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Abstract— In this paper we present the global attractivity properties
of a class of discrete-time switching systems of the form(k+ 1) = Aix(k),
A € o/ 2 {A,...,An}, where each constituent matricesd; € R™" are
Schur stable. We assume that a set of non-singular matriceg; € R™"
exist such that the matricesT;; AT * and T AT, * for i, j € {1,...,m}
are upper triangular. We show that %‘or a special subset of sue switching
systems the origin is globally attractive, and it is possil@ to prove
this without requiring the existence of a common quadratic lyapunov
function (CQLF).

I. INTRODUCTION

It is known that the existence of a common quadratic Lyapunoyv
function (CQLF) is sufficient to guarantee the exponential stabilit¥\N

of the discrete time switching system
X(k+1) = Aix(k), A € 7, 1)

wheresZ £ {Aq, ..., Am} with Schur stable constituent matric&sc
R™Mforie {1,...,m}, and x(k) € R". A sufficient condition for the
existence of a CQLR/ (x) =x"Px, P=PT >0, PeR™" for (1)
is that a non-singular transformatidhexists such thaTAT 1 is
upper triangular for ali € {1,...,m} [4]. This result was first derived

in [1] for continuous time switched systems, and further discussed
in [2] and [3]. Unfortunately, from a practical viewpoint, the

Definition (Pairwise Triangularizability: Let a switching system
described by (1) be given. Suppose that a number of non-singular
matrices Tjj exist, such that for each pair of matricgsy,Aj}
in o/, wherei,j € {1,...m} and i # j, the pair of matrices
{'ﬁjA;'ﬁfl,'ﬁjAj'ﬁfl} are upper triangular. Then every distinct pair
of matrices{A,Aj} in </ are called pairwise triangularizable.

While the ultimate objective of the work is to determine the
global attractivity and stability of the origin of (1) (where any two
A; matrices can be simultaneously triangularized), for the purpose
of this paper we consider simpler systems where, amongst other
conditions, theA; matrices ine are diagonalizable, and where any
o of the A; matrices have at least— 1 real linearly independent
eigenvectors in common. In this case, the origin of the switching
system is globally attractive as verified in the following theorem.

Theorem 2.1:Let ¥ = {v1,...,vh+1} be a set of real vectors,
where eachy € R" for i = {1,2,...,n+1}. Suppose any vectors
in ¥ are linearly independent. For eacke {1,2,...,n+1}, we
constructM; € R™"N matrices as follows

[V1, .oy Vie1, Vi, vy Vi)

M =
! { VL, oo Vi 2, Vi vy Vi

i.e., Mj is obtained by replacing thé —1)™" column in M; with

i=1
2<i<n+1

for
for

)

requirement of simultaneous triangularizability imposes unrealistig, Vectony, 1. Suppose we also hayedifferent diagonal matrices
conditions on the matrices in7. Relaxation of this requirement D1,D5,...,Dp in R™" with all diagonal entries in the right half

for continuous time switching systems has been analyzed in [S)¢ the unit circle, i.e., for every diagonal enthy,; of Dy, we can
[6], [7] extensively, where they did not specifically require theite ’

existence of a CQLF for the switched Hurwitz stable systems. It was
assumed, amongst other conditions, that any pair of matrices in

0<Apj<l, for 1<h<p, 1<j<n

®3)

are pairwise triangularizable. In general pairwise triangularizabilityVe now define the matrice&,; € R™" as follows

is not sufficient for the existence of a CQLF for the switched
systems, yet it was shown using a non-Lyapunov approach in [5]

Anj =MDyM L, @)

that the origin of a special subclass of pairwise triangularizablend let o7 be the set of allAy; for he {1,2,...p} andi €
switching continuous-time systems is globally attractive. In thig1,2,...,n+1}. Then for the switching system (1) with the set

paper we investigate the discrete-time analog of these results.

defined as above, the origin is globally attractive.

A traditional approach to relate continuous-time linear time Comment 2.1:The following facts can be deduced for the sét
invariant (LTI) Hurwitz stability results to discrete-time LTI Schur defined in Theorem 2.1:
stability counterparts require the use of bilinear transform. Howeveri) Every matrix in.eZ is Schur stable and diagonalizable.

as reported in a recent paper [8], it is not straightforward tqji) Any matrix pair in o7 share at leagin— 1) linearly independent
use the bilinear transform to relate continuous-time and discrete- common real eigenvectors.

time switching systems. It therefore follows that the stability of giii) Every matrix pair in./ can simultaneously be triangularized.
special subclass of pairwise triangularizable switching discrete-time  (See [4] for the proof of this.)

systems do not necessarily follow from continuous-time Systemsy,of of Theorem 2.1The line of proof is similar to the continuous
with this property, and that the stability of this system class musfe version given in [5] (see the proof of Theorem 3.1 in [5]), and

be investigated using a ‘first principles approach’.

