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Abstract. This paper examines the application of artificial neural networks (ANN5) to the modelling
and forecasting of electricity demand experienced by an electricity supplier. The data used in the
application examples relates to the national electricity demand in the Republic of Ireland, generously
supplied by the Electricity Supply Board (ESB). The paper focusses on three different time scales of
interest to power boards: yearly (up to fifteen years in advance), weekly (up to three years in advance)
and hourly (up to 24 h ahead). Electricity demand exhibits considerably different characteristics
on these different time scales, both in terms of the underlying autoregressive processes and the
causal inputs appropriate to each time scale. Where possible, the ANN-based models draw on the
applications experience gained with linear modelling techniques and in one particular case, manual
forecasting methods.

Key words: artificial neural networks, electrical load, electricity demand, load forecasting, Box—
Jenkins model.

1. Introduction

Electricity demand, accumulated on different time scales, presents considerably
different characteristics to the time series modeller. Figure 1 shows graphs of de-
mand accumulated on hourly, weekly and yearly bases. Note, in particular, that
detailed variations in the daily profile are lost as demand is accumulated up to
the weekly level, the seasonal variations of which are subsequently lost through
accumulation up to the annual level.

With ever increasing drives towards efficiency in the supply of electical energy,
both for economic and environmental reasons, accurate forecasting of electricity
demand is vital if generating capacity is to be closely matched to that of demand.
A good example is that quoted by Bunn and Farmer [7] of the UK CEGB, where in
1984 an improvement in forecasting accuracy of 1% was estimated to yield a saving
in operating costs of approximately £10 million per year. For the daily profile, the
requirement is for optimal scheduling of generating sets, in order to minimise the
total cost of supply, which can only be obtained through advance knowledge of the
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Figure 1. Electricity demand profiles on different time scales.

daily demand profile. In the medium term, weekly forecasts are used to implement
maintenance schedules and fuel purchasing policies, while in the long term, annual
forecasts are used for strategic planning of generating plant. A useful overview of
the range of requirements is given in [1].

Many researchers have considered the forecasting of electricity demand using
a variety of modelling techniques. These range from manual methods which rely
on operator experience [19] to formal mathematical approaches, such as structural
techniques [6], Bayesian methods [12], Box—Jenkins methods [25] and intelligent
techniques, such as fuzzy logic [2] and neural networks [24]. In the case of neural
networks, most studies concentrate on forecasting daily demand profiles or peak
daily demand. In [3], neural networks are used to forecast peak demand, [17]
and [15] forecast the entire 24 hour vector using a single network and [11] gen-
erates a separate ANN model for each hour. In this study, a time series modelling
approach is adopted for each of the three timescales, with a single model being
used recursively to forecast the series of future points required.

Recently, the power of neural networks in modelling nonlinear time series has
been shown in many applications, with the documented results of a recent fore-
casting competition giving some comparative results [26]. However, it is important
that, in applying neural networks to time series modelling, as much information as
possible about the application area and experience from earlier (possibly linear) ap-
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proaches be utilised where available, so that an intuitive and parsimonious solution
can be determined. Most of all, it is important that appropriate tools are chosen
for the job — it makes little sense to employ neural networks with their inherent
problems (sensitivity to initial conditions, difficulty in structure determination and
global optimisation) when the problem does not warrant a nonlinear modelling
tool.

The application examples used in this paper are based on an island utility with
a peak demand of about 2500 MW (used for hourly, weekly and yearly exam-
ples) operated by the Electricity Supply Board (ESB) in Ireland. For each par-
ticular utility, there are particular inputs which affect demand on the different
time scales. One of the chief difficulties in accurate forecasting of electricity de-
mand is the determination of effective inputs to use and the future prediction of
them.

2. Linear Modelling Approaches

In order to provide a foundation for the neural network techniques employed, two
linear modelling approaches are presented which are appropriate for seasonal data,
such as weekly and hourly load and non-seasonal data, such as annual load. The
first (more traditional) approach involves modelling using the Box—Jenkins [5]
methodolody. This procedure involves the application of transformations which
eases the subsequent modelling exercise, which is performed using a model with
seasonal and non-seasonal sections. The second method has similarities to the first,
but segments the model into three distinct parts, each of which contributes to the
overall model output. Such a model is termed a structural model [14]. Models
developed using these procedures can be either purely autoregressive (depend only
on previous model outputs) or can be causal (driven by appropriate inputs).

