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Abstract Understanding hydrological model predictive capabilities under contrasting climate conditions
enables more robust decision making. Using Differential Split Sample Testing (DSST), we analyze the
performance of six hydrological models for 37 Irish catchments under climate conditions unlike those used
for model training. Additionally, we consider four ensemble averaging techniques when examining
interperiod transferability. DSST is conducted using 2/3 year noncontinuous blocks of (i) the wettest/driest
years on record based on precipitation totals and (ii) years with a more/less pronounced seasonal
precipitation regime. Model transferability between contrasting regimes was found to vary depending on
the testing scenario, catchment, and evaluation criteria considered. As expected, the ensemble average
outperformed most individual ensemble members. However, averaging techniques differed considerably in
the number of times they surpassed the best individual model member. Bayesian Model Averaging (BMA)
and the Granger-Ramanathan Averaging (GRA) method were found to outperform the simple arithmetic
mean (SAM) and Akaike Information Criteria Averaging (AICA). Here GRA performed better than the best
individual model in 51%–86% of cases (according to the Nash-Sutcliffe criterion). When assessing model
predictive skill under climate change conditions we recommend (i) setting up DSST to select the best
available analogues of expected annual mean and seasonal climate conditions; (ii) applying multiple
performance criteria; (iii) testing transferability using a diverse set of catchments; and (iv) using a
multimodel ensemble in conjunction with an appropriate averaging technique. Given the computational
efficiency and performance of GRA relative to BMA, the former is recommended as the preferred ensemble
averaging technique for climate assessment.

1. Introduction

Evaluating hydrological responses to climate change is an important area of research. Conventional impact
assessments typically involve the following: (i) projecting climate responses using General Circulation Model
(GCM) simulations forced by greenhouse gas emission scenarios; (ii) postprocessing/downscaling GCM out-
put; and (iii) estimating catchment scale impacts using hydrological models. This top-down approach intro-
duces uncertainties at each step which vary depending on factors including the catchment and regional
climate characteristics. Even so-called stress testing (or sensitivity-based) techniques—which move away
from direct reliance on GCMs—are subject to uncertainties in hydrological model structures and parameter
sets [Prudhomme et al., 2010, 2015; Whateley et al., 2014; Wilby et al., 2014].

Hydrological model uncertainty stems from errors in input (e.g., precipitation) and output (e.g., streamflow)
data, as well as from deficiencies in model structures and nonuniqueness of model parameters. Previous
studies have encountered difficulties when addressing structural uncertainty, particularly when trying to
identify a single, optimum model for a given catchment type [Clark et al., 2008; van Esse et al., 2013; Coxon
et al., 2014]. Similarly, uncertainty relating to model calibration/training arises due to equifinality or the
inability to determine a globally optimum parameter set [Beven, 2006]. For climate impact studies, addition-
al uncertainties arise due to hydrological models being applied to conditions outside those used for model
training. Hence, the assumption of parametric stationarity—whereby parameters provide realistic simula-
tions when applied under hydroclimatological conditions dissimilar to those used for model develop-
ment—has been widely questioned. A number of authors have called for a more rigorous and systematic
approach to interrogating transferability and model robustness for climate impact studies [Hartmann and
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B�ardossy, 2005; Wilby, 2005; Beven, 2006; Wilby and Harris, 2006; Andr�eassian et al., 2009; Vaze et al., 2010;
Merz et al., 2011; Coron et al., 2012; Li et al., 2012; Seiller et al., 2012, 2015; Brigode et al., 2013; Westra et al.,
2014; Thirel et al., 2015a, 2015b].

Studies employing Differential Split Sample Testing (DSST) [Kleme�s, 1986] show dependence of model
parameters on the climate and meteorological conditions dominating the training period and their role in
activating different rainfall-runoff processes [Wagener, 2003; Choi and Beven, 2007; Herman et al., 2013]. One
consequence is that identification of a ‘‘best’’ hydrological model becomes intractable, as relative perform-
ances vary in time. This highlights the importance of employing a multiple rather than single model strate-
gy and understanding potential deficiencies in model performance when extrapolated beyond training
conditions. Such difficulties are further compounded by the absence of universally accepted metrics to
benchmark performance [Krause et al., 2005]. Model ensembles that better characterize the structural uncer-
tainty space are one practical solution; the ensemble may reflect the strengths of individual models which
may each omit or provide a biased representation of system processes. The importance of including model
components which capture processes associated with particular catchment types—as a means to improv-
ing performance and physical realism in the structure—is demonstrated by previous multimodel studies
[van Esse et al., 2013; Coxon et al., 2014]. While previous research shows that using a multimodel ensemble
is superior to relying on an individual model, the best way of combining ensemble members remains an
area of active research [e.g., Shamseldin et al., 1997; Abrahart and See, 2002; Ajami et al., 2006; Hansen, 2008;
Diks and Vrugt, 2010; Arsenault et al., 2015].

Only when critical uncertainties have been addressed [Clark et al., 2016], and sufficient testing has been
conducted to establish performance under a range of conditions, can model projections be used to make
well informed adaptation decisions (including under ‘‘stress test’’ conditions). To this end, the present study
uses DSST to examine temporal transferability of a multimodel hydrological ensemble. The study has two
aims. First, we analyze the performance of six lumped conceptual rainfall-runoff (CRR) models applied under
climate conditions that differ from those used for model training, for catchments across the Island of Ireland
(IoI). Previous studies have assessed climate change impacts on Irish catchments [Steele-Dunne et al., 2008;
Bastola et al., 2011, 2012], but systematic appraisal of model transferability has yet to be undertaken. In
addition, there is limited information about which model(s) perform best across catchments with contrast-
ing hydrological and climate characteristics. Second, we examine through comparison of multiple methods,
the extent to which an ensemble offers improved transferability beyond reliance on individual model struc-
tures. This study expands on existing research [Vaze et al., 2010; Merz et al., 2011; Coron et al., 2012; Li et al.,
2012]—and the work of Seiller et al., [2012, 2015] in particular—by contributing to knowledge of model limi-
tations under nonstationary conditions. In particular, we quantify how model performance may be dimin-
ished by transference and whether this is greater with respect to wetter/drier conditions and specific
seasonal precipitation regimes. We also examine the suitability of using observed records as an analogue to
determine predictive performance under possible future conditions, demonstrate an approach for training
and unbiased model evaluation, and examine methods to improve model application in climate impact
studies.

The following section describes the study catchments, hydrological models, and averaging techniques
employed. We also outline the criteria for selecting contrasting climate periods. Section 3 presents the
results of the analyses. Section 4 discusses the new insights gained from the transferability and ensemble
averaging assessment before suggesting priorities for further research.

2. Methods

2.1. Study Catchments and Data
The study was undertaken using 37 catchments from IoI (Figure 1; Table 1): 35 from the Irish Reference Net-
work (IRN) [Murphy et al., 2013]; two from the UK Benchmark Network [Hannaford and Marsh, 2008]. These
catchments have near natural flow regimes, are minimally influenced by human activity and possess
quality-assured, long-term observational records. Catchments along the western seaboard are more
exposed to Atlantic weather systems and subject to more pronounced orographic enhancement. As a result
they tend to have higher annual precipitation totals.
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Daily streamflow, precipitation and potential evapotranspiration (PET) data for the period 1970–2010 were
used. Observed streamflow data for the Republic of Ireland were provided by the Office of Public Works
(OPW; http://www.opw.i.e./hydro/) and the Environmental Protection Agency. Data for Northern Ireland
(Gauge ID 201008 and 201005) were obtained from the UK National River Flow Archive (http://nrfa.ceh.ac.
uk/). Not all catchments have continuous records for the study period, hence model transferability was only
assessed using periods with at least 90% data coverage.

Catchment average rainfall was estimated from a quality-assured 1 km 3 1 km gridded data set provided
by Met �Eireann [Walsh, 2012]. Daily PET, estimated via the Penman method [Allen et al., 1998], was also pro-
vided by Met �Eireann for the closest synoptic station to each catchment centroid (Figure 1). Gaps in the
records were infilled through regression with highly correlated (Pearson’s coefficient >0.7) neighboring sta-
tions. Additionally, to ensure a robust statistical relationship donor sites that provided an overlapping peri-
od of >5 years were selected.

