DT 

ABC  

DT 

2-back 

DT 

Clock 

DT 

Subtracti

on DT 

Speed (m/s) 
1.23 

(0.04) 

1.15 

(0.03) 

 1.14* 

(0.04) 

 1.10* 

(0.03) 

 1.10* 

(0.03) 

 1.10* 

(0.03) 

Stride Time (s) 
0.92 

(0.02) 

 0.95* 

(0.02) 

 1.00* 

(0.04) 

  1.00** 

(0.03) 

  1.03** 

(0.02) 

  1.03** 

(0.04) 

CV Stride Time (%) 
7.02 

(0.26) 

7.04 

(0.28) 

6.85 

(0.41) 

6.99 

(0.28) 

7.25 

(0.40) 

6.83 

(0.30) 

Stride Length (m) 
1.12 

(0.01) 

1.08 

(0.01) 

1.12 

(0.01) 

1.09 

(0.01) 

1.12 

(0.01) 

1.10 

(0.01) 

CV Stride Length (%) 
47.67 

(1.14) 

49.95 

(1.14) 

47.21 

(1.09) 

49.91 

(1.00) 

46.65 

(0.65) 

49.98 

(1.07) 
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Figure 4.1. Mean gait speed (m/s: +/- SEM) across single (ST) and dual-task (DT) 

conditions in both young and older adult groups (*indicates significance at the 

Bonferroni corrected alpha). 

 

Follow-up analyses of stride time also showed that in the younger group, stride 

times were longer than baseline (M = 0.91, SEM = 0.02) in the ABC (M = 0.98, SEM = 

0.03, p = .011), 2-back (M = 0.97, SEM = 0.02, p = .021), Clock (M = 0.98, SEM = 0.02, 

p = .001) and Subtraction (M = 0.98, SEM = 0.02, p =.001) DT trials: F(2.46, 46.73) = 

12.75, p = .000, ƞ2 = .40. In addition, stride time was also greater on the Subtraction (p 

= .004) and Clock task (p = .003) than the Motor task (M = 0.93, SEM = 0.02), while there 

were no differences between ST and Motor DT stride time (p = .135).  

For the older adult group, stride time was greater than baseline (M = 0.92, SEM = 

0.02) on all DTs [F(2.92, 46.71) = 10.58, p < .001, ƞ2 = .398]: Motor (M = 0.95, SEM = 

0.02, p = .013); ABC (M = 1.00, SEM = 0.04, p = .030); 2-back (M = 1.00, SEM = 0.03, 

p = .006); Clock (M = 1.03, SEM = 0.03, p < .001); and Subtraction (M = 1.03, SEM = 
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0.04, p = .006).  Stride times were also longer than the Motor task on the Subtraction (p 

= .03) and Clock task (p = .002)–as with the younger adults–as well as the 2-back task (p 

= .035: See Figure 4.2).  

There were no main effects for task or group on stride time variability [task: 

F(3.50, 101.39) = 1.36, p = 0.257, ƞ2 = 0.045; group: F(1, 29) = 0.41, p = .526, ƞ2 = 

0.014], mean stride length [task: F(5, 170) = 1.46, p = 0.21, ƞ2 = 0.041; group: F(1, 34) 

= 0.81, p = .374, ƞ2 = 0.023] or stride length variability [task: F(5, 150) = 1.51, p = 1.90, 

ƞ2 = 0.58; group: F(1, 30) = 0.99, p = .327, ƞ2 = 0.032]. There were also no interaction 

effects for any of the above (all F < 2.25, all p > .05). 

 

 

Figure 4.2 Mean stride time (m/s: +/- SEM) across single (ST) and dual-task (DT) 

conditions in both young and older adult groups (*indicates significance at the 

Bonferroni corrected alpha). 
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4.3.2.1 Gait DTC 

DTC values (relative change from ST to DT) for each of the gait variables were compared 

across task type and between the age groups. The mean (and SEM) gait DTC values for 

each task type are presented in Table 4.3.  

 

4.3.2.1.1 Speed DTC 

There was a significant main effect of task type [F(4, 140) = 2.77, p = .03, ηp2 = 

0.073] and group [F(1, 35) = 7.26, p = .011, ηp2 = 0.172] on speed DTC, but no significant 

interaction between task type and experiment group [F(4, 140) = 1.12, p = .356, ηp2 = 

0.031]. (See Figure 4.3.) However, follow up comparisons showed no significant 

differences across task types within the groups [young: F(4, 76) = 2.45, p = .053, ηp2 = 

0.114; older: F(4, 64) = 1.53, p = .203, ηp2 = 0.088], or between the groups: all t < 2.53, 

all p > .016, with Bonferroni corrected α = .01.  
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Table 4.3. Motor dual-task change (DTC %) values for speed, stride time, stride time 

variability (CV stride time), stride length and stride length variability (CV stride length) 

values for each dual-task (DT) conditions in the young and older adult groups.  

 

Young 

Gait DTC 
Motor 

DT 

ABC 

DT 

2-back 

DT 

Clock 

DT 

Subtraction 

DT 

Speed DTC% 
0.59 

(1.65) 

5.99    

(1.65) 

4.32 

(2.19) 

4.48 

(1.54) 

4.57      

(2.07) 

Stride Time DTC% 
1.86 

(0.68) 

7.16 

(1.71) 

6.14 

(1.61) 

7.72 

(1.51) 

7.69      

(1.42) 

CV Stride Time DTC% 
-1.02 

(4.47) 

2.41 

(3.50) 

9.24 

(7.67) 

5.53 

(4.22) 

-3.81     

(2.44) 

Stride Length DTC% 
-1.23 

(1.69) 

-0.41 

(1.43) 

-1.11 

(1.61) 

-2.61 

(1.21) 

-3.69     

(1.57) 

CV Stride Length DTC% 
-0.73 

(2.62) 

0.50 

(2.75) 

-2.50 

(2.38) 

-2.50 

(2.28) 

-4.68     

(2.59) 

Older 

Gait DTC 
Motor 

DT 

ABC 

DT 

2-back 

DT 

Clock 

DT 

Subtraction 

DT 

Speed DTC% 
6.56 

(1.66) 

7.22 

(2.14) 

10.20 

(1.39) 

10.17 

(1.88) 

10.82    

(1.79) 

Stride Time DTC% 
2.56 

(0.62) 

8.12 

(2.03) 

8.28 

(1.76) 

11.08 

(1.68) 

10.76   

(2.16) 

CV Stride Time DTC% 
2.20 

(5.25) 

-2.62 

(3.84) 

1.23 

(4.17) 

4.93 

(6.79) 

8.70     

(9.07) 

Stride Length DTC% 
4.11 

(1.80) 

0.02 

(1.96) 

2.92 

(1.43) 

0.45 

(1.77) 

1.59     

(1.49) 

CV Stride Length DTC% 
5.82 

(3.66) 

0.30 

(3.89) 

5.58 

(3.15) 

-0.57 

(3.09) 

5.78     

(3.36) 
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Figure 4.3 Mean dual-task change (DTC) in speed (+/- SEM) for each dual-task in both 

young and older adult groups. Positive values indicate a cost in performance from ST to 

DT. 
 

4.3.2.1.2 Stride time DTC 

There was a significant main effect of task type on stride time DTC [F(4, 140) = 

14.23, p < .001, ηp2 = 0.289], but no main effect for group [F(1, 35) = 1.36, p = .252, ηp2 

= 0.037], or interaction effect [F(4, 140) = 0.60, p = .662, ηp2 = 0.017]. Follow-up tests 

in the young group revealed that stride time DTC was greater for the ABC (M = 7.16, 

SEM = 1.71, p = .035), 2-back: (M = 6.14, SEM = 1.61, p = .045), Subtraction: (M = 7.69, 

SEM = 1.42, p = .001), and Clock task (M = 7.72, SEM = 1.51, p = .002), in comparison 

to the Motor DTC (M = 1.86, SEM = 0.68): F(4, 76) = 8.52, p < .001, ηp2 = 0.310. In the 

older group, the 2-back (M = 8.28, SEM = 1.76, p = .018), Subtraction (M = 10.76, SEM 

= 2.16, p = .01) and Clock task (M = 11.08, SEM = 1.68, p = .001) DTC were larger than 
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the Motor task (M = 2.56, SEM = 0.62): F(4, 64) = 6.37, p < .001, ηp2 = 0.285. However, 

there was no difference between stride time DTC on the Motor task and the ABC task (M 

= 8.12, SEM = 2.03, p = .141) in the older group (see Figure 4.4).  

 

4.3.2.1.3 Stride Time Variability, Stride Length and Stride Length variability DTC 

There were no main effects of task type or group on stride time variability DTC 

[task type: F(4, 132) = 0.31, p = .869, ηp2 = 0.009; group: F(1, 33) = 0.19, p = .670, ηp2 

= 0.006], stride length DTC [task: F(4, 136) = 1.76, p = .141, ηp2 = 0.049; group: F(1, 

34) = 5.72, p = .022, ηp2 = 0.144], or stride length variability DTC [task: F(4, 136) = 1.19, 

p = .316, ηp2 = 0.034; group: F(1, 34) = 3.10, p = .087, ηp2 = 0.084]. 

 

 

Figure 4.4. Mean dual-task change (DTC) in stride time (+/- SEM) for each dual-task in 

both young and older adult groups (* indicates significance at the Bonferroni corrected 

alpha).  



124 

 

4.3.3 Cognitive Analysis 

The mean (and SEM) accuracy and RT responses for the cognitive tasks are presented in 

Table 4.4. Comparing the groups on cognitive performances revealed an age-related 

difference on the Clock task only [ST: t(35) = 3.37, p = 0.002; DT: t(34) = 2.71, p = 0.01], 

whereby the younger group were more accurate in both the ST and DT condition (ST: M 

= 56.00, SEM = 5.80; DT: M = 50.74, SEM = 5.35) than the older adult group (ST: M = 

30.35, SEM = 4.65; DT: M = 32.47, SEM = 3.87). There were no differences between the 

age groups on any other ST or DT cognitive performances:  Motor [ST: t(35) = -1.63, p 

= .112; DT: t(34) = -1.18, p = .246]; ABC [ST: t(35) = -0.96, p = .344; DT: t(26.07) = -

0.84, p = .410]; 2-back [ST: t(35) = 0.66, p = .513; DT: t(34) = 0.90, p = .376]; Subtraction 

[ST: t(35) = -2.23, p = .032; DT: t(34) = -2.92, p = .006].  

Within each group, changes in accuracy and RT from ST to DT conditions were 

examined. On the Motor task alone, the younger group revealed a significant decrease 

in RT from ST (M = 587.75, SEM = 24.19) to DT (M = 653.66, SEM = 22.42) 

conditions; t(19) = -4.72, p < .001. However, this effect was not observed in the older 

group: t(15) = -0.59, p = .566. No other task exhibited differences between ST and DT 

response performance for either the young [ABC: t(18) = 1.98, p = .063; 2-back: t(18) = 

-1.02, p = .32; Subtraction: t(18) = 0.88, p = .388; Clock: t(18) = 0.94, p = .362] or older 

group [ABC: t(16) = 2.89, p = .011; 2-back: t(16) = -0.75, p = .466; Subtraction: t(16) = 

1.07, p = .300; Clock: t(16) = -0.48, p = .636].  

4.3.3.1 Cognitive DTC  

Concurrently, there were no differences in the calculated DTC (%) across the cognitive 

tasks: no significant main effect for task type [F(1.58, 53.55) = 3.18, p = .061, ηp2 = 

0.085], or group [F(1, 34) = 0.001, p = .980, ηp2 = 0.000], and no interaction effect 
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[F(1.58, 53.55) = 0.25, p = .729, ηp2 = 0.007]. See Table 4.4 for M and SEM DTC % 

values. 

 

Table 4.4. Mean (and SEM) dual-task performance values (RT, CRR and ACC) for each 

task in single-task (ST) condition and dual-task (DT) condition and dual-task change 

relative change values (DTC%) for each, in the young and older adult groups 

.  

 Young Older 

Task ST DT DTC% ST DT DTC% 

Motor RT (ms) 
556.08 

(11.49) 

653.66 

(22.42) 

0.12 

(0.02) 

633.88 

(41.99) 

697.40 

(30.59) 

0.12 

(0.08) 

ABC CRR 
2.24 

(0.18) 

1.98 

(0.16) 

7.64 

(4.14) 

2.59 

(0.32) 

2.24 

(0.27) 

11.19 

(13.57

) 

2-back ACC (%) 
93.05 

(2.06) 

95.21 

(1.39) 

0.01 

(0.06) 

91.35 

(1.36) 

93.18 

(1.82) 

-0.02 

(0.02) 

Clock ACC (%) 
56.00 

(5.80) 

50.74 

(5.35) 

0.02 

(0.15) 

30.35 

(4.65) 

29.38 

(2.48) 

-0.20 

(0.22) 

Subtraction CRR 
0.48 

(0.06) 

0.42 

(0.05) 

2.64 

(6.96) 

0.67 

(0.06) 

0.63 

(0.05) 

1.72 

(5.78) 
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4.4 Discussion 

In summary, apart from a difference between groups on speed DTC, we did not see any 

differences in gait characteristics between young and older adults in baseline ST or DT 

walking. There were changes in gait speed and stride time under dual-task conditions 

across both age groups (as predicted). Overall, EF tasks had slowest speed and longest 

stride times, and greater changes in these gait characteristics, particularly in the older 

group. However, we did not see any changes in stride time variability, stride length or 

stride length variability. There were also no relevant changes in cognitive performance 

beyond slower motor responses on the DT condition in young adults, and an age-related 

decline in visuospatial processing (in both ST and DT conditions).  

We hypothesized that older adults would have slower gait speed during normal 

baseline (single-task) walking, yet we found no differences between the groups on any 

baseline gait measure. Previously, gait velocity at usual pace has been shown to decline 

with age (Beurskesn & Bock, 2012; Smith, Cusack & Blake, 2016), with speed evidenced 

as a predictor of falls, and shown to identify fall-risk in community-dwelling fallers 

(Abellan Van Kan et al., 2009; Verghese et al., 2009). It is of note that the ST gait speeds 

reported here are slower than reference values reported elsewhere (Bohannan & Andrews, 

2011; Kenny et al., 2013). The reason for this is unclear, but it did not seem to have a 

“floor” effect as we were still able to see changes in gait (slower speed) from baseline to 

DT conditions, and as both groups were slower at baseline, we could still compare across 

groups.  

One explanation for why we did not observe age-related changes in gait at baseline 

may be that our older adult sample was comprised of relatively healthy and active 

individuals (volunteering from the community and community groups), with a 

comparatively young mean age (M = 61.88) compared to samples reported in other studies. 
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Furthermore, recent literature has also failed to identify age-related differences in 

spatiotemporal gait variables during normal single-task walking (Terrier & Reynard, 

2015). Normal walking trials are relatively simple to perform, particularly in the 

controlled environment of the laboratory (a straight, flat, indoor pathway with no 

distractions or obstructions). Perhaps it is not always possible to identify age-related 

differences in gait characteristics when full attention can be dedicated to walking on an 

easy pathway. This has been shown in a longitudinal prospective study of falls in 

community-dwelling older adults, where usual walking speed did not predict falls (where 

age and sex are taken into account; Mirelman et al., 2012).  A more challenging pathway 

(with bends, obstacles and active navigation) for normal walking may be necessary to 

identify usual gait control differences for active, healthy, older adult samples. It may be 

that healthy active older adults have adequate bottom-up motor functioning for walking 

straight comparatively to younger adults. A more challenging pathway may highlight the 

top-down deficits in the cognitive control of gait and exhibit differences between younger 

and older adults. We also did not observe any differences between the groups on DT gait 

performances for any task. Yet, we did see more occurrences of changes in speed and 

stride time for the older group than young group. Therefore, DT trials may be more 

sensitive to identifying subtle gait changes.  

Both groups showed a trend of walking slower on all DTs: whereas the young 

adults were only significantly slower on the ABC task–the reason for this is not clear–the 

older adults were significantly slower on all DTs, with a trend of slowest speeds on the 

three executive tasks (2-back, Subtraction, Clock). However, in contrast to our 

predictions, there were no differences in the relative change (DTC) in speed across tasks 

for either group. Previous studies have shown greater dual-task slowing in older adults 

who are concurrently performing subtraction and verbal fluency tasks (Dubost et al., 2006; 
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Theill et al., 2011). Both groups also had increased stride times on the ABC, Clock, 2-

back and Subtraction tasks. More importantly, we also saw comparatively greater changes 

in stride times on the Subtraction and Clock task than the simple attention demanding 

Motor task. This comparison shows that EF tasks affect stride time more than simple 

attention demanding tasks.  

While the trend in the data shows that the 2-back task (as well as the ABC task) 

also elicited a substantial DTC in stride time than the motor task, this was not to reach the 

significant change found with the Subtraction and Clock task. Interestingly, both the 

Subtraction and 2-back task can be said to tax working memory (Mertens et al., 2006; 

Owen et al., 2005), however, it may be the case that the 2-back task was not as challenging 

as the Subtraction task, as it only required a response to target trials (say “MATCH” when 

a word is repeated), whereas serial subtracting requires constant responding and perhaps 

a greater mental tracking load. Some have suggested that changes in gait on tasks that 

require constant articulatory responding may be attributable to competing motor and 

respiratory processes necessary for gait (Dault, Yardley & Frank, 2003; Yardley, Gardner, 

Leadbetter & Lavie, 1999). The advantage of this study design is that we used both a 

motor response and articulation control task (Motor and ABC tasks), and so could make 

a direct comparison. While the Subtraction and Clock tasks were not significantly 

different from the ABC, the trend in each instance showed greater changes in gait 

characteristics on these EF tasks than the Motor and ABC DTs.  

While the changes in speed and stride time are in-line with our predictions, we did 

not see changes in variability as expected. We predicted that variability would increase 

in older adults during dual-task walking, as an indicator of instability while cognitive 

resources were taxed with the EF tasks (Hollman et al., 2007). Other studies have shown 

increases in stride time variability in older adults under DT conditions (Dubost et al., 
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2006; Montero-Odasso et al., 2012; Theill, et al., 2011). However, there are 

inconsistencies in the literature, with other authors reporting no variability changes in 

older adults, or only specifically for older idiopathic fallers (Springer et al., 2006).  

Overall, there is gradient trend that the executive tasks interfered with gait speed 

and stride time the most, and particularly in the older adults (although this trend only 

reached significance in the instances outlined above). The tasks which taxed visuospatial 

decision making and mental tracking/working memory affected gait more than other tasks 

in this study. This implies an overlap of concurrent processing for these tasks and walking 

performance.  Given that participants were not told to prioritize either task, the change in 

gait speed and stride time, but not in cognitive performance, suggests that priority was 

given to the maintenance of the cognitive task performance. However, the observed 

changes in gait do not imply instability, but rather more likely reflect appropriate 

compensatory changes to maintain stability while attention and cognitive resources are 

taxed.  