2.1. BOX-JENKINS METHODOLODY
This general linear modelling approach follows the following procedure:

1. Determination of seasonality of time series and application of seasonal differ-
encing.
2. Application of further differencing transformations to make the time series
stationary.
. Investigation of significant inputs to use as causal variables with the model.
. Determination of orders of seasonal and non-seasonal regressors.
5. Identification of model parameters.

A~ W

The univariate Box—Jenkins model is derived from the general SARI(p, d)
(P, D) (seasonal autoregressive integrated) model which can be written (with B
as the delay operator) as:

®,(B)®p(BHVEVYY, = a,, (1)
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where:

e Y, is the time series to be modelled,

Vf Vi=(1-BHP(1-B)Misa differencing transformation required if the

data is nonstationary,

d is the degree of non-seasonal differencing,

D is the degree of seasonal differencing, and

L is the season length,

a; is the forecast error,

®,(B)=(1—-¢1B— ¢B*— - — ¢, B?) is the non-seasonal autoregressive

operator of order p,

° QDP(BL) =(1-— ¢1,LBL — ¢2,LBZL — = qbp,LBPL) is the seasonal autore-
gressive operator of order P.

The lags p and P are determined using correlation analysis, as are the degree
of the differencing operators, d and D. The seasonality of the data, L, is usually
known a priori, or may also be determined using correlation analysis. A variety of
methods may be used to determine the model parameters in the & (B) polynomials,
iterative least squares proving a popular approach. Following model construction,
t-ratio tests may be used to assess the significance of the model.

For input-driven models, the general Box—Jenkins transfer function model is of
the form

Q(B)
Wty = ——=z" b t 2
(1) AB) - ( )+ (), (2)
where 7V (r), z)(¢) represents the stationary output and stationary input respec-
tively and b is a pure delay parameter. Q(B) = (wy — 1B — --- — w;B*),
where s is the number of past input values influencing current output values and
AB) =1 —-6B—---—6,B"), where r is the number of past output values

influencing current output values. 1(¢) is a coloured noise series which is usually
represented by an ARIMA model. A plot of the sample cross correlation between
the input series and the output series is used to evaluate the response lag time b,
and the orders r and s of the polynomials €2(B) and A(B). Once the b, r and
s values are determined a preliminary transfer function model is estimated. The
sample autocorrelation (SAC) and sample partial autocorrelation (SPAC) of the
residuals of this model are examined in order to identify an ARIMA model for the
noise series 7(¢). The adequacy of the final transfer function model can now be
tested using the techniques outlined in [35, 4].

2.2. STRUCTURAL STATE-SPACE MODELS

Structural models adopt a different methodology than in Section 2.1 by modelling
the trend and seasonal components, rather than removing their effect prior to mod-
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elling using transformations. A structural time series model consisting of a trend
and a seasonal component may described by

y(k) =t(k) + p(k) + &(k), 3)

where 7 (k) is a linear trend, p(k) a seasonal component and e(k) a zero mean,
serially uncorrelated white noise component. A generalised random walk (GRW)
model [23] can be used to model the trend behaviour ¢ (k). The state-space form of
the GRW model is defined by:

tk)y | _|a B ttk—1) 1 0 ny (k)
dky | |0 y dk—1) + 0 1 nmk) |’
t(k) = [1 Olx(k),

where o, B and y are constant parameters; ¢ (k) is the trend at sample k, d(k) is
a second state variable and n;(k) and n,(k) are zero mean, serially uncorrelated
discrete white noise inputs. An integrated random walk (IRW) is obtained with
a = =y = 1;nk) = 0.If the seasonal component is well defined and
stationary it can be modelled by a periodic random walk (PRW) or a differenced
periodic random walk (DPRW) model [23]. The DPRW model is defined by:

“4)

s—1
ply == plk—i)4n,k — 1), (5)
i=1
where s is the seasonal period and 7, (k) is a zero mean white noise disturbance
input. If the trend component is represented by an IRW model and the seasonal
component is represented by a DPRW model, then the complete state-space model
is defined by the following:
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In order to perform a prediction, a Kalman filter is used over the identification data
set to provide initial state estimates for the model. Covariances for the (process)
noise sources 7n;(k) and n,(k) and the measurement noise, £(k), are determined
using maximum liklihood optimisation.

