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Abstract— Advanced data mining techniques such as variable
selection through matrix factorization have been intensively
applied in the last ten years in the area of plasma-etch point
detection using optimal emission spectroscopy (OES). OES data
sets are enormous, consisting of measurements of over 2000
wavelength recorded at sample rates of 1 − 3 Hertz, and
consequently, these techniques are needed in order to generate
compact representations of the relevant process characteristics.

To date, the main technique employed in this regard has been
PCA (Principal Components Analysis), a matrix factorisation
technique which generates linear combinations of the original
variables that best capture the information in the data (in terms
of variance explained).

Recently, an alternative matrix factorisation technique, Non-
Negative Matrix Factorisation (NMF) [1], has been gaining
increasing attention in the fields of image feature extraction
and blind source separation due to its tendency to yield sparse
representations of data. The aim of this work is to introduce
Non-Negative Matrix Factorisation to the semiconductor re-
search community and to provide a comparison with PCA in
order to highlight its properties.

I. INTRODUCTION

Plasma-etch endpoint detection using optical emission
spectroscopy (OES) has been a very active area of research
in the last ten years. This is largely due to advances in solid-
state spectrometer technology and the non-invasive nature
of the measurements. The resulting data sets are enormous,
consisting of circa 2000 wavelength measurements at a
sample rate of 1-3 Hz. A typical spectrum for a 98 time
sample etch step of a single wafer from a Hitachi silicon
etcher is illustrated in Fig. 4.

In order to make the best use of this data, advanced
data mining techniques are needed to obtain compact rep-
resentations of the relevant process characteristics. The main
technique employed to date in this regard has been Principal
Components Analysis (PCA). The literature on PCA appli-
cations in semiconductor manufacturing research is rather
numerous, see for example [2], [3], [4] and [5]. In [3] PCA
is applied for spatial characterisation of the wafer state. In
[2] and [5] it is exploited for endpoint detection, while in
[4] the focus is on fault detection.

PCA is essentially a matrix factorisation technique in
which linear combinations of the original variables are used
to capture the information in the data in order of signifi-
cance (in terms of variance explained). Matrix factorisation
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decomposes an n×m (data) matrix X, such that

X ≈ WH (1)

where W and H are n× r and r×m matrices, respectively,
that satisfy certain constraints. This can be interpreted as
the mapping of the matrix X onto a new coordinate system,
where H defines the new basis vectors and W the data
coordinates in this new basis. In the case of PCA the new
basis are ordered in the directions of the most significant
data variation. Other matrix factorisation techniques are,
for example, Independent Component Analysis (ICA), that
captures the information in the data in terms of statistical
independence, Vector Quantisation (VQ), where each column
of H in (1) is constrained to be a unary vector, and the LU
Decomposition, where the matrix X is decomposed as the
product of a lower and upper triangular matrix.

Recently, an alternative matrix factorisation technique,
Non-Negative Matrix Factorisation (NMF) [1], has been
gaining increasing attention in the fields of image feature
extraction and blind source separation due to its tendency to
yield sparse representations of data.

The purpose of this paper is to introduce NMF to the
semiconductor research community. Using PCA as a baseline
comparison the main features of NMF will be illustrated.
Section 2 provides a brief overview of PCA. Section 3
introduces NMF together with the idea of sparseness and
the problem of uniqueness. Section 4 deals with the choice
of the number of components in NMF and proposes a PCA
guide to finding a solution. Section 5 applies PCA and sparse
NMF to a set of plasma-etch OES data and compares the
two techniques in terms of sparseness measures and ability
to identify a subset of non-zero channels. Section 6 deals
with open issues and future directions for research.

II. PRINCIPAL COMPONENT ANALYSIS

Principal Components Analysis (PCA) is a matrix factori-
sation technique that constrains the columns of W to be
orthonormal and the rows of H to be orthogonal to each
other. Specifically, using standard PCA notation the matrix
X can be expanded as

X =
r∑

i=1

tipT
i = TPT (2)

where ti are n× 1 vectors, pT
i is the transpose of the n× 1

vector pi, T is a n× r matrix and PT is the transpose of the



m×r matrix P, ti and pi are denoted as scores and loadings,
respectively. Obviously, the factorisation (2) corresponds to
(1), with W = T and H = PT .