 

4.4.1 Conclusion 

The experiment reported here sought to identify the key higher-level cognitive processes 

underlying walking gait and falls in older adults. This controlled experimental design 

allowed us to assess the relative impacts of different secondary tasks, in an attempt to 

tackle some of the methodological variability problems reported in the DT literature (Al-

Yahya et al., 2011; Gomes et al., 2016). The novel inclusion of two control (non-executive) 

DTs (targeting the verbal/motor functions necessary for responding on the other EF tasks), 

allows us to identify the additional impact of EF processing DTs. These results suggest 

that the EF Subtraction and Clock tasks had the largest DT effects on speed, stride time, 

and the relative change in stride time while dual-tasking. This was particularly evident 
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for the older adults where the Subtraction and Clock tasks displayed comparatively longer 

stride times than ST and the in-built control Motor task. However, we did not see the 

expected greater change in speed and increases in variability expected in the older adult 

group (as shown in previous literature). This may be due to our healthy and relatively 

young older adult sample, which may not have to compensate much to maintain gait 

control while dual-tasking.  Further research should focus specifically on older adults 

with and without a history of falls, to investigate potential differences in neurocognitive 

ageing and falls (as is examined in the next chapter).  
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Abstract 

Higher-level executive functions are suggested to play a key role in gait control and fall-

risk in older adults, but the specific underlying neurocognitive processes remain unclear. 

Here, we report an experiment which investigated the cognitive and neural processes 

related to older adult gait and falls. We compared normal walking gait, seated cognitive 

performances and concurrent event-related brain potentials (ERPs) in healthy young (n = 

20) and older adults (n = 13), to older adult fallers (n = 8). This study employed a working 

memory n-back task, sustained attention and response inhibition colour-word Stroop task, 

and a comparative attention-demanding stimulus-response Motor task. There were no 

significant differences between any of the groups on gait characteristics, with only age-

related differences evident on behavioural cognitive measures. No differences were found 

between older fallers and non-fallers in executive function performance. However, an 

initial late-positivity, considered a potential early P3a-like component, was evident on the 

Stroop task for older non-fallers, which was notably absent in older fallers and young 

adults. This difference in the P3a-like component could underlie, or at least contribute to, 

the older adult group’s respective fall-status.  
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5.1 Introduction 

Both gait and cognitive impairments have been commonly reported to occur with ageing, 

with previous literature and the preceding experiment highlighting that higher-level 

executive functions appear to play a role gait control. Executive performances have also 

been specifically associated with falls in older adults (Buracchio et al., 2011; Springer et 

al., 2006). It may be the case that age-related decline in neural motor outputs necessitates 

more top-down attentive motor control during walking (Liu, Chan & Yan, 2014). 

However, the specific executive domains and underlying neurocognitive processes 

remain unclear.  

 

One way to further elucidate the contributions of higher-level cognitive processes 

to gait control is with the use of neuroimaging and physiological recording approaches. 

Recent studies have begun to use functional magnetic resonance imaging (fMRI), 

functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) 

techniques to investigate the neural underpinnings of gait (Holtzer et al., 2011; Marcar, 

Bridenbaugh, Kool, Niedermann, & Kressig, 2014; Rosano et al., 2012; Yuan, Blumen, 

Verghese & Holtzer, 2015). Fall-related executive function (EF) decline, slower gait 

speed and diminished dual-task gait capacity have been associated with differential 

functioning and structural changes in frontal areas of the brain (Gunning-Dixon & Raz, 

2003; Harada, Miyai, Suzuki, & Kubota, 2009; Holtzer et al., 2011). For example, a 

number of neuroimaging studies have found increased frontal region activation in young 

adults during dual-task walking with specific executive serial subtractions and verbal 

fluency tasks (Mirelamn et al., 2014; Holtzer et al., 2011). Rosano et al. (2012) found that 

smaller prefrontal area volume in older adults was associated with slower gait speed that 

may be attributed to slower cognitive processing. In addition, Harada et al. (2009) suggest 
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that the involvement of the left PFC may be specifically related to age-related decline in 

gait control capacity in older adults. Furthermore, stimulation to the left prefrontal cortex 

(PFC) using transcranial direct current stimulation (tDCS) has been shown to improve 

postural control and reduce changes in gait during dual-task walking in healthy young 

and older adults (Manor et al., 2016; Zhou et al., 2014).  

In comparison to fNIRS, electroencephalogram (EEG) event-related potential 

(ERP) measurement offers higher temporal resolution recordings from the whole scalp 

(Beurskins, Steinberg, Antoniewicz, Wolff & Granacher, 2016). Increasingly, changes in 

frontal neuroelectrical activation, and specifically the P2 (approximately 150-250ms post-

stimulus) and P3 (occurring after 300ms) waveform, have also been associated with 

ageing and executive function (Korsch, Frühholz & Herrmann, 2016; O’Connell et al., 

2012; Polich, 2007). P2 amplitude has been shown to increase with ageing, where the P3 

component appears later and with diminished amplitude in older adults (on working 

memory and Stroop tasks: McEvoy et al., 2001; West and Alain, 2000; Zurrón et al., 

2014). The P3 component is often sub-divided into an early P3a and later P3b (Eppinger 

et al., 2007; Polich, 2007). The P3a is associated with frontal stimulus-driven attention 

processes, with the more posterior (temporal-parietal) P3b component associated with 

attention and memory processing, and more specifically EF stimulus evaluation and 

Stroop task processing (Killikelly & Szűcs, 2013; Polich, 2007; Zurrón et al., 2014). 

Recently, Korsch et al. have shown that an executive stimulus-response-conflict task 

induced greater P2 amplitudes, and increased P3 modulation for incongruent trials, in 

older adults. Others have also shown that P2 and P3 amplitudes are increased on 

incongruent trials (Gajewski et al., 2008; West et al., 2004), suggesting these components 

are related to an increased evaluation of the stimulus and conflict processing (Korsch et 

al., 2016).  
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While there is little research comparing EEG-recorded ERPs between faller and 

non-faller older adults, some studies suggests a link between P3 amplitude relating to 

executive function (inhibition and working memory) and physical activity in older adults 

(Chang, Huang, Chen, & Hung, 2013; Fong, Chi, Li, & Chang, 2014). Furthermore, a 

study of visual-spatial attention revealed an association between fall-risk and a greater 

N1 amplitude for poorer discrimination of task-irrelevant stimuli (in the left-field), and a 

larger P3 amplitude for target processing in low discrimination conditions (Nagamatsu, 

Munkacsy, Liu-Ambrose, & Handy, 2013). A few studies have been published which use 

wireless EEG recordings during single-and dual-task walking on a treadmill. Gait speed 

has been shown to decrease while alpha and beta band frequencies increase in frontal and 

central brain regions with additional cognitive and motor loads during dual-tasking in 

young adults (Beurskens et al., 2016). This study indicates that motor performance 

changes during dual-task walking are reflected in modulated neural activity, and due to 

an increased cognitive load during dual-task walking. This supports theories of top-down 

cognitive control of dual-task walking. Young adults also exhibit altered EF-related N2-

P3 components during dual-task walking with an inhibitory control Go/No-Go task (De 

Sanctis, Butler, Malcolm, & Foxe, 2014). A more recent study comparing young and 

older adults found that while younger adults modulated early N2 and later P3 components 

during dual-task walking, older adults only exhibited modulation of later inhibitory-

related amplitudes (Malcolm, Foxe, Butler & De Sanctis, 2015). This study found that 

older adults had increased P3 amplitudes while walking and performing a Go/No-Go 

response inhibition task, which the authors suggest reflects an age-related impairment in 

cognitive resource allocation.  

Taken together, these findings indicate a greater need for cognitive control neural 

compensation for maintaining a successful normal gait in older age, and for dual-task 
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walking in both young and older adults. Liu, Chan and Yan (2014) propose that increased 

falls in older adults are a consequence of age-related impairments in neural motor outputs, 

resulting in walking gait becoming more attentionally-demanding, necessitating 

increased cognitive control. This argument relates to compensation hypotheses of neural 

ageing (Cabeza, Anderson, Locantore, & McIntosh, 2002; Park & Reuter-Lorenz, 2009). 

Park and Reuter-Lorenz (2009) posit that age-related over-activation of frontal areas 

suggests compensatory neural recruitment. Within these theoretical frameworks, older-

adult fallers (without peripheral physiological impairment such as muscular or skeletal 

problems) could be considered to lack the plastic reorganization or compensatory over-

activation necessary to circumvent age-related cognitive decline.  

While the continued advancement of mobile-EEG recording will surely enhance 

understanding of the supraspinal activity underlying gait, the current study aimed to 

utilise accessible and applicable methods which could potentially translate to a clinical 

setting. This experiment aims to establish if event-related potential (ERP) markers of 

executive impairment can be found in older fallers compared to older non-fallers, by 

comparing executive working memory and sustained attention/conflict processing 

performances, with gait performance and history of falls status. An n-back and Stroop 

task are employed to target these two different types of executive functions (EF) which 

have been shown to correlate with gait, falls, and greater dual-task costs (Beurskens & 

Bock, 2012), and which also have previously defined age-related ERP components for 

comparison (Gajewski & Falkenstein, 2014; Zurrón et al., 2014). If we can identify a 

specific neuropsychological task or ERP marker of fall-risk in otherwise healthy older 

adults while seated, this would allow for an accessible and easily-administered alternative 

clinical screening procedure.  
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5.1.1 Aims and Hypotheses 

In this experiment, we investigate normal walking gait, n-back and Stroop executive 

function (EF) performances and the associated ERPs, in healthy young and older adults, 

and older adult fallers. The aim is to investigate if there are EF-related event-related 

potentials (ERPs) that could act as a marker or indicator of fall-risk in healthy older adults. 

The main hypotheses are: 1) there will be subtle gait impairments (slower speed, 

increased stride time and stride time variability) in older adult fallers in comparison to 

non-fallers and young adults (in line with previous research: Hausdorff, Rios, & Edelberg, 

2001; Verghese et al., 2009); 2) age-related and fall-related poorer EF performances will 

correlate with slower gait speed and; 3) EF-related later ERP components (e.g. N2, P2, 

P3 in line with the literature outlined above) will reflect diminished behavioural and gait 

performances in fallers compared to non-fallers, and compared to younger adults. More 

specifically, we want to investigate if P3 amplitude is reduced in older adults (as 

previously reported by Mager et al., 2007; Zurrón, Lindín, Galdo-Alvarez, & Díaz, 2014), 

and more so in older fallers, who may have limited available neural resources for 

allocation to task demands. 
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5.2 Methods 

5.2.1 Participants 

This study recruited a sample of 20 healthy young adults (10 male; mean age = 21.85) 

and 21 older adults divided into a group of 13 healthy older “non-faller” (ONF) adults (6 

male; mean age = 70.83) and 8 older “fallers” (OF) adults (3 male; mean age = 63.75). 

All participants were volunteers from Maynooth University campus and the surrounding 

locality. Adults were classified as older fallers is they reported at least one fall in the 12 

months prior to testing (via a self-report fall history questionnaire: Chapter 2, section 

2.1.5), or in the 6 months following testing. Fall incidence post-testing was monitored via 

monthly fall-calendars on which participants noted daily if they had experienced a fall or 

not, and returned the calendar via post at the end of the month. Falls were defined as “a 

sudden, unintentional change in position resulting in landing at a lower level (floor, 

ground or on an object), other than as a consequence of health/medical issues (sudden 

paralysis, epileptic seizure, medications, or other sickness) or overwhelming external 

force” (adapted from Feder et al., 2000; and Tinetti, Baker, Dutcher, Vincent & Rozett, 

1997). Falls were considered idiopathic, based on the questionnaire responses and the 

exclusion criteria for relevant diagnoses.  

Exclusion criteria were screened by telephone checklist prior to the experiment 

and included: history of clinically diagnosed cardiovascular, psychological or 

neurological impairments (including any diagnosis of MCI or Dementia); any muscular 

or bone problems likely to cause balance/gait impairments, or severe uncorrected sensory 

impairments. The Maynooth University Research Ethics Committee approved this 

experiment protocol.  All participants gave written informed consent (see Appendix L) at 

the commencement of their participation, and the experiment was conducted in 
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accordance with the Code of Ethics of the World Medical Association and the ethical 

standards of the APA.  

 

 5.2.2 Control Measures 

A number of control measures were taken for comparison across the groups, in an attempt 

to discount some confounding factors. Participant height (in centimetres) was recorded to 

ensure there were no mean differences between the groups. The National Adult Reading 

Test (NART: Nelson, 1982) was also completed by all participants as a measure of pre-

morbid intelligence (see Chapter 2 section 2.1.3). Additionally, the older adults (both 

ONF and OF) also completed the Falls Efficacy Scale-International (FES-I: Yardley et 

al., 2005), the Standardized Mini Mental State Examination (SMMSE: Molloy, 

Alemayehu, & Roberts, 1991) and the Montreal Cognitive Assessment (MoCA: 

Nasreddine et al., 2005). See Chapter 2 for more detail and discussion of these measures 

(MMSE: section 2.1.1, MoCA: section 2.1.2, FES-I: section 2.1.4).  

 

5.2.3 Gait Assessment 

A straight 15m walkway on an open, empty corridor was used for walking trials in this 

experiment. This distance allowed for extraction of steady pace kinematic gait data using 

the previously outlined algorithm (see Chapter 2, section 2.4.2), and was within the 

physical space confinements of the laboratory at the Department of Psychology, 

Maynooth University. Participants were asked to walk along the walkway 4 times at their 

usual pace (self-selected walking speed: SSWS), for each trial. Two trials of SSWS were 

conducted and averaged to get a better measure of usual (“normal”) walking 

characteristics. Gait data were recorded in the same way as previous chapters, with 

temporal gait data extracted from the kinematic sensor data (see Chapter 2, section 2.4). 
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Speed, stride time, stride time variability (CV stride time), stride length and stride length 

variability (CV stride length) were the dependent variables.  

 

5.2.4 Cognitive tasks 

Participants were seated in a quiet, dim-lit room in front of an E-Prime presentation laptop 

(Dell Latitude D600 Pentium Laptop, with a 2.1GHz Intel Pentium Processor and 14 inch 

colour monitor). Three tasks were utilized (detailed below) which targeted attentive motor 

responding (Motor task), response inhibition (Stroop task) and working memory (n-back 

task). Task-specific instructions were given on-screen and verbally at the start of each 

task. Where relevant, response accuracy and reaction times (RT) were recorded 

automatically in E-Prime.  

 

5.2.4.1 Motor task  

The Motor task, as described in the previous chapter, was once again utilized as a non-

executive control task, assessing motor response times to a single tone stimulus (see 

Chapter 4, section 4.2.4.1). The stimulus properties and response window were the same 

as previous: 16-Bit WAV file; 1000ms long; 1411kbps bit rate with a 3000ms response 

window and variable inter-stimulus delay (500ms, 750ms or 1000ms). However, for this 

study, the task consisted of 1 test block with 70 trials. Participants were instructed to 

respond as quickly as possible by pressing the left button on a wireless mouse, and 

response times (RTs: ms) were automatically logged in E-Prime.  

 

5.2.4.2 1-back task  

An n-back working memory paradigm was again utilized to assess updating/working 

memory performance (Dobbs & Rule, 1989; Owen, McMillan, Laird & Bullmore, 2005; 
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Wilhelm, Hildebrandt, & Oberauer, 2013). Where previous chapters utilised an auditory 

noun n-back task, this chapter employed a visual 1-back task. We decided to use an easier 

1-back version of the task for the remainder of the participants in this study. Visual stimuli 

consisted of grey rectangular placeholders containing the number 1, 2, 3, 4 or nothing (a 

blank shape) presented over a white background on screen. The stimuli remained on 

screen for 1800ms, with a 500ms fixation between trials. Participants responded to each 

trial by pressing the numbered key (1, 2, 3 or 4) on the keyboard corresponding to the 

number presented in the previous trial (1-back). If the previous trial was blank, no 

response was required. This 1-back was more challenging than the auditory n-back tasks 

used in previous chapters, because it required a response on almost every trial (and 

continuous updating of working memory). There was a short practice block of 11 trials 

(2 blank trials) followed by a test block of 76 trials (69 number trials and 7 blank trials). 

Initially, we included a second test block of 2-back trials, but the older adult participants 

found the task too challenging to complete, with very few responses captured. Both 

accuracy (ACC: %) and reaction times (RT: ms) were recorded logged in E-Prime. 

 

5.2.4.5 Stroop task  

A congruent/incongruent judgment Stroop task (word-colour stimuli: Stroop, 1935) was 

administered to assess executive sustained attention, conflict monitoring and response 

adaptation/switching (Zurrón et al., 2014; Zurrón, Pouso, Lindín, Galdo, & Díaz, 2009). 

This task visually presented the words “RED”, “GREEN”, “YELLOW” and “BLUE” in 

either their congruent font colour (“RED” in red type) or an incongruent colour (“RED” 

in blue type). There were 2 blocks of 102 trials, each with 90 congruent and 12 

incongruent trials presented in random order (with a short break between blocks). The 

words were presented in the centre of the screen on a black background for 1300ms, with 
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a 350ms inter-trial blank screen. Participants were required to make a judgment and 

response on each trial by quickly pressing the left mouse button when the trial was 

congruent and the right mouse button for an incongruent trial. There were four dependent 

variables for analysis: congruent and incongruent accuracy (ACC: %), and congruent and 

incongruent response times (RTs: ms). 

 

5.2.5 EEG Data Recording 

Details of the electrophysiological setup, EEG data recording, and EEG/ERP data 

processing is provided in Chapter 2 (section 2.3.4, and 2.3.5). ERP segmentations time-

locked to stimulus onset were set and averaged using Brain Electrical Source Analysis 

software (BESA version 5.3; GmbH, Germany). ERP epoch length was set at -200 to 

1,000ms, with a -200 to 0ms pre-stimulus baseline correction interval. Event-related 

potential (ERP) components were identified and defined based on visual-inspection of 

the grand average waveforms and previous literature (Gajewski & Falkenstein, 2014; 

Killikelly & Szucs, 2013; Mager et al., 2007; Zurrón et al., 2014). Different electrode 

positions were analysed due to different scalp distributions for the respective components. 

Grand averages for all participants and participant groups were calculated separately for 

each task, and mean amplitudes and latencies acted as the dependent variables for all 

statistical comparisons. Early sensory ERP components (P1, N1, and P2) were 

preliminarily compared across conditions and groups. Analysis of later EF-related 

components (N2, P3) on the n-back and Stroop task were of particular interest, and this 

analysis was carried out with planned comparisons between the two older groups (older 

fallers and older non-fallers). 
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5.2.6 Procedure 

After obtaining informed written consent, participants completed all control measures, 

followed by 2 SSWS gait analysis trials, and the 3 seated computer-based tasks with 

concurrent electrophysiological recording of scalp-related potentials. The EEG set-up 

protocol is detailed in Chapter 2 (section 2.3.4). All tasks were completed in one session 

lasting approximately 2 hours (with breaks offered to participants between gait analysis, 

EEG cap and electrode application, and neuropsychological testing). Participants were 

thanked for their time and debriefed at the end of the experiment session. 

