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ABSTRACT 

In this paper a novel approach to single microphone 

Acoustic Echo cancellation (AEC) is presented. This 

approach performs AEC by employing techniques developed 

for monaural sound source separation. It is shown that the 

AEC problem can be cast in a monaural sound source 

separation framework and through this framework 

significant echo suppression can be achieved. The new 

approach is evaluated through experiments on simulated 

data. 

1.  INTRODUCTION 

With the proliferation of hands free mobile communications 

and VoIP the issue of Acoustic echo cancellation has become 

an increasingly important topic for both industry and 

academia. Acoustic echo occurs in full duplex 

communication when speech from a far end participant x(t) 

is broadcast into an enclosure at an opposite or near end 

user, is picked up by the near end microphone and 

retransmitted back to the far end user. The echo y(t) 

transmitted back to the far end user is dependent on the 

transfer function from loudspeaker to microphone through 

the enclosure. For long impulse responses fluid 

communication can become very difficult [1].  

The loudspeaker-enclosure-microphone coupling (LEM) 

can be modelled as a time invariant linear FIR filter h(t). 

However, it is known that small changes in the enclosure 

environment, such as the opening of a door, greatly affect the 

LEM filter. This likely possibility necessitates the use of an 

adaptive LEM filter to model the echo path over time. The 

echo signal y(t) can be stated mathematically as follows, 
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where N is the length of the impulse response, t is the time 

index for the output, n(t) is a noise term and v(t) is the near 

end speaker signal.  

 At present most AEC techniques use Least Mean 

Squares LMS and its many variants particularly normalised 

LMS (NLMS) [1] to estimate and update an estimate of the 

LEM filter coefficients. In general this is performed in a 

noise cancellation feedback structure whereby an estimate of 

the acoustic echo is estimated from the incoming reference 

speech and the input to the microphone from the enclosure. 

This estimate is then subtracted from the data before sending 

to the far end user.  

There are a number of open problems with this approach 

[1]:  

• For LEM filters with long impulse responses long 

estimation filters are needed, which can lead to 

convergence issues and large computational load. 

• Noise in the reference signal and background noise 

from the near end can cause convergence problems 

for the adaptive algorithm.  

• Changes in the LEM filter lead to periods where the 

adaptive algorithm must converge to new optimal 

parameters for the estimated LEM filter. This leads to 

a period of misadjustment, where a sub-optimal filter 

is used to remove the echo. 

• When the near end user is speaking while the far end 

user is speaking the adaptive algorithm diverges 

away from suitable FIR coefficients. This is known 

as doubletalk (DT) in the literature. 

A number of techniques have been developed to obviate 

or control these problems [1][2]. In general these techniques 

introduce trade offs into the overall AEC system.  

Presented here is an alternative approach to AEC. A 

monaural sound source separation (SSS) technique based on 

non-negative matrix factorisation (NMF) is adapted to 

perform AEC. It is shown that this approach can lead to 

significant echo reduction.  

This paper is organised as follows. In section 2 monaural 

sound source separation is described followed by NMF in 

section 3. In section 4 AEC using monaural SSS and NMF is 

explored followed by experiments and discussion in sections 

4 and 5. 

2. MONAURAL SOUND SOURCE SEPARATION 

The goal of monaural or one-microphone sound source 

separation is to completely separate an arbitrary number of 

sound sources using only one mixture of the sources. The 

constraint of one mixture makes this task very challenging. 

Using only one mixture prohibits the use of any spatial 

information and prevents the application of well-established 

multi-sensor blind source separation techniques such as 

Independent component analysis (ICA). Undetermined (less 

sensors than sources) blind source separation BSS 

techniques have been developed based on sparsity and 

spatial cues. These techniques also require at least two 
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mixture signals. Spatial cues are central to all multi-sensor 

techniques because the sources are assumed to have 

independent spatial signatures. These spatial cues are then 

used to invert a mixing matrix, as in ICA, or to group 

components in the sparsity-based techniques.  