Statistically, the ordered principal components can be
interpreted as the directions of largest variance in the data.
In general, when there is a significant level of redundancy
only a small number of components are needed to capture the
information in the data. There are several algorithms which
can be used to compute the principal components, for exam-
ple nonlinear iterative partial least square (NIPALS), singular
value decomposition (SVD), the power method (POWER)
and eigen-value decomposition (EVD) [6]. NIPALS [7], the
one adopted in this work, is an iterative algorithm that
computes the eigenvectors of the matrix X, one at the time
in order of significance.

III. NON-NEGATIVE MATRIX FACTORISATION

The notion of Non-Negative Matrix Factorisation (NMF)
was introduced in a recent article in Nature, [1]. NMF is
a matrix factorization method for decomposing multivariate
data under the constraints of non-negative components. In
particular, in the factorization X ≈ WH negative entries in
in the matrix factors W and H are not allowed. The non-
negativity constraint makes the representation purely additive
(allowing no subtractions) which is often more consistent
with underling physical processes. Since the scope of this
work is to present a comparison between PCA and NMF, the
latter will be presented in terms of PCA terminology. Hence,
in (1), W will be referred as scores and H as loadings.

The task of finding an NMF factorization of X can be
defined as

X = WH s.t.

 X ≥ 0
W ≥ 0
H ≥ 0

Moreover, NMF can be expressed as the optimisation prob-
lem

min
W,H

‖X−WH‖2
, s.t. W, H ≥ 0

Here ‖X‖2 =
∑

i,j(xij)2, where X = (xij)m×n. Several
iterative optimisation procedures has been proposed for this
non-convex problem including multiplicative updates rules
[8], projected gradient methods [9] and second order cone
programming [10]. In this work an NMF software toolbox
[11] that uses a projected gradient algorithm [9] is employed.

Thus, PCA and NMF, both generate matrix factorisations,
one with constraints on variance explained, the other with
constraints on sign. An important side effect of the non-
negativity constraints, not present in PCA factorisation, is
that NMF usually produces a sparse representation of the data
[9]. The concept of sparseness is introduced and explained
in the next section.

To date NMF has been applied to the fields of blind source
separation and image feature extraction. An example can be
found in [1]. There NMF is applied to a database of facial
images and it is shown that it discovers a basis of images
that are localised features that intuitively correspond to the
notion of the parts of faces.

A. The idea of sparseness

Sparseness is a quantity that measures how much energy
in a vector is packed into only a few components. Such a
measure is a map from Rn to R.

The idea comes from [12], where the concept of ”sparse
coding” refers to a representational scheme where only a
few units out of a large population are effectively used to
represent typical data vectors. This implies that most units
effectively take values close to zero with only a few having
values significantly greater than zero.

Several sparseness measures have been proposed and used.
For example, in [13] the sparseness of the vector x = (xi)n

is defined as the measure

s(x) =
#(xi < εtotxmax)

#(xi)
(3)

where #(xi) counts the number of components of x, εtot

is a small possible threshold level and xmax is the largest
element of x. In [14] sparseness is defined as an l0 norm,
such that

‖x‖0 = #(xi 6= 0) (4)

It is noted that the l0 norm can be related to the kurtosis,
which consequently can be used as a measure of sparseness.
In this work we use the sparseness measure adopted in
Hoyer’s algorithm [9], based on the relationship between the
l1 and l2 norm:

s(x) =
√

n− ‖x‖1 / ‖x‖2√
n− 1

(5)

where ‖x‖1 =
∑

i |xi| is the l1 norm, ‖x‖2 =
√∑

i x2
i is the

l2 norm and n is the dimensionality of x. This function is 1
if and only if x contains only a single non-zero component,
0 if and only if all the components are equal (up to signs)
and in general 0 ≤ s(x) ≤ 1.

In [9] and [15] it is noted that one of the most useful
properties of NMF is that it usually produces a sparse
representation of the data, making the representation easier
to interpret. However, since this is rather a side effect, several
researchers have investigated algorithms that attempts to
control the sparseness of the representation directly. Such
an algorithm is described in [9] and will be referred to as
Hoyer’s algorithm in this paper.

The task of finding a sparse NMF factorization of X can
be defined as

X = WH s.t.