 

5.2.7 Statistical analysis  

A MANOVA was used to compare the groups of the three NART predicted IQ scores, 

with one-way ANOVAs and t-tests used to compare the groups on height, FES-I, MMSE 

and MoCA scores. A series of one-way ANOVAs compared the groups on each of the 

gait characteristic variables. Cognitive variables and ERP components were analysed 

across task conditions and between groups using one-way or mixed factorial ANOVAs 

between and within the groups. Seven participants did not complete the Stroop task (3 

Young, 3 ONF and 1 OF adult): some participants reported that they found the task too 

challenging and did not wish to continue, in other cases there were some 

technological/data recording issues. Comparisons between fallers and non-fallers were of 

particular interest on cognitive measures and their associated ERP components. In all 

cases, Levene’s test of homogeneity of variances and Mauchly's test of sphericity were 

used, and the Greenhouse-Geisser correction was applied for violations of sphericity. 

Bonferroni-corrected alpha values were used where multiple comparisons were made.    
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5.3 Results 

5.3.1 Group comparisons 

One way ANOVA comparisons showed no significant differences between the young, 

ONF and OF groups in height (F(2, 34) = 1.64, p = .21) or FES-I score (F(2, 38) = 0.23, 

p = .80). All groups had an FES-I score indicating moderate concern about falling 

(Delbaere et al., 2010). A MANOVA compared the 3 groups on the 3 NART IQ 

performances and found no main effect for group [F(2, 38) = 0.301, p = .742], and no 

interaction effect (F(2.83, 53.70) = 0.51, p = .670). There were no differences in MMSE 

scores (all > 28) between OF (M = 29.50, SEM = 0.27) and ONF (M = 29.00, SEM = 0.32); 

t(19) = 1.09, p = .29. MOCA scores (all > 23) also did not differ between OF (M = 27.13, 

SEM = 0.79) and ONF (M =26.39, SEM = 0.74); t(19) = 0.66, p = .52. See Table 5.1 for 

all control measure values. 

 

Table 5.1. Mean and SEM values for the NART predicted IQ scores, height (cm), FES-I 

scores, MMSE and MoCA scores in the young, older non-faller (ONF) and older faller 

(OF) groups. 

 

Control Measure Young ONF OF 

NART Full Scale IQ 
113.25 

(1.24) 

113.54 

(3.56) 

116.00 

(2.40) 

NART Verbal IQ 
111.40 

(1.16) 

111.38 

(3.27) 

113.88 

(2.24) 

NART Performance IQ 
112.35 

(1.11) 

112.54 

(3.17) 

114.75 

(2.19) 

Height (cm) 
172.33 

(2.47) 

165.00 

(4.08) 

171.71 

(2.75) 

FES-I 
21.35 

(1.19) 

22.31 

(1.68) 

20.63 

(2.22) 

MMSE - 
29.00 

(0.32) 

29.50 

(0.27) 

MoCA - 
26.38 

(0.74) 

27.13 

(0.79) 
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5.3.2 Gait Analysis  

The mean (M) and standard error of the mean (SEM) values for all gait variables are 

presented in Table 5.2. There were no significant differences between the 3 groups (young, 

ONF and OF) on any of the normal walking gait characteristics: speed [F(2, 38) = 0.60, 

p = .554]; stride time [F(2, 38) = 0.72, p = .494]; CV stride time [F(2, 38) = 0.89, p = .420]; 

stride length [F(2, 38) = 0.37, p = .690]; or CV stride length [F(2, 38) = 0.29, p = .747]. 

For this reason, normal walking gait characteristics were not directly correlated with 

cognitive performances and ERPs.  

 

Table 5.2. Mean and SEM values for speed, stride time, CV stride time,  stride length and 

CV stride length values for the young, older non-faller (ONF) and older faller (OF) 

groups.  

 

Gait Measure Young ONF OF 

Speed (m/s) 
1.19 

(0.02) 

1.23 

(0.03) 

1.21 

(0.04) 

Stride Time (s) 
0.95 

(0.14) 

0.91 

(0.03) 

0.95 

(0.03) 

CV Stride Time (%) 
7.42 

(0.31) 

6.82 

(0.30) 

7.10 

(0.43) 

Stride Length (m) 
1.13 

(0.02) 

1.11 

(0.25) 

1.14 

(0.03) 

CV Stride Length (%) 
49.30 

(0.81) 

48.37 

(0.83) 

49.25 

(1.50) 

 

 

5.3.3 Behavioural and Electrophysiology data 

Motor task RT, n-back accuracy and RT, and Stroop accuracy and RT (on congruent and 

incongruent trials) were analyzed between the groups. The M (and SEM) accuracy and 

response times (RTs) for the cognitive tasks for all groups are presented in Table 5.3. 
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Concurrent ERPs were identified for each task and compared between the groups and 

across conditions (where relevant). Differences between ONF and OF were of particular 

interest for addressing this study’s aims.  

 

Table 5.3. Mean (and SEM) cognitive task accuracy (ACC) and reaction time (RT) values 

for the young, older non-faller (ONF) and older faller (OF) groups.  

 

Cognitive Task Young ONF OF 
*p < .05 

**p < .01 

Motor RT (ms) 
225.64 

(11.98) 

363.63 

(64.98) 

296.30 

(41.75) 
*Y < ONF 

1-back ACC (%) 
98.85 

(0.36) 

76.75 

(4.62) 

61.84 

(12.77) 
**Y > ONF/OF 

1-back correct RT (ms) 
474.10 

(30.54) 

926.82 

(51.79) 

1036.36 

(61.02) 
**Y < ONF/OF 

1-back error RT (ms) 
818.70 

(160.74) 

304.08 

(65.41) 

412.45 

(100.71) 
**Y > ONF 

Stroop Congruent ACC 

(%) 

99.21 

(0.23) 

98.76 

(0.39) 

96.95 

(1.24) 
*Y > OF 

Stroop Incongruent ACC 

(%) 

91.18 

(2.50) 

71.67 

(6.80) 

84.03 

(3.30) 
**Y > ONF 

Stroop Congruent RT 

(ms) 

615.87 

(19.13) 

671.10 

(19.88) 

735.96 

(46.67) 
*Y < OF 

Stroop Incongruent RT 

(ms) 

736.60 

(19.91) 

945.25 

(39.22) 

955.78 

(50.87) 
**Y < ONF/OF 

 

 

5.3.3.1 Motor Task 

On the Motor task, there was a main effect for group on RTs (see Table 5.3): F(2, 38) = 

3.56, p = .038, η2 = 0.16. Post hoc tests using the Bonferroni correction revealed that the 

younger group responded significantly faster (M = 225.64, SEM = 11.98) than the ONF 

group (M = 363.63, SEM = 64.98): p = .035. The Motor task showed clear N1-P2 auditory 
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evoked-potential (AEP) components that were observable following presentation of the 

auditory stimulus. One-way between groups ANOVAs were carried out for N1 and P2 

mean amplitude and peak latency at left posterior channel P7. N1 peaks were maximal 

between 95ms–160ms post-stimulus. There were no significant differences between the 

young, ONF and OF groups in N1 amplitude [F(2, 38) = 1.24, p = .30, η2 = 0.06] or 

latency [F(2, 38) = 0.72, p = .492, η2 = 0.04]. The P2 component peak was defined 

between 160ms –250ms post-stimulus. There was a large main effect of group for P2 

amplitude at P8; F(2, 38) = 4.9, p = .013, η2 = 0.21 (see Figure 5.1). Post hoc tests 

revealed a larger mean amplitude for the ONF group (M = 4.06, SEM = 0.72) than the 

younger group (M = 1.92, SEM = 0.33): p = .013. However, there were no group 

differences in P2 latency at P7: F(2, 38) = 1.24, p = .30, η2 = 0.65.  

 

 

Figure 5.1. Motor task P2 component rising between 160ms –250ms post-stimulus at 

channel P8 for young (green), older non-faller (blue) and older faller (red) groups, 

measured in microvolts (mV: y-axis) over time (ms: x-axis). On average, 99.95% of trials 

were accepted for this task. 
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5.3.3.2 1-back Task 

An age-related effect between the groups was also observed for 1-back accuracy: F(2, 31) 

14.20, p < .001, η2 = 0.48, with the younger group performing more accurately (M = 

98.85, SEM = 0.36) than both the ONF (M = 76.75, SEM = 4.62, p = .003) and OF groups 

(M = 61.84, SEM = 12.77, p < .001). For RTs, a mixed factorial 3 (groups) x 2 (response 

accuracy: correct/error) ANOVA showed a significant main effect of response accuracy 

(F (1, 17) = 22.57, p < .001, η2 = 0.57), and a response x group interaction effect (F(2, 

17) = 26.24, p < .001, η2p = 0.76.) whereby the young group had significantly faster 

reactions times (M = 474.1, SEM = 30.54) when responding correctly than the ONF (M 

= 926.82, SEM = 51.79) and OF groups (M = 1036.36, SEM = 61.02); all p < .001. 

However, when responding incorrectly (error), the young group had significantly slower 

reaction times (M = 818.7, SEM = 160.74) than the ONF group alone (M = 304.08, SEM 

= 65.41): p = .006, η2p = 0.45.  

Three clear ERP components–P1, N2 and P3a–were observed in response to the 

visual stimulus on the 1-back task. One way ANOVAs were carried out between the 

groups on correct response trials. The P1 was most prominent at occipital electrode O1, 

occurring between 100ms and 195ms. There was no effect of group on P1 amplitude [F(2, 

31) = 3.14, p = .462, η2 = 0.049]. However, there was for peak latency, F(2, 31) = 

7.83, p = .002, η2 = 0.36, where P1 latency for the ONF (M = 130.60, SEM = 4.66) and 

OF group (M =119.63, SEM = 6.17) occurred significantly earlier than for the younger 

group (M = 155.09, SEM = 6.53). The N2 peak was maximal between 150ms and 260ms 

post stimulus, and was largest over posterior lead P7. There were no significant 

differences between the groups in mean amplitude [F(1, 32) = 0.276, p = .603, η2 = 0.009] 

or latency [F(2, 31) = 1.26, p = .299, η2 = 0.074]. The 1-back P3a was maximal at right 
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posterior PO4 between 230ms and 430ms, and also revealed no significant group 

differences in mean amplitude or latency [amplitude: F(2, 31) = 1.19, p = .319, η2 = 0.071; 

latency: F(2, 31) = 1.45, p = .251, η2 = 0.085].  

 

5.3.3.3 Stroop Task 

A mixed factorial 3 (groups) x 2 (trial: congruent and incongruent) ANOVA for Stroop 

task accuracy revealed a significant main effect of trial [F (1, 29) = 37.89, p < .001, η2p 

= 0.566] and a trial x group interaction [F (2, 29) = 4.47, p = .02, η2p = 0.235], as well as 

a main effect of group; F (2, 29) = 4.27, p = .024, η2p = .228). Follow-up analyses showed 

that on congruent trials, young adults (M = 99.21, SEM = 0.23) are more accurate than 

OF adults (M = 96.95, SEM = 1.24): p = .015: whereas, on incongruent trials, younger 

adults are significantly more accurate (M = 91.18, SEM = 2.50) than ONF (M = 71.67, 

SEM = 6.80): p = .006. These age-related differences were also reflected in the RT values. 

Younger adults were significantly faster at responding accurately on congruent trials (M 

= 615.87, SEM = 19.13) than the OF adults (M = 735.96, SEM = 46.67): p = .011. For 

incongruent trials, young adults were faster (M = 736.60, SEM = 19.91) at responding 

accurately than both the ONF (M = 945.25, SEM = 39.22) and OF adults (M = 955.78, 

SEM = 50.87); all p < .001. 

 Early P1 and N2 components were observable at posterior sites in response to the 

visual stimuli on the Stroop task. These were followed by a positive waveform in a latency 

range of 200-385ms. Repeated measures ANOVAs were conducted to investigate the 

effect of group (young, ONF, OF) and trial condition (congruent or incongruent) on mean 

amplitude and latency. The P1 component recorded at occipital electrode O2, occurring 

between 95ms-205ms, showed no significant main effect of group [F(2, 32) = 

1.64, p = .210, η2p = 0.093], or interaction effect on mean amplitude [F(2, 32) = 
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2.85, p = .073, η2 = 0.151]. There was a main effect of group on peak latency however 

[F(1, 32) = 5.92, p = .007, η2p = 0.27], wherein the younger group (M = 145.43, SEM = 

3.75) showed a significantly later P1 latency than the ONF group (M = 126.77, SEM = 

4.66) on congruent trials.  

N2 mean amplitude and peak latency at channel O1 (from 145ms-210ms) 

exhibited a main effect of trial condition (F(1, 32) = 7.45, p = 0.01, η2p = 0.189) and 

group (F(2, 32) = 7.45, p = 0.002, η2p = 0.318). There was no interaction effect between 

group and trial condition [F(2, 32) = 0.75, p = 0.48, η2p = 0.045]. Congruent trials (M = 

-3.70, SEM = 0.61) elicited greater N2 amplitude at O1 than incongruent trials overall (M 

= -2.86, SEM = 0.63, p = .01), with the ONF group displaying a significantly larger N2 

components (p = .002) on both trial types (M = -5.47, SEM = 1.01) compared to the 

younger group (M = -.62, SEM = 0.81). See Figure 5.2 below. No significant effects were 

found for N2 latency at O1: trial condition: [F(1, 32) = 2.37, p = .134, η2p = 0.069]; group: 

[F(2, 32) = 3.41, p = 0.46, η2p = 0.176], interaction: [F(2, 32) = 0.74, p = .486, η2p = 

0.044].  
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Figure 5.2. Stroop task N2 potential recorded at occipital electrode O1 for young (green), 

older non-faller (blue) and older faller (red) groups on congruent correct (CC: left panel) 

and incongruent correct (IC: right panel) trials, measured in microvolts (mV: y-axis) over 

time (ms: x-axis).  On average, only 0.15% of trials were rejected for the CC condition, 

and only 0.13% rejected for the IC condition.  

 

 

We only identified one later positivity after the N2, presenting at midline Pz and 

Oz between 200-385ms post stimulus for both the Younger and ONF groups (but not the 

OF). This component was considered to be an early P3a-like component, based on similar 
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windows and sites reported recently on an equivalent Stroop judgment task (Zurrón et al., 

2009; Zurrón et al., 2014; Killikelly & Szucs, 2013; Mager et al, 2007).  Zurrón et al., 

found a “first P3” amplitude over site Pz, and a P3b component measured at Fz, Cz and 

Pz in the window of 360-430ms. Here, we saw the greatest amplitude over site Pz and Oz 

in a time frame more consistent with a first P3 or P3a as we have termed it here. While 

previous studies have defined the P3a within the window of 300-450ms post stimulus 

(Eppinger, Kray, Mecklinger, & John, 2007), more recent investigations of Stroop-related 

ERPs in young and older adults investigate earlier windows: Killikelly & Szűcs (2013) 

analyzed an early P3 peak as early as 180-230ms in young adults, and 250-335ms in 

comparable middle aged/older adults).   

A repeated measures ANOVA revealed a main effect of group for this early P3 

peak; F(2, 31) = 4.88, p = .014, η2p = 0.24. Planned comparisons between the ONF and 

OF groups revealed a significantly greater peak amplitude for the ONF group on 

congruent trials at both Pz (OF: M = 0.23, SEM = 0.14; ONF: M = 1.39, SEM = 0.28; p 

= .01) and Oz (OF = M = 0.36, SEM = 0.50; ONF: M = 3.41, SEM = 0.81; p = .013). 

Peak amplitude was also greater for ONF (M = 2.71, SEM = 0.81) than OF (M = 0.18, 

SEM = 0.49) on incongruent trials at Oz (p = .035). Figure 5.3 illustrates this suggested 

early P3 (P3a) waveform at Pz and Oz, with Oz scalp topographies at the ONF peak 

amplitude (congruent: 229ms; incongruent: 234ms). There was no main effect for group 

on P3a latency: F(2, 32) = .42, p = .66. 
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Figure 5.3. Stroop task P3a event-related potentials (ERPs) recorded at midline and 

occipital electrodes Pz (top) and Oz (bottom) for young (green), older non-faller (blue) 

and older faller (red) groups for congruent and incongruent trials. ERP is measured in 

microvolts (mV: y-axis) over time (ms: x-axis).  Scalp topographies for maximal P3a 

amplitude on congruent trials (at 229 ms) and incongruent trials (at 234 ms) are shown 

for each group. On average, only 0.15% of trials were rejected for the CC condition, and 

only 0.13% rejected for the IC condition. 
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5.4 Discussion 

This experiment sought to identify the EF-associated EEG neural activity underlying gait 

impairments and falls in older adults. The groups were matched on all control measures, 

including FES-I scores (indicating the younger adults were as concerned about falls as 

the older adults). The behavioural results reveal some ageing-related effects on cognitive 

task responses, suggesting that older adults are generally less accurate, and respond more 

slowly, than young adults on these measures of cognitive performance: this age-related 

trend is to be expected. Although there are no clear differences between the ONF and OF 

groups, there are subtle differences: e.g. the young group perform better than the OF on 

congruent trials (in ACC and RT), but on incongruent trials, the young perform better 

than the ONF on accuracy, and better than both older groups on RTs (see Table 5.3 above).  

We hypothesized differences in quantitative gait speed, stride time and stride time 

variability during normal (single-task) walking between the older adult fallers and older 

adult non-fallers. However, we were unable to identify any significant differences in gait 

characteristics between any groups on this normal walking task. As we recruited healthy 

community-dwelling older adults who were screened for any neurological, psychological 

or musculoskeletal impairments, the two main intrinsic risk factors for falls were age and 

experience of a first fall (WHO report: Skelton & Todd, 2004).  

 As with the last chapter, our older adult samples were relatively healthy and active 

individuals (volunteering from the community and community groups), with 

comparatively young mean ages (ONF M = 70.83, OF M = 63.75) compared to the 

samples reported in other studies. However, it is of note that the older fallers had a 

younger mean age than the older non-fallers. This idiopathic young sample, and the 

simple demands of the straight walkway gait assessment (walking without any distraction, 

allowing for full attention to be dedicated to the task), may account for the homogeneity 
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between the groups on measures of gait. It may the case that the OF group has learned to 

compensate for deficits, and in the absence of a challenging pathway or dual-task load, 

were able to perform comparatively well compared to the non-faller group. This finding 

is in line with others who have failed to find differences in spatiotemporal gait between 

fallers and non-fallers on baseline straight path walking gait (Mirelman et al., 2012; 

Terrier & Reynard, 2015). A more challenging pathway for normal walking (with 

obstacles and turning), or the use of dual-tasks, may be necessary to identify fall-related 

gait differences within healthy, active older adult samples.  