No previous study has developed a typology of catchments for IoI [e.g., Chiverton et al., 2015]. Here we use
the Base Flow Index (BFI) to characterize differences in our catchment sample. The BFI is defined as the pro-
portion of catchment outflow derived from saturated groundwater storage or base flow as opposed to
direct runoff [Sear et al., 1999]. Generally, catchments with a high BFI have greater recharge and storage
capacity, and thus potential to sustain flow during drier periods. Such catchments also tend to have a
slower (i.e., time to peak) and more damped response to storm events [Chiverton et al., 2015]. While the

Figure 1. Study catchments and Met �Eireann synoptic stations. Catchment identification codes are shown; red lines denote the respective
catchment boundaries.
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extent of surface/groundwater dominance and the associated BFI value is typically linked to catchment
geology [Coxon et al., 2014], it is associated with other characteristics including: vegetation, topography, cli-
matic history, land cover, and soil type [Bloomfield et al., 2009; Price, 2011]. Our focus on this index follows
Coxon et al. [2014] who used the index as a key property when differentiating model performance for UK
catchments. Similarly, van Esse et al. [2013] distinguish between groundwater and surface runoff dominated
catchments when comparing model structures for 237 French catchments.

The hydrograph separation technique of Gustard et al. [1992] is used to estimate the BFI. This involves divid-
ing the discharge series into nonoverlapping, 5 day blocks, then calculating the minimum for each block.
Minima less than 0.9 times surrounding 5 day blocks are taken as the base flow separation line. Daily base
flow values are estimated using linear interpolation between the identified central minima. Values above
observed daily flow are (re)set to the observed value. The index is estimated as the ratio between the total
volume of flow and the volume of flow beneath the base flow line. The range of BFI values in our catchment
network is shown in Table 1.

2.2. Hydrological Models
Six lumped CRR models (NAM, HyMod, Tank, HBV, GR4J, and AWBM) are used to explore transferability
under contrasting climate conditions. Developing a competent ensemble necessitates using models of suffi-
cient diversity to ensure structural uncertainty is well represented and the ensemble has good performance

Table 1. Hydroclimatic and Physical Descriptors for the 37 Selected Catchmentsa

Gauge
ID

Area
(km2)

Mean
Elevation (m) BFI

Runoff
(mm yr21)

Start
Date

Precipitation (mm) 1976–2005

Annual Winter Summer

6013 308 84 0.60 432 Jul-75 881 497 384
6014 270 84 0.61 510 Jun-75 919 526 393
7009 1683 85 0.70 471 Jan-73 890 496 393
7012 2460 91 0.68 491 Jan-73 908 508 400
12001 1031 161 0.69 650 Jan-73 1095 632 463
14007 114 136 0.62 538 Jan-73 915 520 395
14019 1702 94 0.65 417 Oct-81 868 486 382
15001 444 118 0.52 500 Jan-73 971 559 413
15003 297 209 0.38 634 Oct-73 1027 584 443
15006 2417 137 0.62 528 Dec-76 975 558 417
16008 1091 138 0.63 702 May-72 1037 606 431
16009 1583 139 0.64 656 Jan-73 1078 632 445
18002 2329 165 0.62 807 Jul-77 1267 773 495
18003 1257 181 0.54 873 Jan-73 1357 845 511
18005 378 158 0.71 725 Jan-73 1189 699 491
18006 1055 188 0.50 975 Jan-73 1379 862 517
18050 250 210 0.38 1073 Jan-72 1588 999 589
19001 103 100 0.59 744 May-81 1236 753 483
21002 66 247 0.21 2031 Jan-73 2277 1422 855
23002 647 196 0.28 1082 Oct-75 1443 880 563
25001 647 153 0.53 758 Jan-73 1185 679 505
25002 222 190 0.48 854 Oct-75 1291 742 550
25006 1188 89 0.69 460 Jan-73 922 515 406
25030 278 136 0.54 918 Feb-80 1196 703 493
26009 90 91 0.43 570 Jan-73 1065 609 456
26021 1072 90 0.82 559 Jan-73 967 547 420
26029 117 217 0.23 1308 Jan-73 1569 923 646
27002 511 73 0.70 651 Jan-73 1319 787 532
32012 145 131 0.56 1285 Jan-73 1690 1027 663
34001 1971 81 0.77 907 Jan-73 1334 811 523
35002 76 198 0.40 1352 Jan-73 1631 984 647
35005 639 100 0.63 820 Jan-73 1268 747 521
36010 771 124 0.60 580 Jan-73 1028 584 444
38001 111 186 0.26 1528 Nov-76 1899 1140 759
39006 245 131 0.46 1129 Jan-73 1530 929 601
201005 277 163 0.47 793 Jan-74 1141 649 492
201008 335 172 0.32 1340 Jan-73 1676 1007 668

aFlow indices are estimated from daily data for the period 1974–2010. The Base Flow Index (BFI) is calculated according to Gustard
et al. [1992]. Mean annual (hydrological year) and 6 month winter/summer (ONDJFM/AMJJAS) precipitation totals for the period 1976–
2005 are shown.
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potential under a range of hydroclimatological conditions [Thiboult et al., 2016]. From a structural perspec-
tive, the inclusion of ‘‘quick’’ flow pathways through upper layers and routing algorithms that regulate the
volume and timing of peak flow events is important in ‘‘flashier’’ catchments. Conversely, structures which
provide a better representation of longer-term storage components, with delayed outlet, interstore routing
and enhanced infiltration and exchange processes are needed for catchments with higher base flow contri-
butions [van Esse et al., 2013]. Hence, selecting physically plausible structures which also provide contrast-
ing conceptualizations and numerical descriptions of the main rainfall-runoff mechanisms were key criteria
in model choice. Models were also selected on the basis that they have (i) been used previously in similar
intercomparison studies, (ii) demonstrated performance as functional across diverse conditions, and (iii)
modest computational/data requirements that are amenable to climate impact assessment [Bastola et al.,
2011; Seiller et al., 2012].

Our sample includes complex models with a relatively large number of empirically estimated (free) parame-
ters alongside more parsimonious structures. All were applied in a lumped configuration at a daily time
step using the same PET and precipitation inputs. Each model includes routines for evaporative losses and
soil moisture accounting. The temperate IoI climate means snowfall occurs relatively infrequently and gen-
erally remains on the ground for only 1–2 days—although heavier snowfalls can persist for 10–12 days
[Murphy, 2012; Sweeney, 2014]. Consequently, snowpack development is not a significant component of the
hydrological regime and thus a snowmelt routine is not included. All models divide saturation excess
between slower/quicker responding pathways and allow temporal distribution of individual and combined
flow components. They differ in the number/type/configuration of stores (e.g., interception, root zone, and
series/parallel), the constituents of total flow included (e.g., interflow and overland flow), and the routing
mechanisms employed (e.g., (non)linear storage, unit hydrograph). Full model descriptions can be found in
the literature so only a brief synopsis is provided for each below and in Table 2.

NAM (Nedbor-Afstromnings-Model) [Madsen, 2000] simulates runoff using three storage components: sur-
face storage, root zone storage, and a groundwater store. Stores are depleted through evaporative loss, lat-
eral flow, and infiltration. Overland flow is generated when capacity in the surface store is exceeded.
A proportion of this excess also infiltrates to the root and lower groundwater zones. Surface and interflow
contributions are routed through two linear reservoirs; base flow is routed through a single linear reservoir.

HyMod (Hydrologic Model) [Wagener et al., 2001] has five reservoirs including a nonlinear soil moisture
store, three ‘‘quick’’ flow linear reservoirs (in series) and a parallel groundwater reservoir. Actual evapotrans-
piration depends on saturation of the soil moisture store and evapotranspiration at the potential rate. It is
noted that HBV and HyMod share a similar soil moisture accounting routine.

Tank [Sugawara, 1995], with 15 parameters, is the most complex model employed in the study. It has a hier-
archy of four vertical nonlinear storage reservoirs simulating, lateral flow, saturated flow, and unsaturated
moisture fluxes. Each tank discharges both vertically and horizontally. Parameters control the height of the
horizontal outlet from each tank and their discharge rate; parameters also regulate the vertical infiltration
rate. The lateral contribution from successive stores captures total runoff contributions from surface, inter-
mediate, subbase, and base flow, respectively.