 X, W, H ≥ 0
s(wi) = σW
s(hi) = σH

(6)

for 1 ≤ i ≤ r, where s(wi) and s(hi) are the sparseness of
the i-th column of W and the i-th row of H, respectively,
and σW and σH are the constraints.

B. Uniqueness

A matrix factorization technique generates a unique solu-
tion if there exists a unique W and H such that (1) is satisfied.
Obviously the solutions can only be unique up to scaling
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Fig. 1. Graphical representation of NMF.

and permutations indeterminacies. In fact, if P denotes a
permutation matrix and L a scaling matrix, then

X = WH = (WP−1L−1)(LPH)

Hence, when W∗ = WP−1L−1 and H∗ = LPH the two
factorisations are equivalent.

While the uniqueness of PCA is an established and an
obvious result (it can be achieved by ordering of the principal
components according to data variance) the same does not
apply to NMF.

A first attempt at assessing the uniqueness problem for
NMF can be found in [16]. The factorisation (1) can be
rewritten as

xi =
r∑

j=1

wijhj (7)

where xi is the i-th row of X, wij is the j-th element of the
i-th row of W and hj is the j-th row of H. A simplicial cone
generated by the family of vectors {yj}r

j=1 is defined as

Λ = {x : x =
∑

j

αjyj , αj ≥ 0}

Hence, finding an NMF factorisation for X is geometrically
equivalent to projecting the data X onto the edges of the
simplicial cone generated by hj . This is illustrated in Fig.
1 in a two dimensional case. Moreover, unless the edges of
the simplicial cone are sufficiently near the two positive axis,
any simplicial cone can be contained in a bigger simplicial
cone. Hence, the authors conclude that, in order to achieve
uniqueness, some of the data must be sufficiently near the
two positive axis.

An analytic approach to the problem of uniqueness is
taken in [17]. There, the non-uniqueness of sparse NMF is
investigated. The authors prove that, in the case of the pro-
jected gradient algorithms (specifically Hoyer’s algorithm),
the number of non-unique cases is relatively small compared
to the cases in which uniqueness is recovered. In particular,
it is shown that the set of non-unique cases is of measure
zero when related to the set of unique cases.
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Fig. 2. Graphical representation of NMF dimension estimation when the
data can be represented by a single PC component: (i) When the PC axis
intersects with the origin r = rPCA = 1. (ii) When the PC axis does not
intersect with the origin r = rPCA + 1 = 2.

IV. DETERMINING THE NUMBER OF NMF COMPONENTS

When applying a matrix factorisation technique, the num-
ber of columns and rows of W and H (the dimension r in (1))
must be chosen. Since in PCA the principal components are
ordered as the directions of largest variance in the data, the
choice of r can be determined on the basis of the percentage
of the data variation that the factorisation is required to
model.

However, in NMF, there is no clear indication which
value of r is optimal in order to find the most important
components underlying the original dataset. A similar issue
applies to the choice of σH and σW in (6). In the next section
we deal with the choice of r, while the problem of how to
find an optimal value of sparseness is not treated in this work.

A. A PCA guide to finding the number of components

PCA can be geometrically interpreted as the reorganisation
of the data X with a new set of coordinates, following
the directions of largest variance in the data X. As above,
from [16], NMF can be geometrically interpreted as the
reorganisation of the data X with a new set of coordinates,
according to the simplicial cone that contains the data X
(although the new coordinates set is no longer orthogonal).

Hence, a methodology for finding the optimal value of r
is to map the data into its PCs and then to project these
coordinates in a simplicial cone.

(A) Perform PCA. Decide rPCA, the number of
components that describe the percentage of data
required. That gives the number of axis in the
PCA coordinate system.

(B) Project the PCA coordinate system in the simplicial
cone describing NMF. Two possibilities exist:
(i) If one of the PCA coordinate axis intersects the
origin of the simplicial cone then r = rPCA.
(ii) If none of the PCA coordinate axis intersects
the origin of the simplicial cone then r = rPCA+1.
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Fig. 3. Graphical representation of a Hitachi STR Etch chamber.

Fig. 4. 3D OES Spectrum for a plasma discharge.

This procedure is justified by the fact that any Rn subsys-
tem of m orthogonal coordinates (the euclidean space Rm),
with n ≤ m, not centred on the origin, can be projected
into the r edges of a simplicial cone, with n ≤ r ≤ n + 1.
This is illustrated, for the two dimensional case, in Fig. 2.
Moreover, since NMF with sparseness constraints is applied
in this work, the simplicial cone system of coordinates found
is unique as in [17].