Due to the absence of group differences in normal walking gait performance, a 

correlation between seated EF performances and gait metrics (e.g. speed) was not 

conducted. Some age-related differences in n-back and Stroop accuracy and reaction 

times were observed, which were reflected in some ERP amplitude and latency 

differences (which is not surprising). However, there were no significant behavioural 

differences between the older adult groups that could relate to fall-status. This is in 

contrast to the findings of Buracchio et al. (2011) and Springer et al. (2006), in which EF 

performance was linked with falls and predictive of DT performance. Our findings could 

be due to the smaller number of participants in the ONF and OF groups. However, further 

investigation is needed to assess the validity of cognitive-task screening for falls in older 

adults without obvious gait impairment (such as the idiopathic older fallers in this 

experiment exhibiting comparable normal walking gait performances to young adults).  

 Despite the lack of differences in behavioural results, there were interesting group 

differences at the putative early P3a-like peak on the Stroop task. Only the young and 

ONF groups exhibited a positivity peak after the N2 over parieto-occipital sites, with no 

further components present for the OF group (Figure 5.3). While it should be noted that 

the task was largely visually-based, with stimuli which would elicit strong activation over 
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occipital and parietal areas, there is disparity between the positivity reported here and the 

previous literature defining Stroop P3 components: age-related P3a components have 

previously been evident at more frontocentral electrode sites (Fz, Cz), with a more 

posterior P3b component (not evident here) commonly associated with EF Stroop task 

processing (Killikelly & Szűcs, 2013; Zurrón et al., 2014). This positivity also presented 

quite early in comparison to reviews of P3 component windows (Eppinger et al., 2007; 

Polich, 2007), but was comparable to earlier windows recently reported recently by 

Killikelly and Szűcs (2013) in young and older adults. As we did not find any significant 

differences in the latencies of this component between the groups, we considered the 

amplitude difference may be attributable to the group fall-status.  

Despite the somewhat irregular nature in comparison to previous literature, we 

consider this post-N2 positivity to belong to the EF-related P3 component. Luck (2014) 

argues that ERP components should not be solely defined by their superficial 

characteristics (latency, scalp distribution and polarity), but rather by the underlying 

computational operation and neuroanatomy. Considering this, an ERP component may 

occur at different latencies and sites, but still reflect the associated functional processes. 

Although this P3a was maximal at midline and occipital electrode sites Pz and Oz, 

previous functional Magnetic Resonance (fMRI) and EEG studies have posited a frontal 

generator for the P3a component (McCarthy, Luby, Gore, & Goldman-Rakic, 1997; 

Polich, 2007). Neuroimaging and combined fMRI-ERP studies have evidenced 

interactive activity in frontal PFC, dorsolateral PFC, and ACC areas, and the PPC, in top-

down cognitive allocation for the detection of sensory conflict and behavioural response 

conflict resolution in Stroop conditions (Kim, Chung, & Kim, 2010; Kim, Johnson, & 

Gold, 2013; Liston, Matalon, Hare, Davidson, & Casey, 2006; Tang, Hu, Li, Zhang, & 

Chen, 2013). More recently, focus has been directed to the neural connectivity networks, 
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rather than specific brain regions, underlying Stroop conflict processing. This work 

demonstrates PPC related higher connectivity within the central executive network (CEN), 

and lower intra-semantic network (SN) connectivity that positively predicts conflict 

adaptation via top-down cognitive control (Wang et al., 2015).  

A comprehensive review of the P300, P3a and P3b components by Polich (2007) 

states that P3a generation is considered to occur when adequate attentional focus is 

applied to the stimulus. After initial sensory processing, attentive stimulus-comparison 

processing evaluates the stimulus in relation to the previous event in working memory. 

The potential P3a exhibited in our data by the ONF group was present on both congruent 

and incongruent trials, likely due to the manual response and congruent/incongruent 

judgment Stroop task utilized (requiring conflict monitoring and response resolution on 

each trial). This positivity may reflect frontally-driven attentional responding to the 

stimulus, or increased top-down CEN connectivity, allowing for the resolution of 

stimulus-conflict and the appropriate response for congruent and incongruent trials to be 

determined (Park & Reuter-Lorenz, 2009; Polich, 2007; Wang et al., 2015). There is also 

the possibility that this amplitude represents a P3b component, normally implicated in 

uncertainty when making decisions in response to the stimulus. However, the time 

window we observed this component at was more consistent with the earlier P3 windows 

reported previously (Zurron et al., 2009).  

Additionally, this potential P3a, occurring in our fall-free older group could reflect 

the adaptive and plastic neural compensation associated with successful ageing in healthy 

older adults (in accordance with the scaffolding theory of ageing: Park & Reuter-Lorenz, 

2009). It is possible that this difference between the groups underlies, or at least 

contributes to, their respective fall-status. However, the absence of cognitive performance 

differences in this study requires further investigation to better elucidate the link between 
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gait, cognitive performance and the scalp-recorded ERPs associated with top-down 

control in older adult fallers and non-fallers. Possibly a dual-task condition would have 

been challenging enough to reveal top-down cognitive and gait control impairments in 

the fallers in line with the ERP findings. 

Further analysis focusing on the P3 over frontal areas should be pursued with a 

larger sample of fallers and non-fallers to specifically examine a potential fall-related lack 

of frontal attention and/or neural compensation. The possibility of identifying key 

neuropsychological impairments in fallers which may be reflected in scalp-recorded 

neural activity not only advances our understanding of falls, but opens an avenue to the 

application of alternate neurocognitive screening tools in the applied clinical setting. 

Research investigating cognitive training has recently shown that practice on a Stroop 

task resulted in increased fMRI-recorded neural activity in the ACC, left inferior parietal 

lobule, and left dorso-lateral PFC in a modified reading span test targeting attention-

switching and conflict resolution between relevant and irrelevant stimuli (Osaka, Yaoi, 

Otsuka, Katsuhara, & Osaka, 2012). Better understanding of the key executive processes 

underlying gait and falls could also lead to potential rehabilitative cognitive training in 

older adults and high fall-risk clinical samples.  

 

5.4.1 Conclusion 

This approach may provide tentative evidence of an EF-related ERP component marker 

of falls.  There is a need for further research to comparatively investigate the specific 

executive processes underlying gait in fallers and non-fallers, with advanced investigation 

of the related neuroelectric activity. Furthermore, the use of neuroimaging and 

physiological recording techniques will not only aid in clarifying the cognitive processes 

at play, but could also translate to the clinical setting for neural screening of fall risk in 
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older adults and clinical samples (e.g. identifying increased fall-risk in stroke survivors 

after the motor recovery plateau). This is investigated in the next chapter.
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Abstract 

Falls are a common problem for stroke survivors in both acute and chronic stages of 

recovery (Batchelor, Mackintosh, Said, & Hill, 2012). Dual-task research has evidenced 

the role of attention and other higher-level processes mediating control of gait post-stroke, 

yet clinically, the role of cognition in gait and fall-risk after stroke has been largely 

overlooked (Campbell & Matthews, 2010). This chapter presents a study investigating 

potential dual-task, cognitive and electrophysiological markers of gait impairment and 

fall-risk post stroke. We compared cognitive-motor interference effects on a working 

memory (2-back) and sustained-attention/response conflict (Stroop) task in stroke 

survivors (n = 11) and age-matched healthy control participants (n = 13). Seated cognitive 

performances were also recorded with concurrent electrophysiological recordings of 

event-related potentials. We did not find significant differences between older adult 

controls and stroke survivors in any gait or cognitive measures, or the associated ERPs. 

Therefore, we were unable to identify any dual-task, cognitive or electrophysiological 

biomarkers of fall-risk post-stroke. This may be due to our sample of relatively healthy 

older adults and well-recovered stroke survivors, who may not have to compensate much 

to maintain gait control while dual-tasking on a straight walkway (without obstacles). 

Future studies suggesting the use of more taxing gait tasks, comparing fallers and non-

fallers, and monitoring the recovery of gait and cognitive functions as well as dual-task 

capability post-stroke are all discussed.  
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6.1 Introduction 

Falls are a common problem for stroke survivors in both acute and chronic stages of 

recovery (Batchelor et al., 2012). Previous research estimates as many as 23-62% of 

survivors experience at least one fall post-stroke (Langhorne et al., 2000; Lim, Jung, Kim, 

& Paik, 2012), including one study of Dublin-based stroke patients in Ireland which found 

23.5% had experienced at least one fall post-stroke (Callaly et al., 2015). Other studies of 

stroke-survivors post-discharge from rehabilitation (6+ months post-stroke) found that up 

to 73% fall at least once (Forster & Young, 1995; Mackintosh, Goldie, & Hill, 2005), and 

that falls occur most often while ambulating (Dorit Hyndman, Ashburn, & Stack, 2002). 

These incidence rates of falls in long-term survivors of stroke are also higher than in 

matched community older adult controls (Jorgensen & Jacosen, 2002; Simpson, Miller, 

& Eng, 2011).  

Generally, falls in older adults and stroke survivors can result in severe physical 

injuries (such as hip fracture), psychosocial consequences (fear of falling and social 

isolation), loss of dependence and even mortality (HSE, 2008; Stel, Smit, Pluijm, & Lips, 

2004; Weerdesteyn, de Niet, van Duijnhoven, & Geurts, 2008). However, falls post-

stroke can also have huge detrimental set-backs in terms of cognitive and motor recovery, 

including increased hospital stays of up to an additional 11 days (Teasell, McRae, Foley, 

& Bhardwaj, 2002; Wong, Brooks, Inness, & Mansfield, 2016). In particular, patients 

experiencing falls and fall-injuries post-stroke have high morbidity and mortality rates 

(Divani, Vazquez, Barrett, Asadollahi, & Luft, 2009; Langhorne et al., 2000), and also 

place a heavy burden on health care services and the state (Evers et al., 2004). As such, 

recovery of gait post-stroke is a priority, particularly for the patient’s functional 

remediation and return to the activities of daily living (Belda-Lois et al., 2011).  
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Gait patterns can vary widely post-stroke, but they are most often characterised 

by a slower gait speed (Weerdesteyn et al., 2008). Post-stroke gait speeds ranging from 

0.23–0.73 m/s on average, or 0.78-0.95 m/s in higher-functioning stroke survivors 

(Beyaert, Vasa, & Frykberg, 2015; Huitema et al., 2004; Olney & Richards, 1996), are 

lower than undiagnosed community controls ranging from 1.35-1.44 m/s in an older Irish 

national cohort (Kenny et al., 2013). While speed is the most commonly used clinical 

measure of gait impairment post-stroke, inter-limb asymmetry also accounts for some of 

the variance (particularly with hemiparesis), with some evidence of decreased stride 

length and cadence that can return to baseline with longer recovery (Jonsdottir et al., 2009; 

Olney & Richards, 1996; Patterson et al., 2008).  

Gait speed often improves over time, with maximal recovery occurring within the 

first 6 months, after which recovery is assumed to plateau (Cockburn, Haggard, Cock, & 

Fordham, 2003; Duncan, Goldstein, Matchar, Divine, & Feussner, 1992). However, 

walking while completing a secondary cognitive task does not improve over time 

(Cockburn et al., 2003; D Hyndman, Ashburn, Yardley, & Stack, 2006). This indicates 

that there is an increased role of attention and top-down inputs in post-stroke gait 

(Weerdesteyn et al., 2008). However, traditional rehabilitation of gait post-stroke mainly 

targets musculoskeletal function, such as exercise programmes focusing on muscle 

dysfunction, transfer training and fitness (Beyaert et al., 2015; Eng & Fang Tang, 2007). 

Yet research shows that the commonly used strength training rehabilitation technique 

does not directly influence recovery of walking gait: i.e. improved muscle strength does 

not transfer to improved gait (Eng & Fang Tang, 2007). Meanwhile the role of cognition 

in gait and fall-risk after stroke has been largely overlooked (Campbell & Matthews, 

2010).  
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  Recent work (Duffin et al., 2012) has shown that there are subtle cognitive deficits 

post-stroke that are not identifiable through general cognitive measures alone: for 

example the Mini Mental State Examination (MMSE®: Molloy, Alemayehu, & Robert, 

1991) and the Montreal Cognitive Assessment (MoCA: Nasreddine et al., 2005) measures 

of global cognition. Specifically, stroke survivors (between 2-60 days post-stroke) who 

were unimpaired on MMSE® indices performed worse than controls on more in-depth 

measures of spatial attention, spatial/relational processing and associative memory 

(Duffin et al., 2012). These subtle cognitive impairments may contribute to the increased 

prevalence of fall-risk in stroke survivors, even after there has been substantial sensory 

and motor recovery. While a clear profile of cognitive deficits has not been identified, it 

appears that deficits in executive function and slowed processing speed may be key 

characteristic features of cognitive decline post-stroke (Cumming, Marshall, & Lazar, 

2013). The link between cognition and gait has been evidenced in longitudinal and 

prospective cohort studies, in which gait mobility measures (the Timed Up-and-Go test 

and Berg Balance Scale; Berg, Maki, Williams, Holliday, & Wood-Dauphinee, 1992; 

Podsiadlo & Richardson, 1991) are shown to predict risk of cognitive impairment up to 

one and two years post-stroke event (Ben Assayag et al., 2015; Ursin et al., 2015). 

Furthermore, the dual-task paradigm has also been utilised to investigate cognitive-motor 

interference post-stroke.  

As discussed in previous chapters, the dual-task paradigm investigates the 

cognitive-motor link by measuring interference in gait and cognitive performance as a 

participant walks while concurrently completing a secondary cognitive task (Woollacott 

& Shumway-Cook, 2002; Yogev-Seligmann, Hausdorff, & Giladi, 2008). Previous work 

in older adults has evidenced dual-task disruption to many aspects of gait, with executive 

tasks appearing to be key in the control of ageing gait (Dubost et al., 2006; Holtzer et al., 
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2007; see also Chapter 4 of this thesis). A similar, but escalated pattern of effects has also 

been exhibited for gait control post-stroke (Plummer-D’Amato et al., 2008; Smulders, 

van Swigchem, de Swart, Geurts, & Weerdesteyn, 2012). Dual-task interference has a 

consistent effect on gait performance, including reduced gait speed, cadence and stride 

length (Plummer et al., 2013; Plummer-D’Amato et al., 2008), with some studies also 

reporting interference on dual-task cognitive performance (Plummer et al., 2013). 

However, it can be difficult to determine whether cognitive-motor interference post-

stroke is due to mobility impairments, attentive control, an inability to perform two tasks 

simultaneously (due to a limited executive/attentional capacity), or all of the above 

(Dennis et al., 2009). However, a recent systematic review and meta-analysis has also 

shown that dual-task cognitive-motor interference paradigms can be used as interventions 

to elicit short-term improvements in gait and stability post-stroke (Wang et al., 2015).  

As with the literature on cognitive-motor interference in older adults,  a number 

of problems have been identified that hinder our understanding of the role of cognition in 

gait control, and its translation to the clinic (D Hyndman et al., 2006). These include the 

methodological variability in choice of dual-task, the lack of comparative controls in 

some cases (e.g. Manaf, Justine, Ting, & Latiff, 2014; Plummer-D’Amato et al., 2008), 

inconsistent analysis of bidirectional effects, and the heterogeneity of stroke (D Hyndman 

et al., 2006). We attempt to address some of these problems by conducting a dual-task 

experiment comparing stroke survivors to age-matched healthy older adults on different 

executive and non-executive tasks in both a seated single-task and walking dual-task 

condition. Previous work by Manaf et al. (2014) found that both a motor and cognitive 

concurrent task taxed attentional load, resulting in dual-task interference on gait 

performance (but failed to include a comparative control group).Few studies have 

compared explicitly different cognitive dual-tasks, but those that have, reveal distinct 
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effects for different tasks, positing that the type of task matters for determining cognitive-

motor interference on gait post-stroke (Patel & Bhatt, 2014; Plummer-D’Amato et al., 

2008). 

Understanding the cognitive-motor link is particularly important for our 

understanding of gait impairments and falls in both older adults and stroke survivors, and 

for understanding how motor function recovers after the neurological damage of a stroke. 

Furthermore, this understanding can have important implications for rehabilitation, with 

some pilot studies already testing the efficacy of training in different cognitive-motor 

dual-tasks (Plummer, Villalobos, Vayda, Moser, & Johnson, 2014; Plummer-D¿Amato 

et al., 2012; Plummer-D’Amato et al., 2012; Wang et al., 2015).  

 Plummer-D’Amato et al. found that a spontaneous speech task affected gait 

performance more than a working memory (serial subtraction) or visuospatial decision-

making (clock) task. However, this study only tested 13 community stroke survivors, 

without comparison to a control group. Patel and Bhatt (2014) compared 10 chronic 

stroke survivors to 10 young adults on three dual-tasks, and found that a working memory 

serial subtraction task had a greater effect on motor performance in stroke patients when 

compared to a Stroop or visuomotor reaction time task. However, the visuomotor task 

elicited the greatest cost in cognitive performance in both the chronic stroke survivors 

and the healthy young adults. Elsewhere, it has been argued that the serial subtraction 

task does not solely target working memory, but also executive decision making and 

information updating (Mertens, Gagnon, Coulombe, & Messier, 2006). It is possible that 

this could account for the increased interference on the subtraction task in Patel and 

Bhatt’s study.  

Unlike Patel and Bhatt, we compared survivors 6-18 months post-stroke to age-

matched (rather than young) healthy older adults, and investigated the effects of a 2-back 



167 

 

test of working memory, a response-conflict Stroop task and a simple control motor 

response task on cognitive and motor dual-task performances. We chose the long-

validated n-back task of working memory (Owen, McMillan, Laird & Bullmore, 2005) 

as an alternative to the serial subtraction task, as it constitutes a measure of working 

memory without the increased load of the subtraction task (that may increase in 

difficulty/complexity the longer the task goes on). We also investigated seated cognitive 

performances on these tasks with concurrent electrophysiological recording of event-

related potentials, in order to examine any potential association with gait impairments and 

potential fall-risk. Therefore, we may be able to determine if any dual-task deficits elicited 

here may be related to subtle cognitive impairments post stroke, as reported previously 

(Duffin et al., 2012). Few studies have used neuroimaging techniques in this way to 

examine the neural correlates of dual-task interference in stroke survivors. Stroke events 

are heterogeneous by nature, however lesion site (left or right) has not been shown to 

affect dual-task performance in stroke survivors (Haggard, Cockburn, Cock, Fordham, & 

Wade, 2000; D Hyndman et al., 2006). We seek to identify electrophysiological correlates 

of impaired executive functioning post-stroke that could act as a marker of fall-risk and 

gait impairment in stroke survivors.  

 

6.1.1 Aims and Hypotheses 

This study investigates the interference effects of explicitly different dual-tasks targeting 

executive and non-executive domains, on gait and cognitive performances in stroke 

survivors and age-matched healthy control participants. The overall aim is to identify if 

dual-task, cognitive or electrophysiological impairments 6+ months post-stroke (after 

supposed motor recovery plateau) may be related to gait impairments and falls post-stroke. 