Table 2. Structural Components of the Six Lumped Conceptual Rainfall-Runoff Modelsa

Model
Number of Free

Parameters Represented Catchment Stores
Represented Flow Component/

Routing Mechanism

NAM 9 Surface; root zone; groundwater Overland (ls); interflow (ls); base flow (ls)
HyMod 5 Soil; ‘‘quick’’ flow reservoirs (33);

‘‘slow’’ groundwater
Overland (three ls in series); base flow

(single ls in parallel)
Tank 15 Soil; intermediate (upper and lower);

groundwater
Sum of lateral outflow from each model store

HBV 9 Soil; lower soil; groundwater Triangular weighting of combined lateral outflow
from the lower soil and groundwater store

GR4J 4 Production; routing 10:90 split between direct (uh) and delayed (using
a uh and single routing nls) routing

AWBM 10 Variable soil surface stores (33); surface
runoff; groundwater store

Overland (ls); base flow (ls)

aRouting mechanisms are abbreviated as unit hydrograph (uh), nonlinear store (nls), and linear store (ls), respectively.
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HBV (Hydrologiska Byråns Vattenbalansavdelning) [Seibert, 1996] generates runoff using three storage reser-
voirs, including a soil moisture zone along with an upper and lower subsurface reservoir. It incorporates a
set of runoff response algorithms and a function for streamflow routing. Within HBV groundwater recharge
and actual evaporation are estimated as a function of water levels in the upper storage zone. Discharge
occurs both laterally—through the lower (one linear outflow) and upper zone (two linear outflows)—and
vertically from the upper zone only; a triangular weighting function is used to route their combined
outflows.

GR4J (G�enie Rural �a 4 paramètres Journalier) [Perrin et al., 2003] is the most parsimonious structure used,
incorporating only four free parameters. Effective rainfall and soil moisture are estimated from net precipita-
tion. Fluxes from the soil moisture zone along with effective rainfall are partitioned as a 10:90 split between
two routing channels representing direct and delayed runoff, respectively. The first routing applies a single
unit hydrograph and the second a unit hydrograph and nonlinear storage function. Groundwater
exchanges with deeper aquifers and/or adjoining catchments are represented using a gain/loss function
applied to each routing channel.

AWBM (Australian Water Balance Model) [Boughton, 2004] uses three area-weighted surface reservoirs with
different storage capacities to simulate partial areas of runoff. Water levels in each are iteratively adjusted
according to daily rainfall and evaporative loss. The observed input evaporation series is subject to a multi-
plicative correction factor to adjust for any potential over estimation of PET. This factor is treated as an addi-
tional model parameter (sampling range 0.9–1.0) and estimated accordingly (section 2.4). Saturation excess
from the soil moisture routine is partitioned and routed between a base flow and surface runoff store; total
runoff is taken as their combined outflows.

2.3. Differential Split Sampling
We adopted a modified version of the DSST approach of Kleme�s [1986] involving an initial fitting or ‘‘train-
ing’’ procedure, followed by performance evaluation for independent ‘‘control’’ conditions (similar to train-
ing) and ‘‘testing’’ period (representing the opposing precipitation regime to the control). Using the period
employed for model training as a benchmark to assess transferability precludes an unbiased estimate of
how well models generalize across different climate regimes. Hence, to remove bias toward the training
data an independent control period was used. Figure 2 describes the DSST procedure which is applied both
for identification of model parameters (section 2.4) and model averaging (section 2.5). Differences in perfor-
mance between the control (e.g., A in Figure 2) and testing (e.g., B in Figure 2) periods are indicative of
transferability when trained under dissimilar conditions (e.g., use B to simulate regime type A in Figure 2).

Two sets of DSST were conducted. First, for each catchment we examined transferability between the ‘‘wet-
test’’ and ‘‘driest’’ years—identified from total annual precipitation statistics. Second, we examined transfer-
ability between years with contrasting annual precipitation patterns. In both cases, hydrological years

Figure 2. Flow diagram of the Differential Split Sample Testing (DSST) procedure used—incorporating training and performance assess-
ment for an independent control and testing period, respectively. This DSST procedure is used for estimation of weights in the Generalized
Likelihood Uncertainty Estimation (GLUE) procedure (section 2.4) and for model averaging (section 2.5).
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(1 October to 30 September) were used. For the former, each CRR model was trained using the first, third,
and fifth ranked wettest years. Model performance on the second, fourth, and sixth ranked wettest years
(taken as the wet period control) provide a benchmark to test the transferability of models trained on the
contrasting first, third, and fifth ranked driest years (Figures 3a and 3b). The opposing transferability assess-
ment was also conducted using the 6 driest years. Differences in rainfall (mm yr21) between DSST periods
are smallest for Gauge ID 19001 (21/23% drier/wetter) and greatest for Gauge ID 18006 (33/50% drier/wet-
ter). Differences in wet/dry DSST periods relative to the 1976–2005 climatological mean for each catchment
are shown in Figure 4a.

Climate model projections suggest wetter winters and drier summers for IoI [Steele-Dunne et al., 2008; Bas-
tola et al., 2011, 2012; Matthews et al., 2016], necessitating transferability of models to an amplified seasonal
regime. This is particularly important given how the dynamics of intraseasonal processes during training
(the rate, timing, and distribution of storage recharge and reduction through the year) may affect the model
response when used to simulate more extreme wetting-up and drying episodes [Wagener, 2003; Herman
et al., 2013]. The type of seasonal regime is expected to influence the structural components/parameters for
soil moisture accounting and the behavior of longer-term stores, as well as the threshold and time delay of
different flow paths. Hence, under transference the training scenario used has particular implications for
accurate simulation of base flow and storm event dynamics.

To explore the role of interseasonal precipitation differences, hydrological years were split into two 6 month
blocks representing summer (April–September, AMJJAS) and winter (October–March, ONDJFM), respec-
tively. For each season, anomalies were calculated and a z-score transformation applied. Results were plot-
ted with summer and winter anomalies located on the y and x axes, respectively. Depending on location
within each quadrant, individual hydrological years were classified as follows: Dry-Dry, Wet-Wet, Dry-Wet, or
Wet-Dry. The first and third ranked years were used for model training; the second and fourth ranked years
were used both as the control and for assessing transferability from seasonal regimes in other quadrants.

Figure 3c shows the location of individual years within each quadrant. Note that seasonal totals are not
plotted using z-score transformation. Instead, values were centered to give zero mean and scaled to have
standard deviation equal to one. The experimental design recognizes that testing based on annual precipi-
tation totals alone can mask significant variations within years with similar totals [Wilby et al., 2015a, 2015b].

Figure 3. (a, b) Precipitation totals (1974–2010) for the hydrological year (1 October to 30 September; catchment ID 15006). (c) Winter (ONDJFM; x axis) and summer (AMJJAS; y axis) sea-
sonal precipitation for 6 month periods of the hydrological year. Training and testing periods used to assess transferability between ‘‘wet’’/‘‘dry’’ (D, W) years (Figures 3a and 3b) are
highlighted, as are periods (Figure 3c) used to examine transferability between each of four (DD, WW, DW, and WD) seasonal precipitation regimes.
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Here only 2 years are used for training/testing due to some catchments having few occurrences of the four
seasonal regime types. Figures 4b–4e present differences in rainfall seasonality used for DSST. Differences
in summer precipitation for DSST periods, estimated relative to the long-term seasonal mean, range from
144% (Dry-Wet; 39006) to 240% (Wet-Dry; 19001). The winter period differences vary between 234% (Dry-
Dry; 19001) and 125% (Wet-Wet; 14007).

Figure 4. Percent differences in total seasonal/annual precipitation relative to 1976–2005 (Table 1) for DSST testing/control periods. (a) Dif-
ferences in contrasting ‘‘wet’’/‘‘dry’’ hydrological years (1 October to 30 September) are shown. (b–e) Relative differences for 6 month win-
ter (ONDJFM) and summer (AMJJAS) periods are shown for each seasonal (Wet-Dry, Dry-Wet, Wet-Wet, and Dry-Dry) DSST scenario.
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We use the coding system X/Y to identify which scenario of temporal transference is examined. Here X and
Y identify which independent training and evaluation period was used. Identification codes with the same
first and second letter indicate training and evaluation under two similar regimes selected from the
observed record. An independent ‘‘control’’ is used to remove inherent bias toward the training period. Dif-
ferent first and second letters denote training and testing under an opposing set of conditions. For exam-
ple, D/W (W/D) identifies the scenario of training on the driest (wettest) and testing on the wettest (driest)
years, respectively. The same applies to the seasonal experiment (e.g., DD/DD), whereby the first and last
two letters indicate the seasonal precipitation regime (e.g., DD indicates Dry-Dry) used for training and test-
ing/control, respectively.