3. Time Series Modelling Using Neural Networks
3.1. NETWORK INPUT STRUCTURE

A total black-box approach to neural network modelling of dynamical systems
or time series would be to utilise a model of the form shown in Figure 2, with
tapped delay lines for input and output variables forming the input to the neural
network. Such an approach is common in a variety of time series and model-
based control system applications [8, 16]. However, such an approach may dis-
regard structural information about the dynamical model available from linear
analysis. In the current study, an effort is made to incorporate information on
an effective input and model structure suggested by linear time-series modelling
techniques.

3.1.1. Box—Jenkins Model

For the Box—Jenkins methodology in Section 2.1, two nonlinear options are possi-
ble. Expansion of Equation (1) gives:

(1—¢B—--—¢,B" — 11 B" +¢1¢1 1 B*" + -+ ¢, B TP —
D
— o —p L B+ p1pp BT 4+ $,0p BPETP) (1 — BE) T x
x (1 - B)'Y, = a,. (8)

A corresponding nonlinear model for the structure in Equation (8) could now be
defined as:

f(Yy7 sty Yt—p—l7 Yt—L7 sty Yt—L—p—l’ sy Yt—PL’ cey Yl‘—PL—p—l’ cey
YopL-p,---» Yipr—p-pD-1) = a. ©)
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Figure 2. Network with classical input structure.
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Figure 3. Network with Box—Jenkins input structure.

This model will be termed a NNBJ type ‘A’ model. Alternatively, defining Z; as:
z,=(1- 841 - By, (10)
a model (NNBJ type ‘B’) of the form:
e Zy,....Zi_p,Zipy. s Zip—pses Lipr, s Zi—pr—p) =a;  (11)

results, where the neural network is used to model data which has already been
subject to seasonal and one-step differencing. To obtain the final forecast, the out-
put from the neural network must be appropriately integrated, using seasonal and
one-step integration. As an example, Figure 3 shows a neural network forecasting
model using a form corresponding to Equation (9). Compared to Figure 2, the input
structure had been modified so that the network is focussed on the most effective
inputs. This generally also results in fewer inputs overall, resulting in reductions in
training times. For a model of the form of Equation (9), the total number of inputs
is(P+D)(p+d+ 1)+ p+d.For a ‘standard’ autoregressive (AR) model of the
form of Figure 2, it would be usual to choose inputs which span a season, i.e., L
inputs. In the weekly example, this would yield 52 inputs for the AR model, with
only 31 and 21 inputs respectively for models based on Equations (9) and (11),
while the hourly example would yield 24 inputs for the AR model as against 17
and 9 inputs, respectively.

3.1.2. Structural Model

For the structural state-space model presented in Section 2.2, the approach is to
let the linear sections (IRW + DPRW) model the trend and seasonal components,
with the neural network used to model the remaining residuals in &;. This con-
curs roughly with the model presented in (11). However, in order to ensure a
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good training set for the network, a state-space smoothing algorithm [13] is em-
ployed to back-smooth the state estimates resulting from the Kalman filter, since
the estimates from the filter will be poor during initial convergence. The out-
put [#(k) + p(k)] from the smoothed state estimates are then subtracted from
the identification data, with this difference providing the network training set.
Since the network is now dealing with (approximately) data which has been de-
trended and deseasonalised, an input structure similar to that in Equation (11) can
be used.