We hypothesis that gait speed will be slower during single-task performance in stroke 
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survivors, with increased dual-task costs on speed for the executive tasks in comparison 

to the age-matched control group. We also predict that the executive working memory 

and response-conflict tasks will cause more interference than the motor task, and that 

stroke survivors will exhibit subtle cognitive impairments on single-task cognitive 

performances, in comparison to the older adult controls.  



169 

 

6.2 Methods 

 

6.2.1 Participants 

Stroke survivors (SS group) were recruited from Tallaght hospital Stroke Unit hospital 

records if they were 6-18 months post-stroke and aged 55-85 years. The minimum time 

post-stroke was set at 6 months, in order to allow for substantial motor recovery: the 

majority of acute motor recovery takes place in the first 6 months, and plateaus thereafter 

(Duncan et al., 1992). SS participants were contacted by mail and invited to take part in 

this study: an invitation letter was accompanied by a Patient Information Leaflet detailing 

the study and what participation would involve, with a copy of the consent form (see 

Appendix N). Of those who responded to the invitation letters, 11 met the 

inclusion/exclusion criteria and volunteered to take part (8 male; mean age = 70.91).  

All 11 stroke survivor volunteers had a diagnosis of an ischaemic infarct stroke 

event. We had access to further diagnostic information for 7 of the 11 stroke survivors. 

Of these, 1 had a posterior stroke syndrome, 2 had anterior stroke syndrome, 1 had lacunar, 

and 3 had a stroke of unknown aetiology. At discharge, all had a Modified Rankin score 

(a measure of degree of disability) of less than 2 (low disability): 3 had a score of zero, 2 

had a score of two, and 1 survivor’s score was unknown. None were identified as having 

cognitive decline at discharge. The mean time post-stroke was 305.29 days (range 230-

438 days), or 10.24 months. 

A control group of healthy older adult participants (OA group) aged 55-85 was 

also recruited from the Maynooth and Tallaght community surrounding areas via flyers 

and contact with local community groups (n = 13, 4 male; mean age = 68.46). All 

participants for this experiment were community-dwelling, and only 2 participants in each 
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group reported a fall in the previous 12 months (see Chapter 2, section 2.1.5 for the 

operational definition of a fall and detail of the self-report fall history questionnaire).  

All participants gave informed written or verbal consent prior to participation, and 

again at the commencement of testing on the day of their appointment. Exclusion criteria 

were screened by telephone checklist prior to participation (see Chapter 2, section 2.6, 

Table 2.2. for OA and SS participant group inclusion and exclusion criteria). This study 

was conducted in accordance with the Ethical Standards of the American Psychological 

Association (APA), the Declaration of Helsinki (World Medical Association Inc.), and 

with the approval of the Maynooth University Ethical committee (see Appendix H) and 

Tallaght hospital (see Appendix I).    

 

6.2.2 Control Measures 

As in previous chapters, the two groups were compared on measures of fear of falling 

(FES-I: Yardley et al., 2005), premorbid intelligence (National Adult Reading Test: 

Nelson, 1982), and global cognition (Mini Mental State Examination and the Montreal 

Cognitive Assessment: Molloy, Alemayehu, & Roberts, 1991; Nasreddine et al., 2005). 

See Chapter 2, section 2.1 for detailed discussion of each of these measures and how they 

were carried out. Height (cm), weight (kg) and lower limb strength (5 times sit-to-stand 

task: Guralnik et al., 2000; Lord, Murray, Chapman, Munro, & Tiedemann, 2002) were 

also compared across the two groups to ensure the participants post-stroke were not 

physically different from the control group. The 5 times Sit-to-Stand task is a quick and 

applicable measure of lower limb strength, and has also been shown to be a predictor of 

activities of daily living disability in older persons, and a marginal predictor of future 

falls (Zhang et al., 2013). In this task, participants were asked to sit in a standard height 

chair with arms crossed over their chest. Participants were then instructed to perform 5 
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sit-to-stand transfers as quickly and safely as possible when the experimenter said: “go”. 

The time to complete the 5 transfers was recorded on a stopwatch, and this time is an 

indicator of lower-limb strength.  

 

6.2.3 Gait Assessment 

Participants completed 2 single-task (ST) walking gait trials, and 3 dual-task (DT) 

walking trials in total. The walkway was a straight 15m path on an open empty corridor. 

Each trial consisted of walking at a self-selected walking speed (SSWS) along the 

walkway four times, with an about-turn at each end; this allowed for enough steady-state 

gait cycles on each pass to analyze normal walking gait outside of start/stop and turn 

slowing and acceleration. The 2 ST trials of SSWS were averaged to get a better measure 

of usual (“normal”) walking characteristics. Gait data were recorded and analysed as 

discussed previously: see Chapter 2, section 2.4. Five gait variables were yielded for 

analysis: gait speed (m/s); stride time (s); stride time variability (Coefficient of 

Variability %: CV stride time); stride length (m); and stride length variability (CV stride 

length %).  

 

6.2.4 Cognitive Tasks 

Three auditory response tasks (Motor, n-back and Stroop task) were utilised in both the 

seated ST cognitive condition and DT walking condition (see details for each below).  

Each task was generated in E-Prime and run on a Dell Latitude 2.1GHz Intel Pentium 

Processor laptop. Auditory stimuli (mono 16-bit sound files with a 44.1kHz sampling rate) 

were presented via wireless fm headphones (Philips), and participants responded as 

instructed on a hand-held wireless mouse, using their dominant hand index and middle 

fingers to press the left and right mouse buttons (labelled with the letter “L” and “R” 
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respectively). Instructions were given verbally at the start of each task, and a practice trial 

was provided for the n-back and Stroop tasks before test blocks were recorded. For the 

Motor task, an example of the stimulus was given before commencing the test blocks. 

The order of the ST and DT conditions was counterbalanced across participants with 

different stimuli and orders of stimuli in each condition (the Motor and Stroop task stimuli 

were randomised, and the n-back stimuli were different in each condition). Response 

accuracy (ACC: %) and response times (RT: ms) were automatically recorded in E-Prime 

for each task.  

 

6.2.4.1 Motor task  

The Motor task–as described in previous chapters–was used as simple stimulus-response 

attention-demanding control task that does not tax higher-level executive function 

processing (see Chapter 5, section 5.4.2.1). The only difference in this experiment is that 

the task consisted of one block of 140 trials and was set to run for 120 seconds in the ST 

condition, and was manually ended whenever the participant stopped walking at the end 

of the DT walking condition. Participants had a 1200ms response window from stimulus 

onset, in which they could respond by clicking the left mouse button.  

 

6.2.4.2 n-back task  

An auditory 2-back task–as used in Chapter 4–was employed to assess executive working 

memory (Owen, McMillan, Laird & Bullmore, 2005). See Chapter 3 section 3.2.3.3 for 

details of the stimuli. Participants were required to respond by clicking the left mouse 

button with their dominant index finger, within a 2000ms response window from stimulus 

onset. In this experiment, the task consisted of 1 practice block of 10 trials (3 target 

“match” trials), 2 test blocks of 77 trials (with 23 target trials in each block) in the ST 
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condition, and ran until manually ended by the experimenter upon participant’s 

completion of the walking DT condition.  

 

6.2.4.3 Stroop task  

An auditory forced-choice Stroop task was utilised to target sustained attention and 

response-conflict processing (Shor, 1975; Stroop, 1935). This task consisted of a short 

practice block of 8 trials (50% incongruent), and 2 test blocks of 52 trials each (50% 

incongruent) in the ST condition, with a short break offered between each block. For the 

DT condition, one test block of 100 trials (50% incongruent) ran until the experimenter 

manually ended the task once the participants had finished walking. There were 4 auditory 

voice stimuli consisting of the words “high” and “low” played in a high (Hi: 300Hz) or 

low (Lo: 160Hz) pitch: i.e. “High” in a high pitch (“High"Hi), “High” in a low pitch 

("High"Lo), “Low” in a high pitch ("Low" Hi); and “Low” in a low pitch ("Low"Lo). Each 

of the four stimuli occurred on 25% of the trials in a pseudorandom order to ensure no 

more than 2 consecutive repetitions. Stimuli were presented with a 2000ms response 

window and with a 300ms inter-trial-interval. There were two response options: a left 

mouse button click for congruent stimuli ("High"Hi and "Low"Lo) and a right mouse button 

click for incongruent stimuli ("High"Lo and "Low" Hi). There were four dependent 

variables for analysis: congruent and incongruent accuracy (ACC: %), and congruent and 

incongruent response times (RTs: ms). 

 

6.2.5 EEG/ERP Measurement 

Electrophysiological setup, EEG data recording, and EEG/ERP data processing are 

detailed in Chapter 2 (section 2.3.4, and 2.3.5). Stimulus-locked ERP segmentations were 

set and averaged using Brain Electrical Source Analysis software (BESA version 5.3; 
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GmbH, Germany). ERP epoch length was set at -200 to 1,000ms for the Motor task, and 

-200 to 2,000ms for both the n-back and Stroop task. Event-related potential (ERP) 

components were identified and defined based on visual-inspection of the grand average 

waveforms. Grand averages were calculated and the mean amplitudes and latencies were 

used as the dependent variables for all statistical comparisons. Different electrode 

positions were analysed based on the respective scalp distributions of each of the 

components. All identified ERP components were compared across conditions and 

groups. Analysis of later EF-related components (N2, P3) on the n-back and Stroop tasks 

were of particular interest.  

 

6.2.6 Procedure 

After obtaining informed written consent, participants first completed each of the control 

measures. Then participants completed the ST and DT walking tasks, and the ST 

cognitive tasks with EEG/ERP analysis. The order of the cognitive ST and DT conditions 

was counterbalanced across participants (half of each group completed the seated 

cognitive ST first). This design allows us to investigate the bi-directional effects of dual-

tasking on both cognitive and gait performances, by analysing the dual-task change (DTC 

%): i.e. the relative change in performance from ST to DT condition (see Chapter 2, 

section 2.5). No instruction was given regarding which task to prioritise in the DT 

condition. The concurrent EEG recordings during the cognitive STs also allowed for the 

investigation of the associated neural correlates of these cognitive performances (the EEG 

set-up protocol is detailed in Chapter 2, section 2.3.4). All tasks were completed in one 

session lasting approximately 2 hours in total (with shorts breaks offered to participants 

between tasks). Participants were debriefed at the end of the session and thanked for their 

time 
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6.2.7 Statistical analysis  

A MANOVA was used to compare the OA and SS groups of the three NART predicted 

IQ scores, and independent t-tests were used to compare the two groups on all other 

control tasks. Cognitive variables (accuracy and RT), the 5 extracted gait variables, and 

the DTC values for both were analysed between and within the two groups using mixed 

factorial ANOVAs, with Bonferroni corrected follow-up tests of simple main effects. 

Changes in performance from ST to DT were investigated using paired samples t-tests. 

Cognitive task-associated ERPs were also analysed across trial/response conditions 

(where applicable) and between the OA and SS groups with mixed factorial ANOVAs or 

independent and paired samples t-tests, as appropriate. Where a low number of error 

responses were made, only correct responses were of interest in cognitive and ERP 

measures. A small number of values lying beyond 3 times the interquartile range were 

removed. Five participants only completed 1 ST walking gait assessment (due to 

participant fatigue and time restraints); therefore, we could not calculate an average of 2 

ST walking trials for these participants.  In all cases, Levene’s test of homogeneity of 

variances and Mauchly's test of sphericity were utilised, and the Greenhouse-Geisser 

correction was applied for violations of sphericity. Where multiple comparisons were 

made, Bonferroni-corrected alpha values were employed.            
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6.3 Results 

 

6.3.1 Group comparisons 

All mean (M) and standard error of the mean (SEM) values for each of the control 

measures are provided in Table 6.1. There were no significant differences between the 

OA and SS participant groups in mean age, height, weight or lower limb strength (5 times 

sit-to-stand task) [age: t(22) = 0.748, p = .462; height t(22) = 0.193, p = .849; weight: t(22) 

= 0.693, p = .496; lower limb strength: t(22) = 0.668, p = .511]. There were also no 

differences between the groups on NART scores of intelligence [F(1, 22) = 0.03, p = .858, 

η2p = .001], fear of falling [FES-I: t(22) = 0.03, p = .998] or global cognitive performance 

on the MMSE®-2 [t(22) = 0.598, p = .556] or MoCA measures [t(22) = 0.559, p = .582] 

measures.  Both groups had a mean FES-I score indicating moderate concern about 

balance and falling (Delbaere et al., 2010).  

 

6.3.2 Gait Analysis  

The mean and SEM values for all gait variables in each of the walking conditions (ST and 

DT), for both the OA and SS groups, are presented in Table 6.2. The SS group had slower 

gait speeds on all tasks (see Figure 6.1), but there were no statistically significant 

differences between the groups or across the tasks this difference was not significant [task 

type: F(3, 66) = 0.50, p = .684, η2p = .022; group: F(1, 22) = 1.13, p = .299, η2p = .049]. 

Analysis of each of the other gait variables revealed no significant main effects for task 

type (ST, Motor DT, n-back DT or Stroop DT), nor any main effects for group, on any of 

the gait variables: mean stride time [task type: F(3, 63) = 2.13, p = .105, η2p = .092; group: 

F(1, 21) = 0.03, p = .860, η2p = .002]; CV stride time [task type: F(1.95, 38.97) = 1.50, p 

= .236, η2p = .070; group: F(1, 20) = 3.62, p = .072, η2p = .153]; mean stride length [task 
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type: F(3, 66) = 0.95, p = .418, η2p = .041; group: F(1, 22) = 0.54, p = .47, η2p = .024]; 

and CV stride length [task type: F(3, 66) = 1.26, p = .294, η2p = .054; group: F(1, 22) = 

0.33, p = .574, η2p = .015].  

 

Table 6.1. Mean (and standard error of the mean) values for age, height, weight, 5 times 

sit-to-stand task performance, the 3 NART-based predicted IQ scores, FES-I scale scores, 

MMSE® score and MoCA score in both the older adult (OA) and stroke survivors (SS) 

participant groups.  

 

 OA SS 

Age (years) 
68.46 

(2.35) 

70.91 

(2.22) 

Height (cm) 
166.73 

(1.79) 

166.05 

(3.20) 

Weight (kg) 
70.51 

(3.97) 

74.09 

(3.06) 

5 Times Sit-to-Stand (s) 
10.25 

(0.62) 

11.03 

(1.05) 

NART Full Scale IQ 
109.85 

(2.63) 

109.27 

(2.27) 

NART Verbal IQ 
108.31 

(2.48) 

107.55 

(2.13) 

NART Performance IQ 
109.38 

(2.37) 

108.91 

(2.01) 

FES-I 
23.46 

(1.67) 

23.45 

(1.67) 

MMSE® 
27.92 

(0.60) 

28.45 

(0.65) 

MoCA 
24.46 

(1.17) 

23.55 

(1.12) 
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Table 6.2. Mean (and standard error of the mean) values for speed, stride time, stride 

time variability (CV stride time), stride length and stride length variability (CV stride 

length) for each walking task in the older adult and stroke survivor groups.  

 

 Older Adult Participants 

Gait Measure ST 
Motor 

DT 

2-back 

DT 

Stroop 

DT 

Speed (m/s) 
1.20 

(0.03) 

1.17 

(0.04) 

1.20 

(0.03) 

1.16 

(0.03) 

Stride Time (s) 
0.93 

(0.02) 

0.94 

(0.02) 

0.96 

(0.02) 

0.97 

(0.02) 

CV Stride Time (%) 
7.28   

(0.59) 

7.63   

(0.71) 

6.36   

(0.52) 

8.10   

(1.10) 

Stride Length (m) 
1.11   

(0.01) 

1.09    

(0.03) 

1.15   

(0.01) 

1.12   

(0.02) 

CV Stride Length (%) 
48.06 

(0.91) 

46.26 

(2.05) 

45.38 

(1.14) 

47.47 

(1.63) 

 Stroke Survivor Participants 

Gait Measure ST 
Motor 

DT 

2-back 

DT 

Stroop 

DT 

Speed (m/s) 
1.14  

(0.03) 

1.15 

(0.04) 

1.14 

(0.04) 

1.13 

(0.04) 

Stride Time (s) 
0.97  

(0.02) 

0.97 

(0.03) 

0.98 

(0.03) 

0.96 

(0.02) 

CV Stride Time (%) 
6.28  

(0.26) 

6.13 

(0.21) 

5.85 

(0.23) 

6.26 

(0.19) 

Stride Length (m) 
1.10  

(0.02) 

1.11 

(0.02) 

1.11 

(0.02) 

1.11 

(0.02) 

CV Stride Length (%) 
48.34 

(1.01) 

48.82 

(1.72) 

47.29 

(1.26) 

48.06 

(1.10) 
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Figure 6.1. Mean gait speed (m/s: +/- SEM) across single-task (ST) and dual-task (DT) 

conditions in both the older adult (OA) and stroke survivor (SS) groups. 

 

6.3.2.1 Gait DTC 

DTC (%) values (relative change from ST to DT) for each of the gait variables were 

compared across task type (Motor, n-back and Stroop task) and between the two groups 

(OA and SS). The mean (and SEM) gait DTC values for each task type are presented in 

Table 6.3. There were no main effects for task type or group on speed DTC [task: F(2, 

44) = 0.69, p = .508, η2p = .030; group: F(1, 22) = 0.23, p = .640, η2p = .010], CV stride 

time DTC [task: F(2, 42) = 3.04, p = .059, η2p = .126; group: F(1, 21) = 1.74, p = .201, 

η2p = .077], mean stride length DTC [task: F(2, 44) = 1.21, p = .308, η2p = .052; group: 

F(1, 22) = 0.05, p = .834, η2p = .002], or CV stride length DTC [task: F(2, 44) = 1.54, p 

= .225, η2p = .066; group: F(1, 22) = 0.02, p = .887, η2p = .001]. For mean stride time 
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DTC, there was a significant main effect for task [F(2, 40) = 6.30, p = .004, η2p = .239] 

but no main effect for group [F(1, 20) = 2.15, p = .158, η2p = .097]. However, follow-up 

analysis using the Bonferroni correction found no significant differences between the 

groups (all t < 1.77, all p > .09), or across the 3 dual-tasks (all t < 2.38, all p > 0.036: α 

= .013).  
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Table 6.3. Motor dual-task change (DTC %) values for speed, stride time, stride time 

variability (CV stride time), stride length and stride length variability (CV stride length) 

values for each dual-task (DT) conditions in the older adult (OA) and stroke survivor (SS) 

groups. Positive DTC values indicate worse performance on the DT than ST. 