Previous DSST studies have generally employed 5–10 year training/testing periods using both block
sampling and noncontinuous years [Yapo et al., 1996; Anctil et al., 2004; Hartmann and B�ardossy, 2005;
Merz et al., 2011; Coron et al., 2012; Li et al., 2012; Seiller et al., 2012, 2015]. Assessing model suitability
for climate impact assessment—for which models are applied under a projected climate that may
diverge significantly from conditions experienced during observations—necessitates evaluating perfor-
mance under as demanding a set of conditions as possible. This requires a compromise between maxi-
mizing difference in periods used to assess transferability versus achieving potentially more robust
training. Given the short record length available (�30 years) and temperate nature of the IoI climate
(which moderates the occurrence of extreme interannual/seasonal variability) DSST was undertaken
using 3/2 year noncontinuous periods. This was considered sufficient to examine transferability under
strict conditions yet provide sufficient training. Also, the shortened record lengths available for some
catchments may omit years with more pronounced variability leading to a less strict DSST. However,
based on relative differences in the rainfall regime between training/testing conditions for all IRN
catchments, those with a shorter record length provide a similar level of diversity in precipitation
(Figure 4).

The Nash-Sutcliffe efficiency (NSE) [Nash and Sutcliffe, 1970] criterion and a volumetric error measure (PBIAS)
were used to assess performance when transferring models between control and testing periods. NSE is
known to be biased toward higher flows. To provide a more balanced measure of performance across the
hydrograph, NSE1/3 (NSEcubrt) was also used. PBIAS provides a measure of the models’ systematic error, as
squared or absolute value terms are absent. In contrast, the Nash-Sutcliffe criterion squares the deviation
thereby weighting positive and negative outliers equally, thus providing a measure of performance in
reproducing patterns of variability in the observed series [Gupta et al., 2009]. The NSE and NSEcubrt are
defined as equations (1) and (2), respectively:
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represent simulated and observed daily runoff with a cube root transformation applied;ffiffiffiffiffiffi
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is the mean observed cube root transformed streamflow. The PBIAS measure (equation (3)) is
described by
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2.4. Parameter Selection
Parameter values sampled from different regions of parameter space can provide equally valid simulations
of system behavior [Beven, 2006]. This may, in part, be attributed to the overparameterization of hydrologi-
cal models, as well as to issues of parameter interdependence and identifiability. Although parameter sets
may perform comparably well during training, their values are tuned to the training data used, meaning
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they can respond very differently when applied under dissimilar conditions [Uhlenbrook et al., 1999]. Addi-
tionally, parameters may exhibit differing sensitivities depending on the climate conditions experienced
during training; this has implications for identifiability and performance under contrasting conditions [Merz
et al., 2011].

To address parameter uncertainty we employ the Generalized Likelihood Uncertainty Estimation (GLUE)
procedure [Beven and Binley, 1992], a Monte Carlo based approach to model training and uncertainty
assessment which is employed extensively in hydrological and environmental modeling [Blasone et al.,
2008; Bastola et al., 2011; Shafii and Tolson, 2015]. The GLUE procedure is applied to the training data
(Figure 2); evaluation was undertaken using the control and testing data.

For each model, 10,000 simulations were conducted for the period 1970–2010 using parameter sets drawn
randomly from a uniform (noninformative) prior distribution using Latin Hypercube Sampling [McKay et al.,
1979]. We use the period 1970–1973 as a spin-up period to equalize model stores, the proceeding years (up
to 2010) are used for DSST (Figure 2). The GLUE procedure was applied using identified noncontinuous 2/3
year DSST training scenarios. By simulating the full series and then extracting nonsequential 2/3 years
periods for training/testing, the temporal dynamics and internal consistency of catchment stores are
maintained.

A likelihood measure was used to distinguish between behavioral and nonbehavioral parameter sets condi-
tional on the input data and observations. In this case, the root-mean-squared error (RMSE) was applied to
square root transformed streamflow series (equation (4)):

RMSEsqrt5
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where
ffiffiffiffiffiffiffiffi
Qt

o

p
and

ffiffiffiffiffiffiffi
Qt

m

p
represent the square root of observed and simulated runoff at time step t, respec-

tively; T is the total number of observations. This measure reduces bias toward higher flows associated with
the standard RMSE and is a general purpose criterion for hydrograph fitting [Oudin et al., 2006a, 2006b].
Using a set of performance measures different to the likelihood function above removes potential bias
toward the training criterion, allowing more equitable assessment of transferability.

The top 10% parameter sets ranked according to RMSEsqrt for the training period were retained as behavior-
al and the associated RMSEsqrt values were used to estimate respective weights. Performance of the median
simulation under control and opposing testing period(s) was used to examine model transferability. Here
the median simulator refers to the combined fiftieth percentile of daily flow which is derived from the
weighted flow series simulated by the retained parameter sets. As the likelihood measure does not conform
to the properties of a formal objective function, and can return values greater than 1, a transformation func-
tion was required. Following Blasone et al. [2008] and Mertens et al. [2004], the posterior likelihood function
for accepted parameter sets was calculated as the reciprocal of the returned efficiency criterion multiplied
by a normalizing factor. In this case, the posterior likelihood function L hijQð Þ for each behavioral set hið Þ
was calculated using (equation (5))

L hi jQð Þ5 1
Fi
� 1

C
(5)

where Q represents the observed runoff series and C is a scaling constant such that the sum of L hijQð Þ over
the accepted simulations equals unity; here Fi is the RMSEsqrt for hi divided by the minima of the likelihood
measure returned for the retained set. These Rescaled Likelihoods (RL) were used to assign a weight to the
behavioral simulations. The prediction quantiles at each time step were empirically derived according to
(equation (6))

P Ẑ t < z
� �

5
XN

i51

RL f hið ÞjẐ t;i; z�
�

(6)

where P is the selected quantile, hi is the ith parameter set, and N is the number of behavioral parameters.
The value of the discharge series at time t by model f hið Þ is represented by Ẑ . The median was taken as the
most likely estimate and used as input for model averaging.
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2.5. Model Averaging
Numerous averaging techniques have been proposed. These range from simple averaging—where all out-
comes are considered equally probable—to more sophisticated weight-based methods which may be static
or dynamically tuned to system behavior [See and Openshaw, 2000; Hu et al., 2001]. Here four averaging
techniques were considered, namely: Bayesian Model Averaging (BMA), Akaike information criterion averag-
ing (AICA), a variant of the Granger-Ramanathan Averaging (GRA) method, and simple arithmetic mean
(SAM). Methods were selected on the basis that they have achieved good results in previous intercompari-
son studies [Diks and Vrugt, 2010; Arsenault et al., 2015], differ in complexity, and are representative of con-
trasting methodological approaches. In cases where weights were applied, their values were estimated over
the training period (Figure 2), with transferability of the ensemble average to each opposing testing period
being assessed. SAM is the least sophisticated method considered, and assigns equal weight to each
ensemble member irrespective of past performance. While simplistic, previous studies have demonstrated
that SAM can improve performance over individual model structures [Seiller et al., 2012, 2015]. Additionally,
SAM provides a benchmark against which to compare more complex averaging methods. The median pre-
diction from the GLUE method as applied above to each model and DSST scenario was taken as the input
for averaging.
2.5.1. Bayesian Model Averaging (BMA)
BMA is a statistical framework for combining output from competing members of an ensemble to give a
more realistic description of predictive uncertainty [Hoeting et al., 1999; Raftery et al., 2005; Rojas et al.,
2008]. A comprehensive description of the technique is provided by Hoeting et al. [1999] and Bastola et al.
[2011]. BMA weights simulations from individual model members based on their relative skill estimated
over a training period. According to BMA the full predictive distribution for the quantity of interest (DÞ is
described by (equation (7))

p DjM1; . . . :;MK ; Dð Þ5
XK

k51

p DjMk ;Dð Þp Mk jDð Þ (7)

The above is estimated as the mean of the posterior predictive distribution for D predicted by each individ-
ual model p DjMk ;Dð Þ weighted by the associated posterior model probability p Mk jDð Þ. The posterior prob-
ability of model Mk is given by (equation (8))

p Mk jDð Þ / p DjMkð Þp Mkð Þ (8)

where p DjMkð Þ is the integrated likelihood of model (MkÞ. A distribution for the prior probability of each
model p Mkð Þ must be specified. In this case, as no prior assumptions regarding the likely performance or
suitability of individual model structures were made, a uniform (noninformative) distribution was select-
ed. This ensured model weights (likelihoods) were estimated conditional only on observed data used for
training. The mean and variance of the predictive distribution for D were estimated using (equations (9)
and (10))