3.2. NEURAL NETWORK DESIGN
3.2.1. Network Architecture and Structure

Network architecture requirements are for a network which can operate recurrently
(since the time series is autoregressive) and produce a continuous output. In addi-
tion the size of the network should not be intractable. The latter condition excludes
the utilisation of local approximators, due to the dimension of the input space
encountered in the current application and feedforward Multi-Layer Perceptrons
(MLPs) were adopted as a suitable network structure [10, 20]. Feedforward net-
works were preferred over recurrent networks due to ease of training. In terms
of configuration, a three layer structure was adopted with a linear output neuron
(effectively removing any restriction on output range), while the number of neurons
in each layer was determined using optimisation across Monte-Carlo runs, with the
mean-squared error across a validation set as a criteria.

3.2.2. Neural Network Training

Two important aspects of network training which must be considered here are the
choice of training algorithm and the training cessation point. A standard LMS
gradient technique with backpropagation was employed for training, which also
included a momentum term and adaptive learning rate. Faster techniques, such
as the Lervenberg—Marquardt algorithm [18] were also examined, but found to be
extremely sensitive to initial conditions and local minima. This can be overcome, to
some extent, by utilising sufficient Monte-Carlo runs, but this extra computation,
combined with the slower computational speed of such algorithms was found to
more than offset any gains in convergence speed. Neural networks trained for time
series applications are typically trained using single step prediction criteria. How-
ever, this does not always determine the weight set which optimises the multi-step
prediction performance of the network. One reason for this is that backpropagation
training with multi-step criteria are difficult to design and can be computationally
intensive, particularly when the prediction horizon is long. A compromise is to train
the network for single-step performance, but examine the multi-step performance
during training. Figure 5 shows, for a weekly example, the variation in single
step sum-squared error (SSE) and the multi-step mean absolute error (MAE) over
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Figure 4. Time series data segmentation (weekly data).
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Figure 5. Variation in single- and multi-step criteria during training.

the validation set and test set (over which the prediction is to be performed, see
Figure 4). Note that the variation in the multi-step criteria for the validation and
test portions are consistent, allowing a stopping point (weight vector) to be chosen
based on the validation set which will give good multi-step performance when
doing the actual forecast. For example, a choice of weights at epoch 5180 gives
a multi-step performance value 0.01825, while the corresponding value at epoch
5188 is 0.02090 (approximately 14% worse), in spite of the fact that the single-step
SSE suggests that a choice of weights at epoch 5180.

3.3. PERFORMANCE CRITERIA

The performance criteria used in this study are the mean absolute error and mean
squared error defined as:

1 & 1 &
MAE = =  |vp)—y@)|.  MSE= 5 S @ -0 12
i=1 i=1

The MAE penalises all errors uniformly, whereas the MSE penalises larger errors
more heavily.
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4. Modelling of Hourly Electricity Demand
4.1. PRELIMINARY DATA ANALYSIS

Figure 6 shows the characteristic curve for a full week of daily load profiles for
Ireland. The profiles generally follows the same basic shape (other than the pres-
ence of an evening peak in Summer only) for each weekday, with variations in
the basic profile for Saturdays and Sundays (see Figure 1 also). In addition, the
peak consumption values vary considerably between Summer and Winter causing
a vertical translation of the profile. This can be accounted for, to some degree at
least, by using a temperature input, but it was found necessary to use separate sets
of models for Summer and Winter, with separate models for each day of the week,
indicating the unique nature of each daily pattern.

In order to optimise the performance of the neural network model, the very obvi-
ous regular daily profile is removed from the data, leaving the NN model to forecast
the differences between the chosen day and the standard profile. This accords with
the practice of operators in the ESB [19], where a particular ‘standard day’ is
chosen as a template upon which the variations are forecast. Typical choices for
‘standard’ day include the same day last week or same day last year. Variations are
typically forecast using the difference of input variables (e.g., weather variables)
between the standard day and the forecast day. Forecasts for these input variables
are usually obtained from national meteorological services. A set of candidate
weather inputs are chosen [9] according to correlation analysis as temperature,
wind speed, solar intensity and humidity.