 
 OA 

Gait DTC 
Motor 

DT 

2-back 

DT 

Stroop 

DT 

Speed DTC% 
2.06    

(3.47) 

-0.73    

(2.98 

2.34    

(3.24) 

Stride Time DTC% 
1.09    

(1.93) 

3.57    

(1.59) 

2.64    

(1.42) 

CV Stride Time DTC% 
17.32    

(12.02) 

-4.87    

(4.15) 

11.43    

(9.41) 

Stride Length DTC% 
1.43    

(2.87) 

-3.91    

(2.20) 

-1.08    

(2.46) 

CV Stride Length DTC% 
3.25    

(5.33) 

-5.11    

(3.19) 

-0.65    

(4.30) 

 SS 

Gait DTC 
Motor 

DT 

2-back 

DT 

Stroop 

DT 

Speed DTC% 
-1.44   

(2.25) 

-0.58    

(2.07) 

0.81    

(2.31) 

Stride Time DTC% 
-0.94    

(1.19) 

-0.04    

(1.18) 

-0.11    

(1.04) 

CV Stride Time DTC% 
-7.64    

(4.55) 

-8.77    

(3.01) 

0.26    

(3.85) 

Stride Length DTC% 
-0.37    

(1.74) 

-0.44    

(1.64) 

-1.15    

(2.08) 

CV Stride Length DTC% 
1.11    

(3.32) 

-1.72    

(3.45) 

-0.05    

(3.40) 
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6.3.3 Cognitive Behavioural Analysis 

Motor task RT, n-back ACC and RT, and Stroop ACC (on congruent and 

incongruent trials) and RT (on congruent correct and incongruent correct trials) were 

analysed between the groups. Performances on ST and DT conditions were also compared 

within each group, and the relative DTC was compared between and within the groups 

across the different tasks. The mean (and SEM) values for performances and DTC in 

performances for each of the cognitive tasks are presented in Table 6.4. 

Independent samples t-tests (with Bonferroni correction) revealed no significant 

differences between the two groups on any of the cognitive performance measures on the 

Motor, 2-back or Stroop task (all t < 2.05, all p > .052). When comparing ST to DT 

performance within the groups, both the OA and SS group were less accurate (OA: M = 

58.17, SEM = 1.83; SS: M = 59.53, SEM = 1.88) on the 2-back DT in comparison to the 

ST (OA: M = 98.70, SEM = 0.43; SS: M = 98.64, SEM = 0.30): all t > 19.72, all p < .001. 

The OA group also had faster RTs when responding correctly on the 2-back DT (M = 

185.89, SEM = 14.22) in comparison to the ST (M = 227.29, SEM = 8.33): t(11) = 3.34, 

p = .007. The same RT trend was observed in the SS group, but the effect was not 

significant (p = .08). See Figure 6.2 for 2-back mean accuracy and reaction time 

performance in both groups.  
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Table 6.4. Mean (and SEM) cognitive task accuracy (ACC) and reaction time (RT) values 

for each cognitive measure in the older adult (OA) and stroke survivor (SS) groups. 

Positive DTC values indicate worse performance on the DT than the ST. 

 

 OA SS 

Cognitive Task ST DT DTC% ST DT DTC% 

Motor RT (ms) 
352.79 

(26.19) 

332.75 

(15.89) 

0.00 

(10.17) 

339.17 

(20.68) 

393.13 

(34.98) 

15.91 

(7.53) 

2-back ACC (%) 
98.70 

(0.43) 

58.17 

(1.83) 

41.05 

(1.88) 

98.64 

(0.30) 

58.36 

(2.06) 

40.21 

(1.88) 

2-back correct RT 

(ms) 

227.29 

(8.33) 

185.65 

(13.08) 

-20.43 

(5.61) 

227.16 

(12.45) 

196.72 

(19.34) 

-13.34 

(6.76) 

Stroop Congruent  

ACC (%) 

73.40 

(7.77) 

67.23 

(8.37) 

15.55 

(10.31) 

64.16 

(7.37) 

49.55 

(6.40) 

19.85 

(8.70) 

Stroop 

Incongruent  

ACC (%) 

55.93 

(8.58) 

59.57 

(7.54) 

-12.55 

(10.02) 

53.32 

(9.57) 

38.58 

(9.32) 

26.70 

(21.80) 

Stroop Congruent  

Correct RT (ms) 

1036.96 

(64.92) 

1076.96 

(44.77) 

11.71 

(6.67) 

1177.77 

(59.67) 

1093.75 

(86.21) 

-6.36 

(6.35) 

Stroop 

Incongruent  

Correct RT (ms) 

1223.20 

(64.45) 

1166.91 

(51.29) 

-10.64 

(3.15) 

1255.31 

(60.45) 

1179.39 

(112.52) 

-4.22 

(10.42) 
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Figure 6.2. Differences between single-task (ST) and dual-task (DT) for; a) 2-back 

percentage accuracy (ACC: +/- SEM) and; b) 2-back task reaction time (RT) in ms (+/- 

SEM), in both the older adult (OA) and stroke survivor (SS) groups (* indicates 

significance at the Bonferroni adjusted alpha). 

 

 

6.3.3.1 Cognitive DTC  

See Table 6.4 for all mean and SEM DTC values. Separate comparisons of RT DTC 

values and ACC DTC values were made across tasks and between the groups. There 

were no differences between the two groups on accuracy DTC values (all t < .316, all 

p > .108) or RT DTC values (all t < 1.96, all p > .064). Comparing across tasks, there 

was a greater change (DTC) in accuracy on the 2-back DT (M = 40.42, SEM = 2.17), 

than on incongruent Stroop DT trials (M = -12.55, SEM = 10.02) in the OA group [t(10) 

= 5.10, p < .001]. This finding is due to the decline in accuracy on the 2-back in the DT 

condition, but a small increase in accuracy on incongruent trials in the Stroop DT. There 

was a significant difference in RT DTC between the 2-back (M = -20.43 SEM = 5.61) 

and congruent Stroop trials (M = 11.71, SEM = 6.67) in the OA group: t(10) = -3.69, p 

= .004. This is due to the faster RTs on the DT in the 2-back (DT improvement) 

compared to the slower RTs (DT cost) on the congruent Stroop DT in the OA group. 

Within the SS group, there was a significant difference between the Motor task RT DTC 
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and both the 2-back [t(9) = 4.13, p = .003] and congruent Stroop [t(10) = 3.61, p = .005] 

RT DTC. There was a significant difference between the increased RTs (dual-task cost) 

on the Motor DT (M = 15.91, SEM = 7.53) and the decreased RTs on the 2-back (M = -

13.34, SEM = 6.76) and congruent Stroop DT (M = -6.36, SEM = 6.35). See Figure 6.3 

for DTC (relative change) in: a) mean accuracy and: b) mean reaction time 

performances.  
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Figure 6.3. Mean percentage dual-task change (DTC) in; a) accuracy (+/- SEM); and b) 

reaction time (+/- SEM), for each relevant dual-task in both the older adult (OA) and 

stroke survivor (SS) groups (* indicates significance at the Bonferroni adjusted alpha). 
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6.3.4 Electrophysiological data 

Concurrent EEG recordings were carried out during the seated ST cognitive tasks. 

Stimulus-locked ERPs were identified from the grand averages for each task and 

compared between the groups and across task conditions (where relevant). See Table 6.5 

for all ERP component mean and SEM values. For the Motor task, we identified a positive 

component prominent at electrode site O2, maximal between 200-310ms, that peaked at 

240ms (P2), and a later negative component at Oz between 330-580ms, peaking at 450ms 

(N450). There were no significant differences between the OA and SS groups on either 

component [P2: t(22) = 3.61, p = .005; N45: t(10) = 3.61, p = .005].  

For the 2-back task, three ERP components were identified: a P2 component at P7 

and T8 maximal between 200-380ms, an N4 component at Oz between 320-500ms, and 

a late positive component peaking at 670ms and 630ms at O2 for the OA and SS groups, 

respectively (P6 window: 500-800ms). There was no main effect for group or electrode 

site on the P2 component amplitude [group: F(1, 21) = 1.47, p = .239, η2p = .065; site: 

F(1, 21) = 0.19, p = .672, η2p = .009]. There were also no difference between the OA and 

SS group on the N4 component amplitude [t(22) = -1.13, p = .270], or later P6 component 

amplitude [t(22) = 0.08, p = .936].  

On the Stroop task, we identified a P2, N3, Late Positive Component (LPC) and 

a broad Late Posterior Negativity (LPN). However, it is of note that the LPC and LPN 

had smaller, less distinct ERP morphologies, as can be seen in Figure 6.4. The P2 peak 

was maximal between 200-340ms at channels O2, T8 and T7. A 2 x 2 x 3 mixed factorial 

ANOVA revealed no main effects for group [F(1, 20) = 0.55, p = .467, η2p = .027], 

condition (congruent or incongruent) [F(1, 20) = 0.08, p = .777, η2p = .005], or electrode 

channel site (O2, T8 or T7) [F(2, 40) = 0.20, p = .817, η2p = .010]. 

 



188 

 

Table 6.5. Mean (and standard error of the mean) amplitude values for cognitive-

associated event-related potential components, on each task condition, in both the older 

adults (OA) and stroke survivor (SS) group.  

 

Task ERP Component Channel OA SS 

Motor task P2 O2 
2.37 

(0.65) 

2.50 

(0.39) 

 N450 Oz 
-1.84 

(0.38) 

-1.64 

(0.39) 

2-back task P2 P7 
0.32 

(0.22) 

0.71 

(0.18) 

  T8 
0.32 

(0.14) 

0.69 

(0.20) 

 N4 Oz 
-0.81 

(0.27) 

-0.34 

(0.33) 

 P6 O2 
1.40 

(0.22) 

1.36 

(0.37) 

Congruent 

Stroop task 
P2 O2 

0.61 

(0.44) 

1.06 

(0.31) 

  T8 
0.82 

(0.40) 

1.18 

(0.26) 

  T7 
-0.19 

(0.48) 

1.19 

(0.28) 

 N3 O2 
-1.37 

(0.45) 

-0.79 

(0.46) 

 LPC PO3 
-0.62 

(0.51) 

-0.92 

(0.88) 

 LPN PO4 
1.38 

(0.36) 

1.32 

(0.35) 

Incongruent 

Stroop task 
P2 O2 

1.41 

(0.73) 

0.23 

(0.38) 

  T8 
1.21 

(0.65) 

0.83 

(0.47) 

  T7 
0.49 

(0.38) 

1.36 

(0.37) 

 N3 O2 
1.64 

(0.28) 

0.83 

(0.62) 

 LPC PO3 
-1.25 

(0.45) 

-1.22 

(0.28) 

 LPN PO4 
-0.80 

(0.28) 

-1.44 

(0.39) 
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The N3 peak was prominent at channel O2 and maximal between 290-430ms. A 

2 x 2 mixed between-within ANOVA for peak amplitude showed no main effect for group 

[F(1, 21) = 0.11, p = .748, η2p = .005], but did reveal a main effect of condition [F(1, 21) 

= 30.15, p < .001, η2p = .589]. Follow-up comparisons showed greater mean amplitude 

for the congruent condition (M = -1.37, SEM = 0.45) in the OA group (but not the SS 

group), compared to the incongruent trials (M = 1.73, SEM = 0.29): p < .001. The late 

positive component (LPC) between 420-850ms was maximal over channel PO3. A 2 x 2 

mixed factorial ANOVA on peak amplitude revealed no main effect for group [F(1, 22) 

= 0.07, p = .793, η2p = .003], nor condition [F(1, 22) = 0.60, p = .447, η2p = .027]. There 

were also no significant main effect for group on the late negativity maximal between 

900-1300ms at channel PO4 [group: F(1, 22) = 1.28, p = .270, η2p = .055]. However, 

there was a main effect for condition [F(1, 22) = 41.64, p < .001, η2p = .654]; whereby 

both groups had a greater amplitude in the congruent condition (OA: M = 1.38, SEM = 

0.36; SS: M = 1.32, SEM = 0.35) than the incongruent condition (OA: M = -0.80, SEM = 

0.28; SS: M = -1.44, SEM = 0.29): all p = .001.  
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Figure 6.4. Stroop task N3 at O2 and late posterior negativity at PO4 measured in 

microvolts (mV: y-axis) over time (ms: x-axis), for the older adults on congruent trials 

(yellow) and incongruent trials (orange), and the stroke survivors on the congruent (blue) 

and incongruent (dark blue) trials. On average, 1.22% of trials were rejected for the CC 

condition, and 2.56% were rejected for the IC condition.  
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6.4 Discussion 

We predicted that stroke survivors would have slower gait speeds in ST and DT 

conditions in comparison to the age-matched control group. While the stroke survivor 

sample was slower overall, there were no significant differences between the groups on 

any gait measures. This was surprising, as previous work had documented impaired gait 

post-stroke in comparison to controls. Most commonly, reduced gait speed has been 

identified as characteristics of post-stroke gait (Beyaert et al., 2015; Huitema et al., 

2004; Olney & Richards, 1996; Weerdesteyn et al., 2008). However, other impaired gait 

characteristics such as decreased stride length and cadence post-stroke have been 

evidenced to recover over a longer period of time post-rehabilitation (Jonsdottir et al., 

2009; Olney & Richards, 1996; Patterson et al., 2008), which may have been the case 

here. Interestingly, our stroke survivor sample had a faster baseline mean gait speed 

than previously reported speeds for even high-functioning survivors (Beyaert et al., 

2015; Huitema et al., 2004; Olney & Richards, 1996). Additionally, our older adult 

group also had a slower mean gait speed than national reference data reported by Kenny 

et al. (2013). Therefore, it is possible that we recruited a slightly poorer performing 

control group and particularly well-recovered stroke survivor group, which could 

account for the lack of differences between these two groups on gait measures at 

baseline, and the equivalence between the groups on the control measures.  

We also hypothesised that the stroke survivors would show greater detrimental 

changes (costs) in speed with the executive 2-back and Stroop dual-tasks. However, we 

found no significant changes in gait from ST to DT conditions for any of the three tasks. 

In terms of DTC in performance (relative change), we did not find clear patterns 

suggesting differences between the executive and non-executive domain tasks. We did 
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see cognitive costs (lower accuracy) on the 2-back working memory task for both groups. 

Interestingly, on incongruent trials of the Stroop we also saw increased accuracy in 

controls, and longer RTs in the stroke survivors. This was surprising as most participants 

indicated to the experimenter that the Stroop task was the most difficult, and it took the 

longest amount of time to explain the rules and instructions in most cases. Looking at 

accuracy scores, they are close to 50% on both the ST and DT conditions in the stroke 

survivor group (and to a lesser extent in the control group). This may indicate that stroke 

survivors responded at chance when unsure of the correct response (which could also 

explain how participants were able to prioritise walking performance).  

Overall, these findings are in contrast to previous work that has shown cognitive-

motor interference on speed, stride time, and cognitive performance (D Hyndman et al., 

2006; Patel & Bhatt, 2014; Plummer-D’Amato et al., 2008). In particular, Patel and Bhatt 

(2014) found that a Serial Subtraction task elicited greater costs on both cognitive and 

motor performance in the stroke survivors (with the Stroop task causing greater costs in 

the young adult group). However, we must note that the stroke survivor samples differed 

in this study and Patel and Bhatt’s, in their time post stroke (230-438 vs. 2-60 days post-

stroke, respectively). Also, some have argued that articulatory responding (like that on a 

Serial Subtraction task) could increase cognitive-motor interference on gait due to the 

increased respiratory load competing with motor processes during walking and talking 

(Dault, Yardley & Frank, 2003; Yardley, Gardner, Leadbetter & Lavie, 1999; D 

Hyndman et al., 2006b). Therefore, in comparison to Patel and Bhatt’s study, it is possible 

that the cognitive tasks employed here caused less interference because they did not 

require articulatory responses. 

In this study, it appears that while the stroke sample had slightly slower speeds, 

both groups were able to maintain gait performance throughout. This indicates that 
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participants did not find the dual-task condition too challenging. Perhaps the straight 

walkway or the tasks themselves were not challenging enough in this study. One study of 

obstacle crossing by Smulders et al. (2012) found that neither stroke nor control adults 

were impaired in motor performance while concurrently completing a Stroop task, yet the 

stroke group exhibited cognitive performance interference. Interestingly, the older adult 

controls did not show any dual-task interference effects, in either direction. This may help 

explain why we found no clear patterns of dual-task costs in our older adult group in the 

current study.  

We also hypothesised that the stroke survivor group would exhibit subtle single-

task cognitive impairments indicating impaired executive function; such cognitive effects 

were not observed here. Previously, Duffin et al. (2012) revealed subtle cognitive 

impairments post-stroke that are not identifiable with clinical MMSE® and MoCA 

measures of global cognition. However, these deficits were on tasks of spatial attention 

and processing (and associative memory), while the tasks used here targeted executive 

functions previously associated with gait control and fall risk (Dubost et al., 2006; Holtzer 

et al., 2007), and shown to be impaired post-stroke (Cumming et al., 2013). Similarly, we 

did not see any differences between the groups on stimulus-locked event-related 

potentials, only differences between the congruent and incongruent conditions of the 

Stroop (where amplitude was greater on the late negativity for congruent Stroop 

condition). Interestingly, the control older adults had a late negative potential on 

incongruent Stroop trials that was absent in SS group. As noted above, the SS group did 

appear to perform at chance accuracy, which may suggest participants did not fully 

engage in decision making that would require inhibitory processing on incongruent trials. 

This may account for the differences between the groups on these trials. However, as this 

EEG data appears quite noisy, and these differences did not match behavioural 
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performances, or correlate with gait differences between the groups, we are hesitant to 

interpret this difference between the groups in the context of gait performance.  

One overarching explanation for the collective results here could be that our stroke 

survivor sample was not impaired, and was in fact well-recovered, consisting of relatively 

healthy older adults, akin to the control group.  Sampling was limited by who was willing 

to volunteer from those contacted via Tallaght Hospital’s patients records, and it may be 

the case that the inclusion and exclusion criteria employed thereafter ensured we only 

recruited people who had experienced a relatively mild stroke, or who had particularly 

good recovery. None had evidenced cognitive decline at time of discharge, and the 

exclusion criteria ensured they had good motor functioning (ability to walk at least 10m 

unaided and no other pre-existing musculoskeletal problems), perhaps identifying a 

particular subgroup of stroke survivors who had a successful recovery and return to 

function (some had returned to driving and work after rehabilitation). 

Only two stroke survivors had experienced a fall post-stroke event (comparable 

to our control group). Thus, we could not subdivide the groups into fallers and non-fallers 

(particularly with this small sample size). Perhaps there are differences in cognitive 

capacity and gait control between stroke survivors who fall and those who do not, with 

non-fallers exhibiting better cognitive and motor (and dual-task) performance recoveries, 

returning to functioning close to that of age-matched controls. Further research should 

attempt to replicate these findings and focus on comparing fallers and non-fallers post-

stroke, with monitoring of both motor and cognitive (and dual-task) recovery and 

reacquisition over time post-stroke. It may be the case that we can evidence the cognitive-

motor link in simultaneous recovery (as well as impairment) in both.   
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6.4.1 Conclusion 

This study is different to previous literature in that it compares different executive tasks 

to a non-executive control dual-task, and investigated subtle cognitive and 

electrophysiological impairments post-stroke, which may be related to gait impairments 

and fall-risk. Overall, the data did not support our hypotheses, and we were unable to 

identify any clear markers (dual-task, cognitive or electrophysiological) of gait 

impairments post-stroke. Further research should continue to compare the effects of 

different dual-tasks on gait control post-stroke, and consider neuroimaging techniques to 

aid understanding of neurocognitive and motor recovery, which may explain dual-task 

capabilities after a stroke event. In particular, more studies should investigate differences 

between those who do and do not fall post-stroke, and aim for a time window closer to 

the stroke event.   