E DjM1; . . . :;Mk; D½ �5
XK

k51

wkD̂k (9)

Var DjM1; . . . :;Mk ; D½ �5
XK

k51

Var DjD; Mkð Þ1D̂k

� �
wk2E DjDð Þ2 (10)

where D̂k5E DjD; Mkð Þ. The weighting for models in the ensemble (wkÞ varies between zero and one with
the cumulative sum equal to unity. The total variance or predictive uncertainty is estimated as a combina-
tion of intermodel and intramodel variance. Streamflow is nonzero, strictly positive and highly skewed
meaning it does not conform to a Gaussian distribution. Thus, the probability density function of the model
output at time step t was modeled using a gamma distribution (equation (11)) with heteroscedastic vari-
ance (equation (12)).

p DjMkð Þ5Dak 21e
D=bk

� �
= C akð Þhakð Þ (11)
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Here b and c are the coefficients which relate the model simulated series with the respective variances.
Over each training period the BMA weights and variances were estimated from observed streamflow data
through Markov Chain Monte Carlo (MCMC) sampling. This was undertaken using the Differential Evolution
Adaptive Metropolis (DREAM) algorithm [Vrugt et al., 2008]. The maximum a posteriori probability estimates
of the weights—as determined over the training period—were used to average model simulations. Perfor-
mance of the model average when temporally transferred to each testing period was then assessed using
the adopted set of performance criteria.
2.5.2. Akaike Information Criteria Averaging (AICA)
AICA [Akaike, 1974] is a method for combining ensemble members based on both performance and model
parsimony. Weights represent a trade-off between reducing the overall prediction bias while tending
toward less complex models. Such a measure is important when considering model transferability, where
increasing the number of parameters could increase the likelihood of overfitting, thus limiting a model’s
ability to generalize to unseen conditions. As specified by Buckland et al. [1997] and Burnham and Anderson
[2003] the weights are calculated by (equation (14))

bAICA;k5
exp 2 1

2 Ik
� �

PK
k51 exp 2 1

2 Ik
� � (14)

where Ik (equation (15)) is an information criterion estimated based on the mean of the logarithm of the
model variances.

Ik5 22 log Lkð Þ1q pkð Þ (15)

In the above, Lk is the maximum likelihood of model k and q pkð Þ is its associated penalty term which, in this
case, is taken for each ensemble member as double the number of calibration parameters or q pkð Þ52p.
2.5.3. Granger-Ramanathan Averaging (GRA)
GRA simulations are combined using Ordinary Least Squares (OLS) optimized by minimizing the root-mean-
squared difference between simulated and observed series. Previous studies have employed different var-
iants of the method including applying a bias correction and using (non)constrained linear coefficients [Diks
and Vrugt, 2010; Arsenault et al., 2015]. In this study, the OLS algorithm is constrained so that weights are
positive and sum to unity—a prior bias correction was not applied. The model weighting vector (bGRAÞ was
estimated according to (equation (16))

bGRA5 XT X
� �21

XT Y (16)

where Y it a vector representing the observed discharge series for the training period and X is an n3m
matrix whose columns (m) correspond to the daily (n rows) simulated flow series from each model member.

3. Results

This section presents results from the DSST undertaken to assess the performance of a six member CRR
model ensemble under contrasting climate conditions. For each of the 37 catchments DSST was conducted
using the wettest/driest 3 year noncontinuous periods on record. Similarly, performance when models were
transferred between contrasting wet/dry seasonal scenarios was examined. Note that while DSST analysis is
conducted using noncontinuous periods, all model simulations are run continuously using the entire period
for which input data (rainfall and PET) are available (�1970–2010). DSST was conducted for individual mod-
el structures and for the ensemble collectively, using the four different model averaging techniques.

3.1. Individual Model Performance: Wettest/Driest Years
Figure 5 shows individual model structures ranked according to performance when tested for each wet/dry
scenario (W/D, D/W), catchment and evaluation criterion. Performance is examined using median GLUE sim-
ulations. According to the NSE criterion, HBV and GR4J generally perform best. HBV is typically ranked
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higher for catchments with a low BFI;
GR4J performs better on catchments
with a higher BFI. While both models
perform well for NSEcubrt, NAM is also
ranked among the best models for this
criterion, most notably for the W/D sce-
nario. Tank and AWBM typically return
the lowest NSE and NSEcubrt values
across catchments. Much less consis-
tency is evident among the results
for PBIAS: in some instances, Tank is
ranked among the best performing
models with GR4J among the worst.
The favorable results for GR4J—particu-
larly under NSE for high BFI catchments
corroborate the findings of previous
model intercomparison studies [Push-
palatha et al., 2011; van Esse et al.,
2013]. Given the lack of convergence in
results across catchments, testing crite-
ria, and DSST scenarios, there is consid-
erable uncertainty when identifying a
preferred model structure (albeit that a
combination of GR4J and HBV appears
a good compromise, with either model
ranked first for 118 out of the 148 tests
according to the NSE criterion).

Figure 6 plots scores for the evaluation
criteria by comparing performance for
the same 3 year control period when
trained using (dis)similar wet/dry annu-
al regimes (Figure 2). Differences are
examined using median GLUE simula-
tions. Distances from the diagonal
(x 5 y) indicate differences in perfor-
mance under transference. Based on
results for both DSST scenarios, NSE val-
ues vary between 0.51 (GR4J; D/W;
Gauge ID 26029) and 0.97 (GR4J; D/W;
Gauge ID 27002). Gauge 26029 (27002)
has a BFI of 0.23 (0.70), a mean eleva-
tion of 217 (73) m, and an area of 117
(511) km2. While runoff is approximately
twice as much for 26029 (1308 mm
yr21) as 27002 (651 mm yr21), annual
precipitation is relatively similar (1569—
1319 mm yr21). In other words, skill is
least for small, higher elevation, hydro-
logically responsive catchments.

PBIAS values range from 29% (AWBM;
W/D; Gauge ID 7009; BFI 0.70) to 236.0% (NAM; W/D; Gauge ID 18003; BFI 0.54). With respect to the BFI,
catchment elevation, runoff (mm yr21) and precipitation receipts (mm yr21) are generally of (lesser) impor-
tance in differentiating model performance. Each is also negatively correlated with the BFI (Pearson’s

Figure 5. Individual model structures ranked (x axis; best (1) to worst (6)) according
to performance when tested under transference between ‘‘wet’’/‘‘dry’’ annual
regimes. Catchments (y axis) are sorted according to their BFI in ascending order.
Models are ranked according to the absolute (Abs) PBIAS value.
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coefficient of 20.76, 20.72, and 20.70, respectively), indicating some redundancy in using the full suite of
catchment characteristics to differentiate performance. Catchment area is more poorly correlated both with
model performance and BFI across catchments (Pearson’s coefficient 5 0.54). Broadly speaking,
groundwater-dominated catchments tend to have lower precipitation receipts, yield less runoff and are
located in lower lying areas; the converse generally holds for catchments dominated by surface runoff.

Given that the NSE criterion is based on the sum of squared errors, irrespective of the model structure
catchments with a high BFI also return higher NSE and NSEcubrt values. This is due to catchments with great-
er storage capacity (higher BFI) tending to be less responsive to storm events, and thus producing a less
variable flow series. For example, using HBV Gauge ID 21002 with BFI of 0.21 returns a NSE value of 0.55 for
the D/W testing scenario. In contrast Gauge ID 26021 (BFI 0.82) returns a NSE of 0.77 for the same model
and testing scenario.

As shown by Figure 6, in some cases models experience a slight improvement in performance under trans-
ference. Overall, however, the greatest deviations from the diagonals are due to declining performance.
Based on the greater variability and spread of the NSEcubrt values, models tend to experience the largest
reductions in performance when trained on a wet period and transferred to a dry (i.e., W/D versus D/D) [Seil-
ler et al., 2012, 2015]. Figure 6 is supplemented by Table 3 which lists for each catchment the DSST scenario
and model associated with the greatest singular decline in performance. Deceases under transference are
estimated in relative (NSE and NSEcubrt) and absolute (PBIAS) terms using performance for the control (Fig-
ure 2) as a benchmark, and represents a ‘‘worst-case’’ scenario for each catchment. Greater relative
decreases are associated with NSEcubrt as opposed to the NSE measure; in some cases, up to a 21% decrease
in this criterion is observed.