When dealing with applications, it can be conjectured
that the set of cases for which B(i) applies is of measure
zero when compared to the set of overall cases and hence
statistically irrelevant. Hence, in practice, the number of
NMF components can be estimated as r = rPCA +1. When
sparseness constraints are included this can be viewed as a
lower bound on r.

V. EXPERIMENTAL RESULTS

To demonstrate the properties of NMF, a case study was
undertaken involving OES data collected from a Hitachi STR
Etch Chamber with a Ar−O2−Cl/HBr/C2F6 gas mixture
discharge. The etcher, which is illustrated graphically in Fig.
3, is equipped with a magnetron generator with a microwave
input of 2.45 GHz. Various mixtures of Ar, Cl2, SF6, HBr,
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Fig. 5. PCA variance explained as a function of the number of PCs.

CF4, CHF3 and/or O2 gases are used. The gases enter
through the gas ring between the quartz window and the
quartz shower head. A He backside cooling system is used
to control the wafer temperature.

During operation the magnetic field strength is held at
875 Gauss, the RF Power supply (used to generate DC bias
independently of plasma ionization) is changed from 0 to 50
W, the magnetron power is switched between 300 and 1500
W, and the chamber pressure is increased from 0.3 to 1.6
Pa. Adjusting RF power at low pressure allows extraction of
atoms with a longer free path. The electrons travel far enough
in order to gain sufficient energy to strike gas molecules and
cause ionization.

Under these conditions OES data was recorded for an ex-
perimental run in which a plasma consisting of fixed amounts
of Cl2, HBr and O was used to etch a polysilicon wafer.
Measurements were taken using a USB 2000 spectrometer.
The resulting 3D spectrum, plotted in Fig. 4, consists of
emission intensity measurements for 1890 channels over 90
consecutive time samples.

A. PCA analysis

Initially the OES data was analysed using PCA to assess
the level of redundancy and determine its underlying dimen-
sionality. Fig. 5 shows the relationship between the accumu-
lated variance explained by successive principal components
(PCs) as a function of the number of PC components (rPCA)
and clearly highlights the substantial redundancy in the data.
Three PCs can explain 99% of the variation in the data and
this increases to 99.5% when five PCs are used. Furthermore,
there is a clearly defined ’knee’ in the graph at rPCA = 5,
beyond which each additional PC contributes approximately
equally to variance explained, suggesting that the underlying
dimensionality of the OES data is 5 and that the remaining
components are capturing variation due to noise.

The scores of the first three PCA components are shown
in Fig. 6. Note that each one has a clear endpoint signal
with PC1 showing the sharpest transition at end-point. Thus,
a derivative based threshold on this PC could form the basis
of a robust end-point detection algorithm. The one weakness
of PCA is highlighted in Fig. 7 which shows the loadings
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for PC1. As can be seen almost all the channels contribute
significantly to the PC direction. This makes it difficult to
gain practical insights into the chemistry contributing to
process variations. It also means that the full OES spectrum
has to be recorded in order to compute the PC. Note,
that while Fig. 7 shows that some wavelengths make large
contributions to the PC direction, this can not be relied
on as indicating significance due to the highly non-uniform
spectrometer sensitivity characteristic. Variance scaling can
be used to eliminate the effect of non-uniformity, but this in
turn leads to the amplification of noise on small magnitude
signals. This is a particularly severe problem with OES
data as some channels are predominately background noise,
hence, in practice variance scaling is not recommended [5].

B. NMF analysis

Since five PCA components can explain 99.5% of the
spectral data, it follows from Section IV-A that six NMF
components will be sufficient to adequately explain the OES
data. To encourage NMF to produce components with a small
number contributing channels, thereby providing valuable
insight into key factors contributing to process variations, a
sparseness constraint is imposed on the NMF loading matrix,
H. There is no benefit in imposing a sparseness constraint on
the scores matrix, W, hence none is imposed in this work.