 

 

 

Chapter 7 

 

General Discussion 

 

 

VII 
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The overall objective of this research was to investigate the interaction between motor 

and cognitive factors contributing to gait instability and falls in older adults and stroke 

survivors. This thesis explored the cognitive control of gait and dual-task ability, and the 

related underlying neural activity, with a goal to identify any higher-level neurocognitive 

marker of fall-risk that could be of use in future work to develop alternative screening 

and intervention measures. The key aims of this thesis were: to compare cognitive 

performances across the sample groups and relate cognitive scores to specific walking 

gait characteristics: to identify the specific cognitive functions impaired in older fallers 

and stroke survivors and the associated neural processes underlying these impairments, 

and: to determine if PC-based neuropsychological tasks could identify fallers from non-

fallers across these samples.  

We hypothesised that there would be differences between different specific 

executive and non-executive tasks, revealing a greater role of executive function 

processes in the control of dual-task gait and fall-risk. We also predicted that poorer 

executive single- and dual-task performances would be associated with gait impairments 

and fall-risk, and that these behavioural performance differences would be reflected in 

the associated electrophysiological ERPs.  

 

7.1 Overview of Findings 

In Chapter 3 we found that executive function (EF) tasks of visuospatial attention, 

working memory and information updating elicited more compensatory changes in gait 

performance (slower speed and stride time, but maintained variability) than the control 

motor response task. For all EF tasks, it appears that gait performance was adapted in 

order to maintain cognitive performance, except on the 2-back task. The 2-back task 

revealed additional changes in cognitive performances as well as gait, indicating that 



198 

 

working memory resources play a greater role in dual-task walking than the other EF 

processes. These findings highlighted the relative role of higher-level attention and 

executive function in the control of dual-task gait in healthy young adults that goes 

beyond simple diversion of attention or motor response task load. Additionally, we 

concluded that a longer 15m walkway distance (rather than 5m) was better suited to allow 

for more steady state walking gait cycles during single- and dual-tasks.  

 In Chapter 4, we tested healthy young and older adults from the community and 

found that the same EF tasks elicited greater changes in gait speed and stride time 

parameters during DT walking, than comparative non-executive verbal and motor 

response tasks. These effects were more prominent in the older adult group. Specifically, 

there appeared to be more overlap in shared resources for the tasks that taxed visuospatial 

attention and working memory/information updating, again indicating their role in the 

top-down control of dual-task gait. However, the changes in gait did not imply instability, 

but rather compensation to maintain stability while necessary EF resources are taxed. 

Furthermore, it appears again that participants prioritised cognitive performances, as there 

were no changes from ST to DT conditions.   

 In Chapter 5 we investigated the EF and electrophysiological correlates of gait in 

older fallers and non-fallers, compared to young controls. We found no differences in ST 

gait between any of the groups, and only found general age-related differences in neural 

and EF measures (lower accuracy and slower responses, as expected). This is in contrast 

to previous work associating gait speed and EF performances with falls (see Kearney, 

Harwood, Gladman, Lincoln, & Masud, 2013, for example). The only difference we 

found between the groups was in a P3-like ERP component that was present in the non-

fallers on the Stroop task, but notably absent for the faller group and young controls.  The 

presence of this component, which we labelled P3a, in our non-falling group may reflect 
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the adaptive and plastic neural compensation associated with successful ageing in healthy 

older adults (in accordance with the scaffolding theory of ageing: Park & Reuter-Lorenz, 

2009). 

 Finally, in Chapter 6 we examined the relationship between gait and executive 

function (EF), working memory and inhibition in stroke survivors. While the stroke 

survivors walked slower overall, we found no significant differences on ST or DT gait 

performances between or within the groups. Surprisingly, we also did not find significant 

differences between older adult controls and stroke survivors on executive cognitive 

measures, or the associated ERPs, but both groups had lower 2-back accuracy in the dual-

task condition. Although we did not clearly identify a specific neurocognitive biomarker 

of fall-risk in older adults and stroke survivors, taken together, these findings indicate that 

EF cognitive function declines with age (evidenced in Chapter 4 and 5), and that executive 

working memory and visuospatial attention processes play a specific role in gait control 

in both young and (to a greater extent) older adults. 

 

7.2 Cognitive-Motor Link 

Recent literature suggests that executive processes in particular are related to falls and 

gait impairments in older adults and other cognitively-impaired clinical samples (Killane 

et al., 2014; Morris, Lord, Bunce, Burn, & Rochester, 2016; Muir et al., 2013), and play 

a role in controlling gait during dual-task walking (Al-Yahya et al., 2011; Chu, Tang, 

Peng, & Chen, 2013; Gomes et al., 2016). Our dual-task results support this literature by 

revealing a consistent trend of effects for EF tasks affecting pace and rhythm (associated 

with EF and global cognition, respectively) measures more than the non-EF tasks, and 

more so in the older adults. It is of note that these changes in gait appear more 

compensatory than indicators of instability and fall-risk (in the absence of changes in 
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variability). One strength of the findings presented here is that these EF tasks reveal 

comparatively greater DT costs for EF tasks than other non-executive–but still attention-

demanding–control tasks (augmenting most previous studies). Comparing different EF 

and non-EF tasks may ameliorate the current problem of methodological heterogeneity in 

the literature regarding the choice of secondary task (Al-Yahya et al., 2011). Further work 

should make planned comparisons across and within specific cognitive domains, with 

varying task complexity, in order to continue to clarify the selective higher-level 

processes involved in gait control.  

Interestingly, it was clear that EF tasks can also elicit some DT costs in healthy 

young adults, which indicates that there are top-down executive inputs for even healthy 

“normal” gait. This negates the argument that healthy gait is “automatic” or solely 

controlled by bottom up and lower-level cortical inputs. However, the exacerbated DT 

costs in older adults may be attributable to age-related decline in EF functions, or to an 

increased reliance on EF top-down control of gait in the face of sensorimotor decline (or 

both). This may be further supported by the potentially compensatory P3-like sustained 

attention/inhibitory associated component exhibited in the older non-fallers (those ageing 

successfully), that was noticeably absent in older fallers. Together, these findings are 

consistent with the resource capacity theories of attention and multitasking, and the older 

adult results corroborate the CRUNCH, STAC and somewhat with the PASA models of 

neurocognitive ageing (Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008; Park & Reuter-

Lorenz, 2009a; Reuter-Lorenz & Cappell, 2008). In light of this, we propose that working 

memory and sustained attention EF tasks may be the most sensitive for identifying older 

adults with who are using increased compensatory top-down control of gait, which may 

be a tentative marker of less successful ageing generally, and of further healthcare 

problems in the future.  
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We did observe age-related declines on single-task cognitive performances across 

studies, with some reflecting age-related differences in the associated ERPs. However, 

more critically, we did not see poorer EF performances in older fallers compared to non-

fallers, or young adults. This was a surprising finding that contradicts much of the 

previous literature, but that may be explained by some limitations of our sampling method 

(discussed below). Another unexpected finding was that we did not observe any 

differences between any of the young, older faller or non-faller groups on single-task 

baseline “normal” walking gait. We must consider that the measures utilised here were 

perhaps not sensitive enough to identify subtle impairments in otherwise healthy and 

relatively young older adults and idiopathic fallers. Regarding the baseline gait 

performances, we have highlighted in previous chapters that the ST straight, level 

walkway assessment in the laboratory, devoid of obstacles, and with few environmental 

distractions, may not be a sensitive measure of subtle gait impairments in idiopathic 

fallers. In particular, the association between falls and EF performances in cross-sectional 

and longitudinal research may be difficult to discern with a simple-walk gait assessment 

in the laboratory, given that falls during walking in the “real world” most likely occurred 

in a far more challenging environment and terrain, with distractions and sudden 

perturbations, and most likely all while multitasking.  

The last finding that was quite surprising was that it appears the stroke survivors 

recruited here at 1+ years post-stroke event had recovered cognitive and motor capacities 

to those equivalent in undiagnosed age-matched controls. Although this contrasts with 

some previous studies evidencing subtle cognitive impairments and DT costs post-stroke, 

most of the limited work thus far has tested patients at an earlier stage of recovery, or 

with different tasks (Duffin et al., 2012; Wang et al., 2015). This apparent recovery in our 

stroke survivor sample was a surprising, but affirming finding, highlighting the plastic 
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adaptability of the neural mechanisms underlying gait and cognitive control. However, in 

light of the other results evidencing a role of top-down control in even healthy young gait 

control, it may be that case that cognitive and motor control are intertwined, and not 

separable systems. Therefore, the period of motor recovery before “plateau” at 6 months 

post-stroke may have been a critical time for higher-level cognitive recovery also.  

 

7.3 Consideration of Limitations 

The key limitation of the findings presented here is the convenience sampling method for 

recruiting volunteer participants. Selection bias is a common challenge for most studies 

of ageing, whereby individuals who are “too healthy” (and thus still leading quite active 

and busy lives), and those who are “too ill” or experiencing functional or social barriers 

to participation can often not be engaged with, or decide to decline enrolment (Harada, 

Love, & Triebel, 2013). In this body of work, it appears that our older adult volunteers 

were relatively young and in a particularly good bill of health after meeting the inclusion 

and exclusion criteria. Furthermore, our stroke survivor group also appears to be 

comprised of individuals suffering less debilitating stroke attacks and/or those who 

experienced apparently successful subsequent rehabilitation and recovery of function. 

The lack of differences in gait characteristics between our groups limited our ability to 

address some of our aims, as we set out to determine if cognitive performances and the 

correlated ERPs were related to impaired gait and falls.  

 This self-selected enrolment of participants has implications for the characteristics 

of our sample and the generalisability of these findings to the wider population of older 

adults and stroke survivors. This is further impacted by our relatively small sample sizes 

in comparison to larger nationally-representative studies.  These samples were limited by 

the number of “fallers” and patients who volunteered in particular, with only 8 volunteer 
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older fallers in Chapter 5. In Chapter 6, 11 stroke survivors that responded to the invitation 

letter also met the inclusion/exclusion criteria, and only two stroke survivors reported a 

history of falls. This restricted us from making faller and non-faller group distinctions for 

more specific investigation of the role of EF in gait stability and falls post-stroke. 

Furthermore, stroke is considered a highly heterogeneous syndrome, further hindering the 

interpretation and generalisability of stroke research results.  

 Concurrently, the baseline gait speeds reported for all studies here were 

comparatively slower than representative normative values or those reported by others in 

previous research (for example see Kenny et al., 2013). This may indicate that our 

samples are irregular, and not representative of the norm, presenting a further limitation 

for generalising our findings. For example, this could imply that we recruited older adults 

who perform slightly below the norm, and a group of particularly well-recovered stroke 

survivors, which would explain their equivalent performances on control tasks and on 

baseline gait and cognitive assessments. However, the fact that our younger adult groups 

also all exhibited slower gait speeds at baseline than previously reported brings our 

attention to the additional heterogeneity in the methodologies used for gait assessment 

within this field. With the recent advancement of new quantitative technologies for the 

assessment of gait, there are numerous protocols for gait assessment varying in length of 

walkway (as highlighted in Chapter 3), technology used (force plate, camera system, 

wearable sensors and the placement position) and type of data processing algorithm 

applied. For instance, the nationally-representative normative values provided by Kenny 

et al. (2013) were calculated from 2 walks measured on a pressure sensor matt, whereas 

we recorded kinematic data with wearable sensors over longer distances and recording 

times. Furthermore, the values provided by Kenny et al. were compared only to speeds 
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previously recorded on the same equipment, and were found to be the same or slightly 

faster than those reported prior (which may also explain our slower baseline speeds here).  

 

7.4 Future Directions  

To address some of the limitations of the current work, and those of the field itself, a 

longitudinal study of the cognitive-motor link, via dual-tasking, would be valuable for 

understanding the effects of ageing on top-down control of gait. Longitudinally, we could 

compare multiple dual-tasks that target distinct and specific higher-level executive and 

non-executive processes, to specifically investigate the impact of age-related neural and 

cognitive changes on gait control and fall-occurrence in both healthy older adults and 

those with cognitive impairment. Similarly, collecting longitudinal data from stroke 

survivors throughout the recovery process would contribute immensely to understanding 

the recovery and/or re-automaticity of gait control. Furthermore, in order to understand 

the interdependence between cognition and gait following stroke, a longitudinal study 

examining specific motor, cognitive and neural recovery from time of stroke to recovery 

plateau, and beyond, could aid our understanding of the cognitive-motor link. Here, 

neuroimaging and electrophysiological measures are vital, and we urge for the continued 

use of such measures to aid in understanding the neural mechanisms recruited for gait 

control. The recent development of mobile EEG recording protocols while walking may 

be one avenue through which to explore this cognitive-motor link (De Sanctis, Butler, 

Green, Snyder, & Foxe, 2012). Furthermore, the use of neuroimaging and physiological 

recording techniques will not only aid in clarifying the neural mechanisms of cognitive 

and motor control, but could also translate to the clinical setting for neural screening of 

fall risk in older adults and clinical samples. 
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Furthermore, we stress that it is as important to understand normal healthy young 

and ageing gait control, and successful recovery of cognition and gait post-stroke, as it is 

to understand the control systems when they fail to function or recover. As evidenced 

here, young adults reveal top-down EF processes are needed for dual-task gait, and we 

also must acknowledge the heterogeneity in neurocognitive decline with ageing, and the 

heterogeneous nature of stroke. Longitudinal studies with larger samples could identify 

neural or cognitive markers of successful and non-successful ageing or recovery that 

would have a substantial beneficial impact on developing clinical screening and 

rehabilitation protocols. 

 

7.5 Wider Implications and Applications 

Clinical falls training techniques often ignore spatial cognitive aspects, and the current 

clinical assessment model employed in Ireland (the Mini-Mental State Examination; 

MMSE, Folstein, Folstein, & McHugh, 1975) has been criticised as being insufficient in 

assessing cognitive deficits and for diagnosis alone (Strauss, Sherman, & Spreen, 2006). 

The MMSE model of patient care also only offers a single standardised rehabilitation 

package designed to “fit-all”, and is compromised by its inability to identify and 

remediate subtle cognitive deficits. The most direct application of the work presented here 

and elsewhere is for developing an executive function cognitive training intervention that 

may improve top-down control of gait in those with gait impairments and a history of 

falls. While some dual-task training interventions have been developed recently, the 

problem of methodological variability and an overreliance on targeting global cognitive 

function has yielded mixed findings regarding the efficacy of these protocols (Menant, 

Schoene, Sarofim, & Lord, 2014; Plummer-D’Amato et al., 2008).  
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However, recent reviews from other areas show that EF training works 

(particularly in children), with computerised training of working memory in adults 

showing promise (Diamond & Lee, 2011; Morrison & Chein, 2011; Shipstead, Lindsey, 

Marshall, & Engle, 2014). Currently, the medical model focuses primarily on the 

anatomical functioning of the body and lower limbs for treatment of falls, which has not 

been evidenced to reduce future falls in older adults (Cadore, Rodríguez-Mañas, Sinclair, 

& Izquierdo, 2013; Teasell, McRae, Foley, & Bhardwaj, 2002). Incorporating specific EF 

elements into exercise or physiotherapy rehabilitation protocols, or developing and 

integrating an easy-to-use computer-based training tool into the medical rehabilitation 

package (and for continued use at home), could improve an individual’s gait stability 

(alleviating some of the negative psychosocial consequences of falls). Furthermore, for 

individuals who are bed- or chair-bound soon after a stroke attack (or others with a motor 

impairment and known high fall-risk), an alternative computer-based intervention may 

facilitate earlier recovery of the neural pathways underlying higher-level cognitive 

control and their compensatory links to the motor cortex, from the safety of a chair or bed, 

without risk of falling. Given the importance of executive functions for carrying out many 

everyday tasks, such interventions would surely have wide reaching benefits for other 

aspects of recovery that go beyond gait control.  

 With the continued development of more sophisticated neuroscientific brain 

stimulation techniques such as tDCS and Transcranial Magnetic Stimulation (TMS), there 

is also a possibility to stimulate EF-associated frontal areas of the cortex to improve 

balance and gait control in those with impairment (building on the tDCS work by Manor 

et al., 2016, evidencing reduced DT costs in older adults 20 minutues after stimulation to 

the left PFC). Alternatively, identifying the neurobiological link between motor and 

cognitive control in ageing may lead to the development of neuropharmacological 
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interventions that could enhance cognitive EF function by improving the 

neuromodulation of monoamines such as dopamine (Arnsten & Li, 2005; Li, 

Lindenberger, & Sikström, 2001).  

These implications also extend beyond older adult fallers and stroke survivors, 

and to the wide range of cognitively impaired population such as those with MCI, 

dementia and frontal brain injuries/dysexecutive syndrome. Overall, the hope is that novel 

rehabilitation techniques that promote neurocognitive plasticity and compensation (via 

exercise, brain stimulation, cognitive enhancement) can be developed to supplement the 

current medical model of rehabilitation, improve gait stability, and prevent future falls in 

both diagnosed and undiagnosed older adults. This may help ameliorate the growing 

burden of falls on both national and international healthcare systems. 

 

7.6 Conclusion 

In conclusion, the current thesis reports four experiments investigating the role of specific 

executive functions tasks in the control of gait, and their relationship to fall-risk in healthy 

young and healthy older adults with and without a history of falls, and a supposed high-

fall risk sample of stroke survivors. Results suggest that executive top-down processes 

play a role in gait control during dual-tasking, in both healthy young adults and older 

adults to a greater extent, that there may be adaptive neural compensation in older non-

fallers aging successfully, and that there can be significant recovery of both cognitive and 

motor function after 6 months post-stroke. These findings offer support for the resource 

capacity and compensatory theories of neurocognitive ageing, which highlights the 

possibility of developing neurocognitive enhancement interventions for the prevention of 

falls.   
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Appendix J 

An investigation of cognitive processes and gait profiles 

 

Researchers:   

Elizabeth Walshe 
Dept of Psychology  

Maynooth University 

Co. Kildare, 

Ireland 

 

Ph 01 708 6311 
 

 

Letter of Informed Consent for Participation in Research at the Department of 

Psychology, NUI Maynooth. 
 

Your participation is requested in an experimental study examining the examining the 

role of different mental processes in walking gait and balance. During the experiment, 

you will be asked to do a number of different cognitive tasks–such as simple memory, 

subtraction and visualisation tasks. Other tasks will involve balance and walking gait, 

requiring you to walk along a walkway a number of times at your normal pace while 

sensors record you movements. Sometimes we will ask you to walk while doing some fo 

the other simple tasks. You will also have some questionnaires to fill out.  