Figure 7 shows NSE, NSEcubrt and PBIAS estimates for individual model structures across all catchments
when transferability between the wettest/driest years is examined. Boxplots are calculated using behavioral
parameter sets identified over the training period; performance under control and testing conditions is
examined. Parameter sets generally perform well across all catchments, with median NSE and NSEcubrt

Figure 6. Testing (y axis) and control (x axis; shown in bold) results for two (‘‘wet’’/’’dry’’) annual precipitation regimes. Models producing similar results for each DSST fall closer to the
458 line. Marker type corresponds to an individual model structure; markers are also coded using graduated shading for Base Flow Index (BFI).
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values �0.7. Only HBV, GR4J, and NAM have a median NSE value greater than 0.75 for both control periods
(D/D and W/W); AWBM returns the lowest median NSE and NSEcubrt values, respectively. Despite GR4J and
HBV performing well across catchments, they exhibit a relatively large range under temporal transference.
This suggests that the weighting applied through the GLUE procedure offsets the poor performance of
some parameters within the behavioral set.

3.2. Individual Model Performance: Seasonal Assessment
In addition to examining transferability between the wettest and driest hydrological years, assessment was
also undertaken between years with contrasting seasonal regimes. Testing was performed based on sample
sizes of 2 years using the median GLUE simulation. Figure 8 shows highest to lowest ranked model struc-
tures according to performance over each testing scenario for the NSE, NSEcubrt, and PBIAS criterion, respec-
tively. AWBM, along with HyMod and Tank (to a lesser extent) are the lowest ranked models for the NSE
measure. HBV is generally ranked highest for catchments with lower base flow contributions; GR4J tends to
be ranked higher for catchments with a larger BFI. Either HBV (52.2% of cases) or GR4J (27.2% of cases) are
ranked first for 354 of 444 transference tests according to the NSE criterion. For NSEcubrt both models are
similarly dominant, with GR4J (50.2% of cases) or HBV (29.0% of cases) being ranked first for 344 testing sce-
narios. Lowest NSE and NSEcubrt values are generally given by AWBM which is ranked first/last for 10/503

Table 3. The DSST Scenario and Model Associated With the Greatest Singular Decrease in Performance Under Transference Between
‘‘Wet’’/‘‘Dry’’ Annual Regimesa

ID BFI

NSE NSEcubrt PBIAS

Scenario Model %D Scenario Model %D Scenario Model D

6013 0.60 D/W HyMod 22.8 W/D AWBM 21.5 W/D AWBM 24.4
6014 0.61 D/W HBV 25.0 W/D AWBM 24.8 W/D AWBM 24.8
7009 0.70 D/W Tank 23.8 W/D AWBM 26.6 W/D AWBM 24.6
7012 0.68 D/W HBV 214.0 W/D AWBM 221.6 W/D GR4J 211.3
12001 0.69 D/W NAM 23.8 W/D AWBM 26.1 W/D HBV 27.9
14007 0.62 W/D Tank 25.0 D/W Tank 25.6 D/W GR4J 210.1
14019 0.65 D/W Tank 21.0 D/W Tank 20.9 D/W GR4J 24.1
15001 0.52 D/W HyMod 23.6 W/D AWBM 25.2 W/D GR4J 27.3
15003 0.38 W/D GR4J 25.3 W/D AWBM 27.5 D/W AWBM 210.5
15006 0.62 W/D GR4J 23.6 W/D AWBM 29.4 W/D GR4J 29.9
16008 0.63 D/W HyMod 28.7 W/D HyMod 27.0 D/W GR4J 210.7
16009 0.64 D/W HyMod 26.6 D/W HyMod 24.1 W/D GR4J 29.5
18002 0.62 D/W HBV 21.6 D/W HyMod 21.2 D/W GR4J 24.6
18003 0.54 W/D Tank 22.8 W/D AWBM 27.6 D/W GR4J 29.6
18005 0.71 D/W NAM 24.1 W/D HyMod 26.9 W/D GR4J 28.4
18006 0.50 W/D GR4J 214.6 W/D AWBM 220.6 W/D AWBM 218.4
18050 0.38 D/W HBV 24.3 W/D AWBM 26.3 W/D HyMod 23.9
19001 0.59 D/W HyMod 22.4 W/D AWBM 25.4 W/D HBV 25.9
21002 0.21 W/D GR4J 213.3 D/W HyMod 25.3 D/W HyMod 25.8
23002 0.28 W/D GR4J 26.1 D/W NAM 26.1 W/D NAM 212.0
25001 0.53 D/W HyMod 25.8 W/D Tank 210.3 D/W GR4J 210.8
25002 0.48 D/W GR4J 26.4 W/D GR4J 25.6 D/W GR4J 213.3
25006 0.69 D/W NAM 23.8 W/D HyMod 25.0 D/W AWBM 25.3
25030 0.54 D/W HBV 29.4 W/D HyMod 25.1 D/W GR4J 27.6
26009 0.43 W/D GR4J 25.5 W/D AWBM 26.8 W/D GR4J 28.6
26021 0.82 D/W NAM 24.0 W/D AWBM 25.3 D/W GR4J 211.2
26029 0.23 D/W HyMod 23.2 W/D NAM 22.7 W/D Tank 23.5
27002 0.70 D/W NAM 25.1 W/D AWBM 210.1 D/W GR4J 211.9
32012 0.56 W/D AWBM 25.4 W/D HyMod 218.0 W/D HBV 210.2
34001 0.77 W/D Tank 214.9 W/D Tank 25.5 D/W GR4J 216.2
35002 0.40 D/W HyMod 22.5 W/D HyMod 217.7 W/D HBV 29.3
35005 0.63 D/W NAM 27.1 W/D HyMod 212.5 W/D HBV 24.2
36010 0.60 D/W Tank 23.0 W/D Tank 22.5 W/D HyMod 24.3
38001 0.26 D/W HyMod 24.1 W/D AWBM 22.4 D/W GR4J 25.6
39006 0.46 D/W NAM 22.7 W/D HBV 27.3 D/W GR4J 25.3
201005 0.47 D/W HBV 21.5 W/D HyMod 21.4 D/W GR4J 24.1
201008 0.32 W/D HBV 210.9 D/W AWBM 27.4 W/D HBV 212.2

aDifferences are estimated using performance under control conditions as a benchmark (i.e., control versus testing). Percent (%D;

NSE, NSEcubrt) and absolute (D; PBIAS) differences are given. PBIAS values in bold denote an underestimation of the total observed flow
under transference (e.g., W/D). Values underlined indicate that models trained under dissimilar conditions both (under/over)estimate
the total volume.
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cases of the same 888 transference
tests. In contrast to the NSE criteria,
there is much greater uncertainty in
results for PBIAS. AWBM tends to be
highest ranked for catchments with a
low BFI, however this is reversed as
the BFI increases. Additional weaker
patterns in results emerge, including
the poor ranking for Tank (NSE and
Abs PBIAS) and NAM (NSEcubrt) under
transference to a Dry-Dry (DD) season-
al regime. Similarly AWBM performs
poorly for transference to a Wet-Wet
(WW) and Dry-Wet (DW) scenario
according to all criteria. However,
the degree of inconsistency highlights
the complexity of model transference,
with performance being related to the
individual model structure, catch-
ment, and climate regime type.

Figure 9 (NSE), Figure 10 (NSEcubrt), and
Figure 11 (PBIAS) present results of the
DSST scenarios, while Table 4 lists for
each catchment the scenario of season-
al transference and associated model
structure that yields the greatest
decrease in performance relative to the
control for each evaluation criterion. For
29 of the 37 catchments, transference
to a DW (Dry-Wet; 14 cases) or DD (Dry-
Dry; 15) seasonal regime returns the
largest reductions in the NSE criterion.
Within this, the DD/DW (11 cases) and
DW/DD (8 cases) scenarios are notable
for returning the greatest number of
poor performances. These range from a
decrease in NSE of 246.4% (WD/DD;
Gauge ID 25006; Tank) to 23.2% (DD/
DW; Gauge ID 18003; HBV). In contrast,
the decline in performance when trans-
ferred to a WW or WD scenario is much
less, while the DW/WW or WW/DW tests
do not lead to the greatest singular
decrease for any catchment.