Fig. 8 shows the three most significant NMF components
obtained when NMF is applied to the OES data with the
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sparseness on H set at σH = 0.7, while Fig. 9 shows the
loadings corresponding to the most significant NMF com-
ponent (NMF1). Since NMF imposes no particular ordering
on its components (running the sparse NMF algorithm twice
results in the same components but in a different order),
these were identified manually by visual inspection of the
six computed components.

The NMF components clearly capture the same endpoint
feature that appeared in the three PCs obtained with PCA
analysis, and are therefore of equivalent value to PCA in
this regard. However, in contrast to PCA the NMF loadings
are much sparser, with a large number of zero loadings. In
the case of NMF1 82.5% of the loadings are zero (Fig. 9),
while none of the PC1 loadings are zero.

To gain a better understanding of the relationship be-
tween Hoyer’s sparseness constraint, and the sparseness of
the resulting NMF components the percentage of non-zero
channels has been recorded in Table I for each of the six
NMF components for σH values ranging from 0.1 to 0.9.
Since NMF dose not produce a rigorous ordering of the
components, they have been ordered in the table according
to descending l2 norm.

Note that increasing σH corresponds to a decrease in the
percentage of non-zero channels, but that the relationship
is not one-to-one or consistent, i.e. the number of non-zero
channels varies from component to component for the same



TABLE I
NMF COMPONENTS LOADINGS: PERCENTAGE OF NON ZERO CHANNELS

σH NMF1 NMF2 NMF3 NMF4 NMF5 NMF6
0.1 100 100 100 100 100 100
0.2 100 100 100 79.7 80.8 100
0.3 100 100 94.2 79.7 80.8 100
0.4 91.7 66.9 80.1 91.3 99.5 85.5
0.5 67.3 80.5 50.1 68.7 80.5 55.3
0.6 78.6 44.8 54.6 38.7 30.2 18.4
0.7 13.3 12.1 17.6 12.4 22.2 22.3
0.8 22.3 7.9 13.5 15.4 19.8 21.1
0.9 2.3 8.8 12.2 7.7 7.9 5.1

sparseness level.
To provide a comparison with PCA analysis, Hoyer’s

sparseness measure and the percentage of non-zero channels
have also been computed for each of the 5 PCA loadings.
Here the percentage of non-zero channels was found to be
100% for all PCs, while the sparsities were 0.37, 0.42,
0.51, 0.44 and 0.40, respectively. These sparseness values
reflect the significant number of low amplitude components
in the PC loadings and suggests that the sparseness measure
(3) proposed in [13] may be a better reflection of Hoyer’s
measure, than the strict zero count adopted here.

VI. FUTURE WORK

Development and interpretation of NMF for practical
applications such as plasma etch monitoring is ongoing, and
several issues remain to be resolved. As noted above, NMF
components are not ordered. A descending energy criterion
was used in this paper for Table I, but the question of what
the best choice is remains open. Ordering in terms of the
variance explained, as in PCA, may be better, but this is not
straight forward as NMF components are not orthogonal.

Further investigation of the parts based representation is
necessary. From Table I it can be seen that NMF chooses a
subset of the original channels. Are these significant in terms
of the chemistry of the process? Is NMF able to consistently
detect the key channels and, hence, is it a valid variable
selection technique for OES metrology?

In this work NMF components were computed using
Hoyer’s algorithm [9]. The sparseness measure adopted (5)
has the effect of increasing the number of zero channels.
However, it is not a direct measure of this quantity. Can
an algorithm that adopts a direct measure of the non-zero
channels, like the l0 norm (4), produce a better parts-based
representation?

VII. CONCLUSION

In this paper two matrix factorisation techniques, Princi-
pal Component Analysis (PCA) and Non-Negative Matrix
Factorisation (NMF) have been compared on a case study
involving optical emission spectroscopy data from a plasma-
etch process. A methodology for finding the number of com-
ponents for NMF, based on PCA, has also been introduced.

While PCA is an established technique for applications in
the field of semiconductor manufacturing, NMF is relatively
new. Both techniques are able to detect critical features in

the OES data case study, but they differ substantially in
their ability to select a subset of channels relevant to the
feature investigated. In fact, for any PCA component 100%
of the channels are non-zero and hence contribute to the
component. In contrast, NMF is able to select a much smaller
percentage of non-zero channels, a percentage that can be
controlled by appropriate choice of sparseness constraint.
This helps to highlight a small number of channels that are
the key contributors to the feature being observed.
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