 One emerging theme for monaural SSS, is the use of 

prior information about the source signals to perform 

separation. This deviates from the ideal of blind sound 

source separation but is considered necessary in light of the 

constraints one-mixture imposes. One general framework 

has been to train bases or models on training data for each 

speaker a priori and then match these models with a mixture 

containing these speakers [3-7]. 

 Within this framework, many different approaches to 

modelling and grouping/matching of mixture components 

have been attempted. Many techniques are spectrogram 

based and model the mixture speech as individual speakers 

basis multiplied by a time varying gain. A number of 

researchers have used non-negative matrix factorisation 

(NMF) [3] or sparse NMF (SNMF) [4] to build up speaker 

independent bases and then these bases are used to 

decompose mixtures in the time-frequency domain. Other 

researchers have trained Markov models for individual 

speakers and used these models to update time varying 

subband gains to separate sources [5]. Another approach is 

to use convolutive NMF [6] bases, which extend the time 

extent of ordinary NMF bases, for training and matching. 

Time domain bases have also been used. In [7] time domain 

basis were trained using ICA and then matched to the 

mixture using maximum likelihood. 

For the work presented here we investigate the 

application of such an approach to the AEC problem. NMF is 

utilised to perform both training and matching in the audio 

spectrogram similar to as described above. 
 

3. NON NEGATIVE MATRIX FACTORISATION 

Non-Negative Matrix Factorization (NMF) is a linear data 

analysis technique for non-negative data [8]. The non-

negativity constraint of this factorization results in a parts 

based/additive decomposition of the data where the 

individual decomposed parts sum together to form the 

original data. This decomposition provides a more intuitive 

representation of the underlying data [8]. It works by 

approximating a data set 0 ,M NV ≥ ×∈ ℝ as a 

multiplication of two matrices 0 ,M RW ≥ ×∈ ℝ and 
0 ,R NH ≥ ×∈ ℝ .  
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The rank of the approximation can be reduced or increased 

by varying R; the number of columns in W and rows in H. 

This usually decreases or increases the reconstruction error 

depending on the data set. The process of estimating W and 

H is an optimization problem. Lee and Seung [9] introduced 

two approaches for estimating W and H each based on a 

separate cost function. The Euclidean distance between V 

and WH was one of these cost functions and the second, 

which was used throughout this work, is a generalized 

version of the Kullback-Leibler divergence,  
 

 ( , ) log ,
Fro

D V W H V V W H
V

W H
= − + ⋅

 
 
 ⋅

⊙  (3) 

 

where ⊙  is the Hadamard product. The goal of the 

optimization is to minimize this cost function with respect to 

W and H whilst imposing the non-negativity constraint. 

From equation (3) the following multiplicative update rules 

were derived in [9] to calculate H and W, 
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These update rules are iterated until a prescribed number of 

iterations has been reached. The updates are alternated 

between H and W, as the objective functions for each are 

convex separately but not together. Because of the 

multiplicative updates no update step tuning is needed. The 

number of iterations specified is data/user dependent and 

usually picked to occur when cost function D reaches a user-

defined threshold. 

The matrices H and W will individually express different 

aspects of the factorization. The columns of W will contain 

the basis for the data and the rows of H will contain the 

activation pattern for each basis or the contribution of each 

basis to the data over time. When multiplied the data is 

reconstructed with a small error (depending on R and the 

data).  

Monaural SSS can be performed using NMF in two 

stages. First, separate low rank W matrix bases are trained for 

each individual speaker. This is done by acquiring a sequence 

of spoken speech from each speaker, calculating a 

spectrogram for each sequence and performing NMF 

decomposition on each spectrogram separately. The resultant 

W matrices (one for each speaker) are then concatenated into 

a large W matrix called Wtrain. The second stage is the 

separation stage or a matching stage where a mixture of 

speech, containing known speakers, is separated into 

individual sources. This is achieved by performing a NMF 

decomposition on the speech mixture using Wtrain from the 

training stage. Throughout this factorization Wtrain is fixed 

with only the H matrix updated. This process leads to the 

basis corresponding to each individual speaker to mainly 

characterize the mixture spectral energy corresponding to the 

contribution, which that speaker made to the mixture. 