A similar and more pronounced
pattern is evident in the results for
NSEcubrt and PBIAS. For the NSEcubrt

criterion, transference to a DW or DD
regime is found for 33 catchments, with seven registering reductions of 20–30% relative to the control.
Poor transference to a DD and WD is similarly evident for the PBIAS criterion. As shown in Table 4, deficien-
cies in performance across catchments are generally associated with a more pronounced underestimation
of flow volumes (WD/DD; Gauge ID 18005; GR4J). Although there is a degree of variation between models,
GR4J (NSE; PBIAS), HyMod, and AWBM (NSEcubrt) yield greatest reductions relative to the control.

Figure 7. The combined performance of behavioral parameter sets for all catch-
ments and rainfall-runoff models. DSST results are for two (‘‘dry’’/‘‘wet’’) annual pre-
cipitation regimes are shown. The red line represents the median estimate; box
edges denote the 25th and 75th percentiles. Whiskers are located at Q3 1 1.5 3

(Q3 2 Q1) and Q1 2 1.5 3 (Q3 2 Q1), where Q1 and Q3 are the 25th and 75th per-
centiles, respectively. Values beyond this are identified with red dots. Control sce-
narios are highlighted in bold. NSE/NSEcubrt values <0.3 are not shown.
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Figure 12 shows the results of DSST
applied to all behavioral parameter sets
identified across the catchment sam-
ple. In terms of absolute model perfor-
mance the highest NSEcubrt control/
testing values are generally returned
for the WD/WD scenario. Based on the
median estimate, GR4J performs well
across the catchment sample, whereas
AWBM generally returns the lowest
scores. Difficulties in transference to a
DW or DD regime are also highlighted
by Figure 12. In contrast, parameters
generally maintain performance when
transferred to a WW regime irrespec-
tive of the training scenario.

3.3. Multimodel Performance
Attention is now given to how use of
the four different averaging methods
over our multimodel ensembles may
improve transferability. Figure 13 plots
NSE values for individual models
against corresponding values returned
when model averaging is applied. Plots
are based on the results of DSST con-
ducted using contrasting wet/dry
annual regimes for each catchment.
Table 5 lists the frequency with which
each method outperforms the individ-
ual ensemble members. In the majority
of cases, model averaging surpasses
performance of any single structure,
even for SAM where the application of
equal weights returns NSEcubrt values
better than individual models in more
than 79% of cases. Model averaging
performs better for the NSE criteria
than for PBIAS. With respect to volu-
metric error, SAM returns similar values
to the more complex averaging meth-
ods employing objective weighting cri-
teria. Both BMA and GRA perform
similarly across DSST scenarios, exhibit-
ing only a slight difference in perfor-
mance under transference to each
testing period(s).

Despite the ensemble average clearly
being better than individual model
members (Figure 13 and Table 5), dif-
ferences are evident not just in how
well each averaging method performs
but also in the evaluation measure
used. For both Nash-Sutcliffe measures,

Figure 8. Best and worst ranked hydrological model according to DSST results for
four (DD, WW, DW, and WD) seasonal precipitation regimes (x axis). Catchments
(y axis) are sorted according to their BFI in ascending order.
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GRA and BMA are most consistent in exceeding the best ensemble member and perform considerably better
than simple averaging. AICA fails under all DSSTs to provide encouraging results. Considering all DSST scenari-
os, AICA assigns the largest weight to HBV and GR4J in 50% and 31% of cases, respectively. In contrast, AWBM
is never assigned a weight above zero. As would be expected, the objective methods perform well over the
period used for estimation of model weights, highlighting an inherent bias to the training data. This is particu-
larly evident for GRA according to the NSE and NSEcubrt criterion. In both cases, this method achieves almost
perfect results (Table 5).

Table 6 lists the frequency with which each model averaging technique outperforms the best performing
individual model from the ensemble. In the majority of cases, GRA and BMA are better under transference
(and for the control) than the best performing model member according to both the NSE and NSEcubrt mea-
sures. In general, GRA performs better than BMA for the NSE criterion, particularly with respect to the best
performing model member. However, the opposite applies for NSEcubrt—albeit that returned differences
are of a lesser magnitude. As is demonstrated by differences between the control and testing periods, nei-
ther GRA nor BMA experience a significant drop in performance under transference. Generally, the averag-
ing methods perform similarly across each opposing DSST period. Overall, GRA emerges as the most
consistent technique, returning high NSE and NSEcubrt values across all DSST scenarios.

For PBIAS, all averaging methods generally return a considerably lower proportion (<20%) of better per-
forming estimates when benchmarked against the best model member. The results shown in Table 6 are
reflected in Figure 14 which displays the best/worst ranked model averaging method for each catchment

Figure 9. NSE testing (y axis) and control (x axis; shown in bold) results for four (DD, WW, DW, and WD) seasonal precipitation regimes. Models producing similar results for each DSST
fall closer to the 458 line. Marker type corresponds to an individual model structure; markers are also coded using graduated shading for Base Flow Index (BFI).
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and seasonal DSST scenario; also considered is the best/worst performing model structure. Evident are the
more favorable results for BMA/GRA according to the NSE/NSEcubrt criterion. The ranking of methods is also
largely consistent across individual catchments and for each DSST scenario. Figure 14 further highlights dis-
parities in performance between the NSE and PBIAS measures. In the latter case, it is shown that the best
individual model structure for each scenario typically performs better than the respective model averaging
techniques. Figure 14 also highlights that the worst performing model is most often ranked lower than the
worst performing averaging method.

4. Discussion

While in some cases model performance was shown to improve relative to the control when trained under
a contrasting set of conditions, in general there was a degradation in performance. The extent of this degra-
dation depends on model structure, catchment, DSST scenario, performance criterion, and averaging tech-
nique. For all catchments, no clear relationship could be identified between decline in performance under
transference and relative differences in precipitation between DSST periods. This may be due to variations
in training/control and testing conditions being broadly similar across the catchment sample (Figure 4a). In

Table 4. The DSST Scenario and Model Associated With the Greatest Singular Decrease in Performance Under Transference Between
Seasonal (DD, WW, DW, and WD) Precipitation Regimesa