4.2. MODELLING

In order to ensure consistency between training and forecasting, the ‘standard’
day was chosen as the same day last year, with the model being used to forecast
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Figure 6. Daily profile for each day of week 2 February 1991.
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the differences between this day and the chosen day, based on the autoregres-
sive behaviour of the data and the input variables. Such a choice is confirmed
by performing pattern matching (with dc removed) with a range of standard day
candidates. From correlation analysis, stationarity transformations corresponding
tod = 1 = D (as in (1)) were suggested. However, performance tests would
indicate that stationarity transformations do not add greatly to model performance,
which may be due to the fact that the seasonal, dc and trend components of the
series is removed by subtracting off the ‘standard’ day profile. Further correlation
tests revealed candidate B—J model structures as p = 4and P = 1 or P = 0,
with the same shape correlation functions for all days of the week. Model-based
evaluation is used to determine:

e Final B-J model structure (P = 1 or 0).
e Final selection of effective inputs.
e Network size (can be different for each model).

An MLP network with tan-sigmoid neurons are employed, with a linear output
neuron. The data, including the causal inputs, are scaled using a common factor to
simplify rescaling. Data for training was taken from the 10 previous weeks, giving
240 time-series training points for each model. From initial experiences with the
neural network models, the following choices were made:

Effective input: Temperature
Max training duration: 8000 epochs

4.3. RESULTS

Note that Peak 1 is at 1200 h (the midday peak) and Peak 2 at 1900 h (the evening
peak). Results are presented here for the Summer only and it is likely that larger
errors could occur in Winter, given the larger sensitivity to temperature variations.

Table 1. Summary of typical results from hourly forecasting

Day of Model Network  MAE MSE  Peak 1 Peak2  Average

week Bl(p, P) size % error % error % error
Monday BJ4,0) 3-5-1 32.7 40.0 1.08 1.31 2.43
Tues. BJ4, 1) 3-5-1 20.9 25.9 1.01 2.43 1.48
Wed. BJ@4, 1) 2-4-1 27.0 33.5 0.69 1.49 1.90
Thurs. BJ4,1) 5-10-1 25.0 32.1 1.79 2.95 1.76
Friday BJ4,0) 3-5-1 22.7 26.9 1.67 0.63 1.59
Sat. BJ4, 1) 3-5-1 22.6 26.3 2.0 1.35 1.7

Sunday Bl4, 1) 3-5-1 28.4 354 0.19 0.12 2.62
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Table 11. Comparative hourly results from other researchers

Model Error type Max. % error Min. % error Aver. % error
Azzam-ul-Asar  Peak load 5.71 0.02 1.96
[3]

Park [24] Peak load 6.64 0.13 2.06
Ours Peak load Peak1 Peak2 Peak1l Peak2 Peakl
4.6 3.7 0.19 0.12 1.69
Park [24] Total load 5.64 0.03 1.68
Ours Total load 3.85 1.48 2.09
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Figure 7. Typical hourly forecasting result.

However, the results are encouraging, given that there is completely random (un-
predictable) load on the system of 50 MW corresponding to the switching on and
off of a steel furnace. In most of the cases considered, the maximum error was less
than 80 MW. Peak load is of particular interest to utilities, since it determines the
maximum generating capacity required. Although dealing with different utilities,

we present some comparative results from other researchers (see Table II).

Figure 7 shows a typical plot of the adjustment carried out on the ‘standard’ day

profile for a Thursday, as an example.
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5. Modelling of Weekly Electricity Demand
5.1. PRELIMINARY DATA ANALYSIS

From Figure 1, it is seen that the weekly data is seasonal with a rising trend. This
seasonality is generally due to temperature variations, with extra heating require-
ments in Winter, but may be due to other factors, such as agricultural activity,
where this is the dominant factor [22]. In some cases, weekly consumption does
not exhibit such a strong harmonic form, for example in cases where significant air
conditioning is used in the Summer months. This suggests the use of a temperature
input, but for the current application, the harmonic variation can be adequately
captured by an autoregressive model, due to the regularity of the variation.

5.2. MODELLING

Both Box-Jenkins and structural models may be used to model this seasonal de-
mand profile. Although the cyclical variations depend heavily on weather inputs, it
is assumed that these harmonic variations are adequately captured by the seasonal
differencing and regressor of the Box—Jenkins model and the harmonic components
of the structural model. In addition to the Box—Jenkins and structural models and
for comparison purposes, a traditional AR neural net model was also evaluated
which utilised 52 lagged inputs, spanning a complete season. A network architec-
ture of 3-5-1 was used for this model. For each model, the data was normalised
to ensure an input range in the region [—1, +1] and approximately 30,000 epochs
used for training, where the actual training cessation point determined as outlined
in Section 3.2.2.