II. MAIN RESULT

We first give the formal definition of pairwise triangularizability

which we will refer in the rest of the paper.
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here we only present an outline of the main ideas of the proof.
Step 1 :We replace each x n matrix Mj by an(n+1) x (n+1)

matrix Mj. We then replace eachx n matrix A,; in </ by an

(n+1) x (n+1) matrix Anj. The matricesij € & £ {Anj : Anj €

o/} are chosen such that there is at least one common eigenvector

1=(1,0,0,...,0) for all the matrices ineZ, and also such that the

properties of the solutions of the dynamic system

Xk+1) = ARIXK), AK) € o/, (5)

will ultimately imply the global attractivity of the origin of the
system (1), wher& = (x1,...,Xn) @andxX= (Xn11,X1, .-, Xn)-




Step 2 For agivenj € {1,2,...,n+1} we consider tha@+1lin-  must be validated separately using non-CQLF techniques. One such
early independent columns M. These form am+1 dimensional technique is presented in this paper; namely, a technique which
coordinate system which includesas one of the axes. We consider proves global attractivity by embedding the originaldimensional)
the projection of the statek) ontot as the dynamics of the system state space in a highen+{ 1) dimensional state space. Finally, we
(5) evolve. This projection is given by the first component of thenote that our motivation for this study was to solve an automotive
vector control stabilization problem that is related to vehicle rollover, and
which involves switching. Future work will report the (successful)

gj (k) = M; 'x(K),

and is denoted byg;]1(k).
Step 3: We then show that lifa,, |[gj]1(K) — [gi]1(K)| =
0, V i,j €{1,..,n+1}. From this fact we can deduce that

(6)

application of the results in this paper to this problem.
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attractivity of the origin of the system (1).

Comment 2.2:We can not simply replace Hurwitz stable ma-
trices for the continuous-time case in Theorem 3.1 of [5] witH1]
Schur stable matrices and arrive at the same conclusions of global
attractivity of the origin. In the discrete-time case we need th?z]
condition given in equation (3) on the eigenvalue®gffor 1 <h <
p. Because otherwise, we do not get the global asymptotic stability
of the origin. This is demonstrated in the following example.

Example 2.1:Let the set?” = {v1,v2,v3,v4} be given as

vi=[1 0 0], w=[0 1 0],
vi=[0 0 1], w=[1 1 1]".

Further assume thall; € R3*3 matrices are constructed as follows [5]

[4]

Ma=[Vvs V2 V3],
M4:=[V1 Vo W;}.

Mi=[wvi v v3],
M3=[wvi va v3],

Moreover select a 8 3 diagonal Schur stable matrix as follows

(6]

(71

09 O 0
D=| 0 08 0
0 0 -06
Now consider the following Schur stable LTI systems
Sa i X(K+1) = Ax(K), A € R3*3, @)
whereA; matrices are constructed from
A =MDM™L i=1.4 (8)

It is sufficient to show that there exists a switching sequence
betweenA’s such that the resulting system has eigenvalues outside
the unit circle. We simply consider the incremental switching
sequenced; — Ay — Az — Ay4; then the dynamics of the system
evolve according to the matrix product

A=A AAA,. )

Since the eigenvalues &f are {1.18990.1058 0.2766}, then with

one eigenvalue outside the unit circle, this switching sequence is
unstable. It is also interesting to note thatDf is chosen such
that all of the eigenvalues are on the right half of the unit circle,
i.e.,D=diag{0.9,0.8,0.6}, then theA matrix corresponding to the
switching sequence (9) has eigenvalugs58610.1517,0.3917}

and is stable by Theorem 2.1.

IIl. CONCLUDING REMARKS

In this paper we have shown that the global attractivity results
for a class of discrete-time switching systems is not necessarily
equivalent to continuous time systems with this property. Hence, in
cases when the existence of a CQLF is unknown for the switched
set of LTI systems, qualitative statements concerning the system
stability for the continuous-time as well as discrete-time systems
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