 

The expected time for your participation will be approx. 45 minutes. 

The specific nature of the study will be explained as soon as you have completed your 

session. The results of each individual's participation will be strictly confidential and will 

be kept in a locked cabinet in the Psychology Department. The results of your 

participation will be documented by subject number only. No names or individual 

identifying information will be recorded. With the exception of the researcher(s) involved 

in running this study, nobody will be allowed to see or discuss any of the individual 

responses. Your responses will be combined with many others and reported in group form 

in a scientific paper, but your own data will be available to you at your discretion. You 

may withdraw from the study at any time or you may withdraw your data up until the 

work is published.  

Performance on these tasks does not provide any diagnostically relevant information. In 

the unlikely event that you experience any distress, discomfort or other negative 

experience as a result of participating in this study, you should contact the Student 

Counseling Service (708 3554) or Student Health Service (708 3878; both on campus and 

located very close to the Psychology Department) or contact your own GP. 

 

I have read the above and understand the nature of this study and agree to participate. I 

also understand that I have the right to refuse to participate and that my right to 

withdraw from participation at any time during the study will be respected with no 

coercion or prejudice.  

Supervisors:  

Drs. Richard Roche, Seán Commins 
Dept of Psychology 

Maynooth University 

Co. Kildare, 

Ireland. 

 

Ph 01 708 6069 or 01 708 6182 
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_____________________________________             _________________  

Participant signature                                                         Date  

This research project has been approved by the Departmental Ethics Committee.  

If during your participation in this study you feel the information and guidelines that you 

were given have been neglected or disregarded in any way, or if you are unhappy about 

the process, please contact the Secretary of the National University of Ireland Maynooth 

Ethics Committee at research.ethics@nuim.ie or +353 (0)1 708 6019. Please be assured 

that your concerns will be dealt with in a sensitive manner.  
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Appendix M 

 

 

 

SJH / AMNCH & NUIM RESEARCH ETHICS COMMITTEE 

Participant Information Leaflet  
 

Study title:  Investigating the Cognitive and Electrophysiological Processes 

Underpinning Walking Gait and Fall-Risk Post-Stroke. 

 

Principal investigator’s name: Dr Ronan Collins 

Principal investigator’s title:   Asst. Professor of stroke medicine  

 

Lead Investigator’s name: Elizabeth Walshe 

Lead Investigator’s title: PhD Research Candidate 

Telephone number of lead investigator:  0857136153 

 

You are being invited to take part in a research study to be carried out at NUI Maynooth 

and the Adelaide and Meath incorporating the National Children’s Hospital (AMNCH), 

Tallaght.  

 

Before you decide whether or not you wish to take part, you should read the information 

provided below carefully.  Take time to ask questions–don’t feel rushed and don’t feel 

under pressure to make a quick decision. 

 

You should clearly understand the risks and benefits of taking part in this study so that 

you can make a decision that is right for you. This process is known as ‘Informed 

Consent’. You don't have to take part in this study. You can change your mind about 

taking part in the study any time you like.  Even if the study has started, you can still opt 

out.  You don't have to give us a reason. 

 

Introduction 
 

This study is investigating why there is an increased risk for falling in some older adults 

and post-stroke, what processes in the brain are important for maintaining balance, and 

what tasks or measures we can use to predict those at risk and prevent future falls. This 

study is being carried out by lead investigator Elizabeth Walshe, as part of an academic 

PhD qualification at the National University of Ireland Maynooth. This research is 

supervised by Drs. Richard Roche and Seán Commins of NUI Maynooth, and Dr. Ronán 

Collins of Tallaght Hospital. This project is funded by a PhD scholarship from the Irish 

Research Council.  

 

Procedures 
 

Why am I being asked to take part? 

You are a community-dwelling adult over the age of 55, living in the surrounding areas 

of  
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Maynooth or Tallaght, without a diagnosis of stroke. Your participation will allow for a 

comparison between community-dwelling older adults (whether or not you have 

experienced a fall recently) and those with a diagnosis of stroke or dysexecutive syndrome.  

 

What will participation involve? 

All testing will take place at a time that suits you, for an average of 2 hours, and you will 

be given multiple opportunities to take a short break. Testing will take place either in NUI 

Maynooth or Tallaght Hospital, depending on your preference, where you will meet with 

lead investigator Elizabeth Walshe. Your testing results will be anonymous, with only an 

average group result being used academically for publication of the study’s findings.  

 You will be asked to walk normally on a straight pathway for a few minutes while 

we record your walking movements with two wearable sensors (in some cases a digital 

video recording may be taken). You will then be asked to complete general questionnaires 

that will ask you about any previous experience of falls or balance concerns, and pen and 

paper tasks requiring you to read a list of words, recall some words and numbers, and 

complete some simple drawings. Computer-based tasks of memory, attention and motor 

abilities will also be used which will present an auditory tone or visual image, word or 

number on screen and ask you to respond with a mouse click or key press. As you engage 

in these tasks, tasks, we will record electrical brain waves by placing a cap on your head 

which will allow us to record electrical signals from the scalp. This recording procedure 

(an EEG cap with connecting electrodes and signal-enhancing gel) is akin to measuring 

your heart-rate or blood-pressure, in that it is completely safe, pain-free and non-invasive.  

 

Benefits 
 

You may not receive any benefit. As this is a research study, we cannot state that you will 

benefit personally from taking part. However, your participation in this study contributes 

to our understanding of falls and walking gait impairments in older adults and adults post-

stroke. The findings from this study hope to identify if tasks of mental processes could be 

of use in future fall-risk screening and intervention.  

 

Risks 
 

This research is designed to be safe, pain-free and non-invasive. None of the tasks have 

been designed to be deceptive or stress-inducing in any way, and do not pose any risk 

beyond everyday real-world activities. The measurement of brain activity will require you 

to wear an electrode cap with a special gel to be used on the scalp to enhance the signal. 

This may require your hair to be washed after the study (these facilities will be provided 

for you). The gel is designed to be sensitive, but will be tested beforehand to ensure no 

negative experience. This procedure does not involve radiation, x-rays, magnetic fields 

or any other dangerous elements. If you feel any discomfort at any point while taking part, 

please inform the researcher (Elizabeth Walshe) immediately and the process can be 

stopped. 

 

Exclusion from participation 
 

You may not be eligible for this study if any of the following are true: 

- You have severe (uncorrected) visual or auditory impairments  

- You have a history of psychological/neurological impairment  
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- You have had a severe head trauma resulting in unconsciousness;  

- You have a history of epilepsy;  

- You have dementia, or moderate to severe aphasia; 

- You are currently taking psychoactive medication;  

- You have other relevant medical conditions (e.g. vestibular/musculoskeletal/orthopedic);  

- You have unstable/uncontrolled high blood pressure/heart condition;  

- You have a history of drug or alcohol problems; 

- You have lower limb amputation, recent joint replacement; 

- You have had a labyrinthectomy 

 

Confidentiality 
 

Records 

Your identity will remain confidential and your name will not be published. If you take 

part, you will be assigned a code number in place of your name for all experimental 

documents and recordings, to ensure anonymity. All information will be stored on secure 

hard-drives and in locked filing cabinets in the Department of Psychology at the National 

University of Ireland Maynooth, which may only be accessed by the lead researcher and 

supervisors (in accordance with the Data Protection Act of 2003). All experimental 

documents and recordings will be kept for 5 years as is a standard requirement for most 

publication journals, and will be destroyed after this time.  

 

Results 

This research study is based on the entire group’s performance, so no individual results 

will be analysed, published or made available for feedback. Once the group data has been 

analysed and conclusions have been drawn, you will receive these results.  

 

Future Research Studies 

Within the 5 year data retention period, the data may be reanalysed as part of similar 

studies. However, this data will remain anonymous and confidential, and destroyed after 

this time. 

 

Permission 

 

This study has received ethical approval from the Research Ethics Committee at AMNCH 

and at the National University of Ireland Maynooth. 

 

Further Information 
 

You can get more information or answers to your questions about the study, your 

participation in the study, and your rights, from Dr Ronan Collins at Tallaght hospital 

(who can be telephoned at 01-4144724), or lead investigator Elizabeth Walshe at NUI 

Maynooth, Co. Kildare (ph: 0857136153 or email: Elizabeth.walshe.2009@nuim.ie).  

 

If during your participation in this study you feel the information and guidelines that you 

were given have been neglected or disregarded in any way, or if you are unhappy about 

the process, please contact the Secretary of the National University of Ireland 

Maynooth Ethics Committee at research.ethics@nuim.ie or +353 (0)1 708 6019. Please 

be assured that your concerns will be dealt with in a sensitive manner.  
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SJH / AMNCH & NUIM RESEARCH ETHICS COMMITTEE 

PARTICIPANT CONSENT FORM 
 

Study title:            Investigating the Cognitive and Electrophysiological Processes 

                                    Underpinning Walking Gait and Fall-Risk Post-Stroke.  

 

This study and this consent form have been explained to me. I believe I understand what will 

happen if I agree to be part of this study. 

 

I have read this consent form. I have had the opportunity to ask questions and all my questions 

have been answered to my satisfaction. I freely and voluntarily agree to be part of this 

research study, though without prejudice to my legal and ethical rights. I have received a copy 

of this agreement and I understand that a signed copy will be saved at the National University 

of Ireland Maynooth. 

 

 

PARTICIPANT’S NAME: 

 

 

 

PARTICIPANT’S SIGNATURE:  

 

 

 

Date: 

 

 

Date on which the participant was first furnished with this form: 

 

 

Statement of investigator’s responsibility: I have explained the nature, purpose, procedures, 

benefits, risks of, or alternatives to, this research study. I have offered to answer any 

questions and fully answered such questions. I believe that the participant understands my 

explanation and has freely given informed consent. 

 

Investigator’s signature: 

 

Date: 
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SJH / AMNCH RESEARCH ETHICS COMMITTEE 

Post-Stroke Patient Information Leaflet  
 

Study title:  Investigating the Cognitive and Electrophysiological Processes 

Underpinning Walking Gait and Fall-Risk Post-Stroke. 

 

Principal investigator’s name: Dr Ronan Collins 

Principal investigator’s title:   Asst. Professor of stroke medicine 

Lead Investigator’s name: Elizabeth Walshe 

Lead Investigator’s title: PhD Research Candidate 

Telephone number: 0857136153 

 

You are being invited to take part in a research study to be carried out at Tallaght Hospital 

and Maynooth University.  

 

Before you decide whether or not you wish to take part, you should read the information 

provided below carefully and, if you wish, discuss it with your family, friends or GP 

(doctor).  Take time to ask questions–don’t feel rushed and don’t feel under pressure to 

make a quick decision. 

 

You should clearly understand the risks and benefits of taking part in this study so that 

you can make a decision that is right for you. This process is known as ‘Informed 

Consent’. You don't have to take part in this study. If you decide not to take part it won’t 

affect your future medical care. 

 

Please contact Elizabeth Walshe at the above details if you would 

like more information, or wish to volunteer. 

 

You can change your mind about taking part in the study any time you like.  Even if the 

study has started, you can still opt out.  You don't have to give us a reason.  If you do opt 

out, rest assured it won't affect the quality of treatment you get in the future.  

 

Introduction 

 

This study is investigating why there is an increased risk for falling in some older adults 

and post-stroke, what processes in the brain are important for maintaining balance, and 
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what tasks or measures we can use to predict those at risk and prevent future falls. This 

study is being carried out by lead investigator Elizabeth Walshe, as part of an academic 

PhD qualification at the National University of Ireland Maynooth. This research is 

supervised by Drs. Richard Roche and Seán Commins of NUI Maynooth, and Dr. Ronán 

Collins of Tallaght Hospital. This project is funded by a PhD scholarship from the Irish 

Research Council.  

 

Procedures 

 

Why am I being asked to take part? 

You were treated at Tallaght hospital for experiencing a Stroke over 6 months ago, are 

aged over 21 and can walk without assistance (with/without an aid) for at least 10m. 

 

What will participation involve? 

All testing will take place in Tallaght hospital at a time that suits you, where you will 

meet with lead investigator Elizabeth Walshe. The testing session will be a once-off 

commitment of your time, for an average of 2 hours, and you will be given multiple 

opportunities to take a short break. Your medical records will be looked at by the 

researchers, if you consent, to gain information about your diagnosis (such as the area of 

the brain it affected, how severe it was and other such details pertaining to the stroke 

event). If you do not consent to the researcher viewing your records, your consultant will 

gather the information instead. Your testing results will be anonymous, with only an 

average group result being used academically for publication of the study’s findings.  

 You will be asked to walk normally on a straight pathway for a few minutes while 

we record your walking movements with two wearable sensors (in some cases a digital 

video recording may be taken). You will then be asked to complete general questionnaires 

that will ask you about any previous experience of falls or balance concerns, and pen and 

paper tasks requiring you to read a list of words, recall some words and numbers, and 

complete some simple drawings. Computer-based tasks of memory, attention and motor 

abilities will also be used which will present an auditory tone or visual image, word or 

number on screen and ask you to respond with a mouse click or key press. As you engage 

in these tasks, tasks, we will record electrical brain waves by placing a cap on your head 

which will allow us to record electrical signals from the scalp. This recording procedure 

(an EEG cap with connecting electrodes and signal-enhancing gel) is akin to measuring 

your heart-rate or blood-pressure, in that it is completely safe, pain-free and non-invasive.  

 

Benefits 

 

You may not receive any benefit. As this is a research study, we cannot state that you will 

benefit personally from taking part. However, your participation in this study contributes 

to our understanding of falls and walking gait impairments in older adults and adults post-

stroke. The findings from this study hope to identify if tasks of mental processes could be 

of use in future fall-risk screening and intervention.  
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Risks 

 

This research is designed to be safe, pain-free and non-invasive. None of the tasks have 

been designed to be deceptive or stress-inducing in any way, and do not pose any risk 

greater than everyday real-world activities. The measurement of brain activity will require 

you to wear an electrode cap with a special gel to be used on the scalp to enhance the 

signal. This may require your hair to be washed after the study (these facilities will be 

provided for you). The gel is designed to be sensitive, but will be tested beforehand to 

ensure no negative experience. This procedure does not involve radiation, x-rays, 

magnetic fields or any other dangerous elements. Should you feel any discomfort at any 

point while taking part, please inform the researcher (Elizabeth Walshe) immediately, and 

the process can be stopped. The researchers are covered by standard insurance and your 

doctors are covered by standard medical malpractice insurance. Nothing in this document 

restricts or curtails your rights. 

 

Exclusion from participation 

 

You may not be eligible to take part if many of these criteria apply to you: 

- You are unable to provide consent; 

- You are unable to walk at least 10m, with or without an aid (cane, etc.); 

- You have severe (uncorrected) visual impairments;  

- You have a history of psychological/neurological impairment (before diagnosis);  

- You have had a severe head trauma resulting in unconsciousness (before diagnosis);  

- You have a history of epilepsy; 

- You have been diagnosed with dementia, or moderate to severe aphasia 

- You are currently taking psychoactive medication; 

- You have other relevant medical conditions (e.g. vestibular/musculoskeletal);  

- You have an uncontrolled/unstable blood pressure/heart condition;  

- You have a history of drug or alcohol problems; 

- You have had a lower limb amputation, recent joint replacement; 

- You have severe hemiplegia; 

- You have had a Labyrinthectomy 

 

Confidentiality 

 

Records 

Your identity will remain confidential. Your name will not be published and will not be 

disclosed to anyone outside the hospital. If you consent, Elizabeth Walshe will check your 

medical records to ensure you fit the criteria of the study. If you do not consent to this, 

your medical consultant will access your records instead. Your GP will not be contacted 

by us about your participation, but we will inform your consultant. If you take part, you 

will be assigned a code number in place of your name for all experimental documents and 
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recordings, to ensure anonymity. All information will be stored on secure hard-drives and 

in locked filing cabinets in the Department of Psychology at the National University of 

Ireland Maynooth, which may only be accessed by the lead researcher and supervisors 

(in accordance with the Data Protection Act of 2003). All experimental documents and 

recordings will be kept for 5 years as is a standard requirement for most publication 

journals, and will be destroyed after this time.  

 

Results 

This research study is based on the entire group’s performance, so no individual results 

will be analysed, published or made available for feedback. Once the group data has been  

analysed and conclusions have been drawn, you will receive these results.  

 

Future Research Studies 

Within the 5 year data retention period, the data may be reanalysed as part of similar 

studies. However, this data will remain anonymous and confidential, and destroyed after 

this time. 

 

Stopping the study 

 

You understand that your doctor or the lead investigator may stop your participation in 

the study at any time without your consent, and that you are free to end your participation 

immediately at any stage of testing.  

 

Permission 

 

This study has received ethical approval from the Research Ethics Committee at this 

hospital and at the National University of Ireland Maynooth. 

 

Further Information 

 

You can get more information or answers to your questions about the study, your 

participation in the study, and your rights, from Dr Ronan Collins at Tallaght hospital 

(who can be telephoned at 01-4144724), or lead investigator Elizabeth Walshe at the 

Department of Psychology at NUI Maynooth, Co. Kildare (ph: 0857136153 or email: 

Elizabeth.walshe.2009@nuim.ie). If your doctor learns of important new information that 

might affect your desire to remain in the study, he or she will tell you. 

 

If during your participation in this study you feel the information and guidelines that you 

were given have been neglected or disregarded in any way, or if you are unhappy about 

the process, please contact the Secretary of the National University of Ireland 

Maynooth Ethics Committee at research.ethics@nuim.ie or +353 (0)1 708 6019. Please 

be assured that your concerns will be dealt with in a sensitive manner. 
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SJH / AMNCH RESEARCH ETHICS COMMITTEE 

POST-STROKE PATIENT CONSENT FORM 

 

Investigating the Cognitive and Electrophysiological Processes 

Underpinning Walking Gait and Fall-Risk Post-Stroke 

 

This study and this consent form have been explained to me. I believe I understand what 

will happen if I agree to be part of this study. 

 

I have read, or had read to me, this consent form. I have had the opportunity to ask 

questions and all my questions have been answered to my satisfaction. I freely and 

voluntarily agree to be part of this research study, though without prejudice to my legal 

and ethical rights. I have received a copy of this agreement and I understand that a signed 

copy will be sent to the National University of Ireland Maynooth. 

 

PARTICIPANT’S NAME: 

 

 

 

PARTICIPANT’S SIGNATURE:  

 

 

 

Date: 

 

Date on which the participant was first furnished with this form: 

 

 

Statement of investigator’s responsibility: I have explained the nature, purpose, 

procedures, benefits, risks of, or alternatives to, this research study. I have offered to 

answer any questions and fully answered such questions. I believe that the participant 

understands my explanation and has freely given informed consent. 

 

Investigator’s signature: 

 

Date: 