5.2.1. Box—Jenkins ANN Model

For the case of the Box—Jenkins model, correlation tests were used to determine the
system input structure as in Figure 3. From correlation analysis (SAC and SPAC),
the appropriate model structure is specified by the following parameters:

p:6, P:2, d:l, D:l, L:52

Neural network Box—Jenkins models of both type ‘A’ and ‘B’ (see Section 3.1.1)
were identified and a network architecture of 3-5-1 arrived at, based on examina-
tion of the multi-step errors for various architectures over a set of Monte-Carlo
trials. Log-sigmoid neurons were utilised in the hidden layers (employing 3 and 5
neurons, respectively), with a linear output neuron.

5.2.2. Structural Model

As shown in Section 3.1.2, the structural model contains components which allow
effective modelling of the seasonal and trend components. Following the deter-
mination of the structural model components, the residual is formed, which is now
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modelled by the neural network, following backward smoothing to generate quality
state estimates near the forecasting origin. Correlation analysis (SACF) was used
to determine the appropriately lagged inputs to use, returning p = 3 and P = 3.
Again, a multi-step error-based performance analysis was used to determine an
appropriate network architecture as 20-60-1, based on a set of Monte-Carlo runs.

5.3. RESULTS

Table III compares the multi-step (52 step ahead) forecasting results for linear
and neural models. Figures 8 and 9 demonstrate qualitatively the improvement
achieved. While it is interesting to note that there is significant improvement in
the use of neural networks with Box—Jenkins and Structural models, it is perhaps
more dramatic the effect that the choice of input structure has on performance. In
particular, note the poor performance of the ‘classical’ autoregressive (with inputs
formed from the past 52 week’s demand) model. The neural version of this, which
incidentally is inferior to its linear counterpart, has a much poorer performance
than (either linear or neural) Box—Jenkins or structural models.

Table 11I. Comparative results for linear and neural models

Model type MAE linear MAE neural network

Autoregressive (52 inputs) 1.1101 x 10% 1.2481 x 10%

Box-Jenkins 1.0691 x 10* 0.9040 x 10* NNBJ type ‘A’
0.6587 x 10* NNBJ type ‘B’

Structural state space 0.7687 x 10% 0.7198 x 10*
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Figure 8. Forecasts using Box—Jenkins models.
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Figure 9. Forecasts using structural models.

6. Modelling of Yearly Electricity Demand
6.1. PRELIMINARY DATA ANALYSIS

Yearly load demand is only available from 1972-1994, which gives only 23 data
points for the load and input variables. The input candidates which are appropri-
ate on this time scale are average industrial wage (AIW), gross domestic product
(GDP), average electricity unit price (AUP), number of customers (NOC) and a
temperature input. The temperature input which was found to be most appropriate
for this application is annual heating degree-days recorded below 15.5°C. For a
description of heating degree—days, see [22]. Disaggregated data is also available,
where load is broken down into industrial, domestic and commercial sectors with
similarly disaggregated data available for number of customers and price of elec-
tricity units. This offers the potential to consider both aggregated and disaggregated
approaches to the problem. Finally, it is seen from Figure 1 that the yearly data does
not contain any obvious seasonal components, and so seasonal differencing is not
appropriate.

6.2. MODELLING

The Box—Jenkins transfer function (as given in (2)) modelling approach is used to
determine the appropriate inputs for the neural net model, as in Section 4. Both type
‘A’ and ‘B’ models can be considered, and predifferencing the data (in accordance
with type ‘B’) would remove the strong trend prior to modelling, but at the expense
of the loss of a data point. Since stationarity is not a requirement with neural net-
work modelling [10] and there is already a shortage of data, one-step differencing
will be omitted. Following the Box—Jenkins modelling procedure, model structures
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Table 1V. Structural parameters for transfer function models