After a prescribed number of iterations have been 

reached, Wtrain is separated back to the individual W matrices 

of the speakers and then multiplied by the corresponding 

portion of the H matrix from the separation stage. The 

resultant V matrices are combined with the original phases of 

the mixture and resynthesised leading to renditions of the 

original sources. 

 

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



a)             b) 

T im e  ( S e c s )

F
re
q
u
e
n
c
y
 H
z

S p e c t r o g r a m

0 0 . 5 1 1 . 5 2
0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

         T im e  ( S e c s )

A
c
ti
v
a
ti
o
n
s

H  M a t r i x  

0 0 . 5 1 1 . 5 2

1 0

2 0

3 0

4 0

5 0

6 0

 
c)              d) 
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Figure 1: a) Spectrogram of speech recorded in an anechoic environment. b) H matrix from NMF performed on spectrogram in a), c) 

Spectrogram of speech in a) convolved with a room impulse response d) H matrix for NMF performed on spectrogram in c) using W 

matrix from b). 

The best separation performance using this approach is 

achieved when the sources in the mixture are spectrally 

dissimilar [6]. An example would be a two-source mixture, 

which contained one male and one female speaker. These 

spectrograms have a greater level of dissimilarity than say 

between the spectra of two males or two females due to the 

different pitch tracks and formants etc. As a result of this the 

trained W matrix bases for the male and female speech are 

more easily able to distinguish and better represent their 

respective contributions in the mixture. This issue of spectral 

dissimilarity was shown to be an important factor affecting 

the performance of this monaural SSS algorithm [6].  

4. AEC AND MONAURAL SOUND SOURCE 

SEPARATION 

The AEC problem is a special case of the monaural 

sound source separation problem. In AEC the goal is to 

remove the echo from the speech transmitted back to the far 

end speaker with or without doubletalk. This can be taught of 

as a monaural SSS problem with 2 sources; the echo and the 

local speaker. Following on from this a basis for the echo 

signal can be trained using the incoming reference speech 

and a separate basis can be trained for the local speaker 

signal using pre-recorded speech data. Together these bases 

can be used to separate out or remove the echo from the 

returning microphone mixture. An advantage of using this 

approach for AEC is the fact that the reference basis will be 

trained using the actual speech being used to excite the LEM. 

This will facilitate better matching of the echo spectrogram 

and thus removal. This will alleviate the problem of spectral 

dissimilarity described in section 3. 

Another aspect of this approach is the effect 

reverberation has on the H matrix from NMF decompositions 

of audio spectrograms. The rows of H contain a time varying 

gain for each basis in W. These varying gains contain the 

contribution each basis makes to the mixture spectrogram 

over time. For anechoic speech the H matrix is usually a 

sparse matrix with activations usually occurring in single 

spikes over time. However if the same W matrix was used for 

an echoic version of the spectrogram the activations in H 

become smeared. Figure 1 illustrates this effect. This is 

because the echoes in the speech manifest as 

repeated/smeared copies of the anechoic spectrogram. The 

NMF represents these echoes as repeated and scaled copies 

of the original W basis over time.  This property of the NMF 

audio spectrogram enables the basis to be trained on anechoic 

speech and then can be used to separate echoic speech. This 

applies to AEC as the reference signal first excites a LEM 

system before reaching the microphone.  