TF model Order of n(t) Input b r s
Total dand p = (1) AIW 0 0 2
GDP 0 0 0

TAUP 0 1,8 0

Industrial sector dand p =(2,4,6,8) AIW 0 0 0
GDP 0 0 0

IAUP 1 0 0

Domestic sector p=(1 AIW 0 1 2
GDP 0 0 0

DAUP 0 0,3 0

Commercial sector p=@G3,4 GDP 0 0 0
TAUP 0 1 0

CNOC 0 0 0

Table V. Autoregressive lags for aggregated and disaggregated load

Electricity sales Autoregressive lags p
Total 1,2,3,4 4
Industrial sector 1,2 2
Domestic sector 1 1
Commercial sector 1 1

were determined for each of the disaggregated load variables and Table IV shows
the structural parameters along with the appropriate inputs for each load sector. The
sample cross-correlation (SCC) function is used to determine the orders b, r and
s for each of the inputs associated with the output and the residuals of this initial
model are then examined to identify a suitable noise model n(¢). The resulting lags
suggested using the SPAC are given in Table V.

A selection of neural networks were now trained with a maximum training
duration of 20,000 epochs. The optimal network size was determined using per-
formance analysis MAE across the validations set (see Figure 4), with a summary
of the results for total load given in Table VL.

6.3. RESULTS

The results for the neural network models are shown in Table VII, with linear re-
sults shown for comparative purposes. It is interesting to note that the linear models



FORECASTING ELECTRICITY DEMAND 145

Table VI. Selection of network architecture

Sector Minimum MAE
Total 2-6-1
Industrial 3-9-1
Domestic 3-5-1
Commercial 1-3-1

Table VII. Comparative performance of linear and ANN yearly models

Sector MAE ANN models MAE linear models
Aggregated load 153.98 218.82
Industrial 41.15 81.52
Domestic 98.31 78.39
Commercial 84.95 38.05
¥ disaggregated 224.41 197.96

outperform the neural models for the disaggregated case, although the ANN results
are considerably better than the linear models for the aggregated case.

The main difficulty with the disaggregated case seems to be the modelling of
domestic and (particularly) commercial load. Plots of actual and predicted load
variations cannot be shown for confidentiality reasons.

7. Conclusions

This study of the use of neural networks as a time series modelling tool for fore-
casting electricity demand has shown some of the benefits and drawbacks of the
application of neural networks. Possibly one of the greatest difficulties encoun-
tered is the choice of MLP network architecture. A network growing approach has
been used, with multi-step performance across the validation sequence used as a
selection criterion, but the sensitivity to initial conditions, requiring the evalualtion
of Monte-Carlo runs, makes the procedure somewhat unsatisfactory.

Another general comment relates to the performance of the ANN models against
linear models. In general, from the results presented in the paper, it can be said
that the ANN models perform better. However, the result in the case of the yearly
demand, where the disaggregated modelling results were best for the linear models,
creates some cause for concern. Some comfort can be drawn from the fact that the
Industrial ANN model is clearly superior to its linear counterpart, and a combina-
tion of linear and neural disaggregated models would result in an MAE of 157.59,



146 J. V. RINGWOOD ET AL.

which, although marginally inferior, compares well with the aggregated models.
However, the result, in general, mitigates against the use of disaggregation, which is
generally accepted to be beneficial in exploiting the detailed characteristics present
in the disaggregated data. The fact that the neural models do not include the linear
models as a particular case [10] is clear and indicates a serious potential pitfall in
the application of neural networks. This problem could be somewhat avoided with
the availability of a clear test for nonlinearity, which would provide an indication
of the appropriateness of neural networks for particular time series applications.
It is, however, probable that the difficulties encountered in the yearly demand
application are exacerbated by the brevity of the data set and the application of
linear correlation techniques for input structure determination.

The results obtained for the hourly load application are also noteworthy. In
particular, although a time series approach was taken, the accuracy of the peak
prediction is good, which is usually the focus of short-timescale demand forecast-
ing exercises [19]. If further accuracy in peak prediction is required, a separate set
of models, which predict the cardinal points on the daily profile (such as peaks and
valleys), can be generated and integrated with a multi-time scale method [21], in
order to provide particularly good fitting of the time series at the cardinal points.
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