Using this approach the effect of misadjustments/ 

enclosure changes will be mitigated. This is because NMF 

continuously adapts to the data present in the spectrogram 

and does not estimate the LEM filter; therefore it does not 

require further samples of the reference/microphone signal to 

converge to the new room response like LMS. This also 

means that the length of the impulse response is insignificant, 

as NMF will use the best available bases to match the 

contribution from long impulse responses i.e. the reference 

signal basis. LMS techniques usually fix the length of the 

estimation filters for the case of long LEM filters. In 

addition, using this approach Doubletalk will have less effect 

on this system, as there is a local speaker basis to match any 

near end speech. 
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a) Fear end Far end 

(Echo) 

ERL 

dBs 

NLMS 

ERLE dBs 

NMF ERLE (dBs) b) Fear end ERL 

dBs 

NLMS 

ERLE dBs 

NMF 

ERLE dBs 

 Female 1 Female 2 1.1725 33.0431 30.3651 (see figure 2)   Female 1 1.1725 22.5088 36.7518  
 Male 1 Male 2 1.6610 33.9400 34.0072  Male 1 1.6610 26.2779 38.0236 

 Female 3 Male 3 1.5097 34.3433 32.7138  Female 3 1.5097 24.5881 40.3750 

 Average  1.4477 33.7755 32.3620  Average 1.4477 24.4583 38.3835 

Table 1: a) Results of experiments with Doubletalk mixtures. b) Results of experiments with simulated Room changes. 
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Figure 2: ERLE performance for NMF AEC and NLMS AEC with 

doubletalk. Mean ERLE is in Table 1 a) 

5. ALGORITHM IMPLEMENTATION 

The NMF based AEC approach described in the previous 

section was implemented in Matlab. The incoming reference 

speech x(t) (far end speech) was segmented into frames 64 

ms long with a 50 % overlap between adjacent frames. A 

NMF decomposition is performed on the magnitude 

spectrum of this frame with the magnitude spectrum of 

previous buffered frames. The purpose of these extra, 

buffered frames is so all of the echo tail can be matched by 

this reference signal basis. Then the reference signal basis is 

merged with a near end speaker basis to form the complete 

W matrix and is then applied to the incoming near end 

microphone signal frame magnitude spectrum. After the H 

update iterations have been completed with a fixed W 

matrix, the speaker basis and its H component are multiplied 

and resynthesised using the phase of the microphone signal 

with the inverse Discrete Fourier transform and a simple 

overlap and add. 

The number of reference signal basis vectors R was set 

to 40 with the number of speaker basis vectors set to two. 

The number of previous frames in each V was set to 6 with a 

new decomposition performed for each new incoming 

reference frame. The number of iterations of the H update 

for each new frame was set to 60. The output from this 

algorithm is an estimate of the near end speaker 

resynthesised from the speaker basis.  

To increase spectrogram-matching performance the W 

matrix or basis is allowed to iterate twice at the end of the H 

updates. This improves the quality of echo signal matching 

greatly and leads to a significant increase in ERLE. 

 The speaker basis was trained a priori using sample 

sentences from different male and female speakers. The 

speech or speakers used to train the speaker basis were not 

then used in experimental mixtures. This algorithm was 

tested using simulated mixtures, which are described, in the 

next section. 

6. EXPERIMENTS 

The focus of the experiments in this paper is to demonstrate 

this approach for echo with and without far end speech and 

for changes in the LEM/RIR filter. We adopt the 

conventional AEC situation where the far end speaker 

speech is used to excite the LEM system at the near end 

user. For the experiments in this submission we neglect the 

effect of noise, both measurement and local background 

noise, on the overall system. We performed all processing in 

an offline/batch fashion.  

Synthetic room impulse responses RIR were created 

using the mirror image method of creating room impulse 

responses [9]. The room was set up as a box room with 

dimensions 8m (length) × 7m (width) × 5m (height) and 
different frequency dependent absorption coefficients were 

set for each wall. A microphone was placed at  (4, 3.5, 1.2) 

with a source emulating the near end loudspeaker placed 10 

cm away (4.1, 3.5, 1.2) and another source representing the 

near end speaker placed 2.5 m away (6.5, 3.5, 1.2). This 

source would be used in experiments to simulate a change in 

the LEM filter. From this set-up three impulse responses 

(RT60=120ms) from each source to the microphone were 

computed. Each impulse response was truncated to 1000 

coefficients (60 ms with a 16 kHz sampling rate).  

Mixtures were created using speech from different 

speakers; both male and female. These speakers were chosen 

arbitrarily from the TIMIT database [10]. Two AEC issues 

were examined, doubletalk and RIR changes. For doubletalk 

experiments each mixture had a near end speaker 

contribution and a main far end speaker (echo) contribution. 

Both these contributions were obtained by convolving 

separate sentences of speech with the respective RIRs. This is 

illustrated in Figure 4. To test LEM changes a sharp change 

in RIR was introduced in the echo mixture to simulate an 

enclosure change. For these experiments only far end speech 

was used. 

For all experimental mixtures a comparison of our NMF 

AEC algorithm was made with a NLMS AEC system. This 

algorithm was configured with a 2000 tap filter length with 

the stepsize set to 0.5. During doubletalk the adaptation of 

the NLMS algorithm was stopped and the reference signal 

was filtered with the estimated RIR at that instant.  

The results of the experiments were evaluated using 

objective energy ratios. To measure the input echo strength 

the Echo Return Loss (ERL) was calculated according to the 

following equation, 
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Figure 3: ERLE performance of NMF AEC and NLMS AEC for a 

change in room conditions 

The performance of the algorithms was evaluated using the 

echo return loss enhancement measure ERLE. This ratio is a 

measure of the level of echo suppression and is defined as 

follows, 
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where y(t) is the echo signal and e(t) is the echo left after 

processing. The results of the experiments are tabulated in 

Table 1 a) and b). Plots of frame wise ERLE performance are 

given in Figure 3 and 4; with a plot of an example output 

from the two algorithms is given in Figure 4. 

7. DISCUSSION 

The results listed in Table 1a and 1b show that our NMF 

AEC approach has comparable performance to NLMS for 

doubletalk mixtures and superior performance during echo 

path changes.  

In Figure 3 it is seen that a sudden change in the 

enclosure environment results in a sharp decrease in ERLE 

for NLMS whilst the NMF approach maintains its ERLE 

performance. This is because the NMF approach does not 

estimate the RIR and therefore, in the event of a echo path 

change continues to match echo spectral energy as before. 

This is also the case during the initial convergence of the 

NLMS were NMF has better performance.  

The results in Table 1b of the Doubletalk experiments 

show NMF can provide echo cancellation. However as seen 

in Figure 2 ERLE falls for our approach. This is due to the 

high ratio of echo reference basis vectors to speaker basis 

vectors (for this submission 40:2). This caused some of the 

echo basis to capture some near end speech thus removing it 

from the output. As a result the error value increased leading 

to lower ERLE. The output however is largely free from echo 

but is distorted (see Figure 4) as some of its energy was 

captured by the reference/echo basis. Further work will 

involve improving this performance. 

The NMF decomposition is relatively computationally 

intensive compared to NLMS style algorithms. More work is 

needed to reduce the computational load of this algorithm for 

implementation on real time processors. Other further work 

will involve finding the optimum value for the parameters of 

the algorithm such as R, the number of previous buffered 

frames and the number of iterations per frame. 
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c)          d) 
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Figure 4: a) Echo signal (far end speech convolved with RIR), b) near 

end signal, male, c) Output from NLMS, d) Output from NMF (See 

table 1a mixture 1 for mean ERLE and Figure 2 for Frame based 

ERLE). 

8. CONCLUSIONS 

It is shown in this paper that the Acoustic Echo can be 

reduced using non-negative matrix factorisation in a 

monaural sound source separation framework. Results from 

experiments using synthetic data were used to demonstrate 

the performance of this approach. 
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