ID BFI

NSE NSEcubrt PBIAS

Scenario Model %D Scenario Model %D Scenario Model D

21002 0.21 DD/DW GR4J 25.19 WW/DW AWBM 22.42 DD/DW GR4J 25.6
26029 0.23 DD/WW HBV 26.91 WW/WD AWBM 25.58 WD/DD HBV 27.0
38001 0.26 WD/WW GR4J 28.26 WW/DW AWBM 213.37 DW/WW GR4J 27.4
23002 0.28 DD/DW HyMod 225.33 WW/DD AWBM 228.24 DD/DW HBV 211.8
201008 0.32 DW/DD GR4J 216.31 DW/DD AWBM 213.40 DW/DD GR4J 216.0
15003 0.38 DW/DD Tank 214.03 DD/DW Tank 214.50 DD/DW GR4J 27.5
18050 0.38 DW/WD NAM 25.45 DW/WD NAM 211.39 WD/DW GR4J 211.1
35002 0.4 DD/DW HyMod 26.04 DW/DD HyMod 25.24 WW/WD GR4J 27.6
26009 0.43 DD/DW HyMod 213.51 DW/DD HyMod 211.81 DD/DW AWBM 26.9
39006 0.46 WW/DD GR4J 24.72 WW/DD AWBM 212.59 WW/DD GR4J 29.3
201005 0.47 DD/DW HyMod 210.43 WD/DD Tank 213.39 DD/DW GR4J 28.8
25002 0.48 DD/WW HyMod 28.96 DD/WW Tank 26.89 DW/DD GR4J 210.3
18006 0.5 DD/WW HBV 25.07 DD/DW GR4J 27.08 DW/DD GR4J 213.4
15001 0.52 DW/DD Tank 219.84 DW/DD HyMod 216.03 DW/DD HyMod 224.2
25001 0.53 DW/WD NAM 26.98 DD/DW Tank 210.51 WW/DD GR4J 27.3
25030 0.54 WD/DD GR4J 227.62 WW/DD AWBM 222.82 WW/DD GR4J 218.5
18003 0.54 DD/DW HBV 23.23 DW/DD AWBM 210.49 WW/WD GR4J 24.2
32012 0.56 WD/DD GR4J 25.35 DW/DD AWBM 24.82 DW/DD GR4J 27.1
19001 0.59 DW/DD HBV 218.49 DD/DW HBV 216.03 DD/DW GR4J 211.9
6013 0.6 WW/DW GR4J 215.55 WD/DW NAM 214.64 WW/DD HBV 218.9
36010 0.6 DD/DW GR4J 214.22 DW/DD HyMod 217.89 DD/DW GR4J 211.6
6014 0.61 DD/DW GR4J 210.52 WW/DW HyMod 211.92 DD/DW GR4J 214.4
14007 0.62 DD/DW HBV 216.75 WW/DD AWBM 29.72 WD/DD HyMod 214.7
15006 0.62 DW/DD Tank 214.36 WD/DW Tank 213.29 DW/DD HyMod 210.8
18002 0.62 WW/DD GR4J 24.58 DW/DD AWBM 26.61 WW/WD GR4J 27.2
16008 0.63 DD/DW GR4J 213.74 WD/DW NAM 218.62 DD/DW GR4J 218.5
35005 0.63 DD/WD NAM 22.57 WD/WW NAM 23.56 DD/DW GR4J 23.1
16009 0.64 DD/WD NAM 28.03 DW/DD AWBM 220.08 DD/WW GR4J 25.4
14019 0.65 WD/DD GR4J 214.37 WW/DD HyMod 220.51 DW/WD HyMod 218.8
7012 0.68 DW/DD Tank 245.25 DW/DD HyMod 216.23 DW/DD HyMod 215.5
25006 0.69 DW/DD Tank 246.42 DW/DD HyMod 233.43 DW/WD HyMod 212.0
12001 0.69 DD/DW GR4J 230.05 DD/DW GR4J 231.64 DW/DD GR4J 233.3
27002 0.7 WD/DW AWBM 215.88 WD/DD GR4J 25.44 WD/DW GR4J 24.6
7009 0.7 WW/DW GR4J 211.35 DW/DD HyMod 26.05 WW/DD HBV 27.2
18005 0.71 WD/DD GR4J 236.39 WD/DD GR4J 229.16 WD/DD GR4J 236.0
34001 0.77 WD/DD AWBM 26.04 WD/DW AWBM 25.66 DD/WD GR4J 25.9
26021 0.82 DW/DD GR4J 227.16 DD/DW HBV 219.19 WD/DD HBV 211.7

aDifferences are estimated using performance under control conditions as a benchmark (i.e., control versus testing). Percent (%D;

NSE, NSEcubrt) and absolute (D; PBIAS) differences are given. PBIAS values in bold denote an underestimation of the total observed flow
under transference (e.g., WD/DD). Values underlined indicate that models trained under dissimilar conditions both (under/over)estimate
the total volume.
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addition, despite using a 2/3 year period to maximize interannual/seasonal differences, the dissimilarity
between training/testing conditions varies only within a limited range. Furthermore, when considering
results for the catchment sample collectively, there are a number of interacting factors external to the driv-
ing climate regime. These include differences in the catchment properties and model/data uncertainties
which may preclude or complicate a simple quantitative (linear or otherwise) relationship between differ-
ences in performance and differences in the associated annual/seasonal precipitation regime. As a result,
no generally applicable quantitative threshold for transferability—indicating when models may become
inaccurate or nonfunctional—can be identified. This underlines the necessity of conducting DSST on a
catchment-by-catchment and model-specific basis.

Generally, models were challenged when transferring between wetter and drier periods. Overall, the great-
est performance declines were associated with transference from wet to dry conditions. This is evident both
in terms of transference between wetter/drier years and between contrasting seasonal precipitation
regimes. For the latter, models struggled when simulating years with a dry winter followed by dry summer,
particularly with respect to the (low flow) NSEcubrt criterion. In contrast, models were less affected by trans-
ference to a wet-dry or wet-wet seasonal regime. This finding applies both to the median estimate derived
using GLUE and behavioral parameter sets across the catchment sample. Hence, if climate change tends
toward drier conditions, then we would expect models calibrated on a wetter present to be less accurate
under future forcing. Conversely, for a more pronounced seasonal regime (wetter winters and drier sum-
mers) models may maintain performance. Difficulties in transference to a ‘‘drier’’ regime may be related to
nonlinearities in the hydrological processes being more pronounced and poorly conditioned under a

Figure 10. NSEcubrt testing (y axis) and control (x axis; shown in bold) results for four (DD, WW, DW, and WD) seasonal precipitation regimes. Models producing similar results for each
DSST fall closer to the 458 line. Marker type corresponds to an individual model structure; markers are also coded using graduated shading for Base Flow Index (BFI).
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‘‘wetter’’ regime [Atkinson et al., 2002, van Esse et al., 2013]. Sensitivity to training using wet or dry periods is
highlighted by Li et al. [2012], who indicate that models intended to simulate a wet/dry climate scenario
should be trained using a similar period from the observed record.

While our findings support previous research [Li et al., 2012; Seiller et al., 2012, 2015], they contradict Wilby
and Harris [2006] who found greater transferability from wet to dry conditions in the Thames basin (SE
England). Here it is highlighted that data information content, in terms of threshold parameter activation, is
higher during wet periods, thereby improving transference to dry (as opposed to wet) conditions. However,
as applies to all previous studies a direct comparison is complicated by differences in the hydroclimatologi-
cal regime and the degree of dissimilarity between DSST conditions [Brigode et al., 2013]. For example differ-
ences between ‘‘wet’’ and ‘‘dry’’ are more pronounced in SE England than the IoI.

Typically, the structures that performed well under control conditions also performed well under transfer-
ence, with the model rankings generally unchanged. Overall declines in performance were not sufficient to
conclude that the models may be inaccurate or nonfunctional under altered climate conditions. However, it
is acknowledged that the historical record may only provide limited analogues to represent plausible ranges
of future changes. For instance, there is no 3 year period that is >20% wetter or drier than the climatology
mean (1976–2005) to stress test operational limitations under the full range of possible future climates
[Matthews et al., 2016]. Consequently, we emphasize that caution be exercised in assuming model reliability
under input forcing that differs markedly from the data available for model development. This concurs with

Figure 11. PBIAS testing (y axis) and control (x axis; shown in bold) results for four (DD, WW, DW, and WD) seasonal precipitation regimes. Models producing similar results for each
DSST fall closer to the 458 line. Marker type corresponds to an individual model structure; markers are also coded using graduated shading for Base Flow Index (BFI).
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Bastola et al., [2011] who found sub-
stantial divergence between individu-
al CRR model structures when driven
using the same downscaled climate
change projections, even though the
models performed similarly under
observed conditions. Difficulties encoun-
tered in temporal transferability mirror
those of spatial transferability, whereby
rainfall-runoff models are developed for
ungauged catchments using parameters
calibrated at suitable donor sites identi-
fied based on physical similarity and/or
spatial proximity [Oudin et al., 2008; Par-
ajka et al., 2013]. The DSST method used
here would provide a suitable approach
for interrogating the performance of dif-
ferent regionalization techniques under
contrasted conditions.

Our results confirm that it is impossi-
ble to identify a single optimum mod-
el structure across all catchments and
all DSST scenarios. In addition, perfor-
mance was found to vary consider-
ably depending on the evaluation
criteria used, with differences being
most apparent when comparing the
NSE and PBIAS. However, under trans-
ference for the NSE criteria, a number
of models can be identified that are
likely to be more/less robust for cli-
mate assessment. Overall, HBV, GR4J
and to a lesser extent NAM were con-
sistently the best performing models,
with HBV (GR4J) generally ranked the
highest for catchments with a lower
(higher) groundwater contribution.
For climate impact studies the case
for GR4J is further strengthened by its
relatively parsimonious structure. In
contrast, AWBM generally performed
poorly across DSST periods for the
majority of catchments. This may be
due to its relatively large number of
parameters (i.e., low parsimony) or the
fact that, despite its plausible struc-
ture it was conceived for a different
(Australian) hydroclimate regime. It is
noted that, contrary to other models
AWBM requires that surface stores are
satisfied before excess moisture
required to sustain base flow and sur-
face runoff is generated.

Figure 12. NSEcubrt boxplots developed using the combined behavioral parameter
sets of all six rainfall-runoff models for 37 catchments and four (DD, WW, DW, and
WD) seasonal precipitation regimes. The red line represents the median estimate;
box edges denote the 25th and 75th percentiles. Whiskers are located at Q3 1 1.5
3 (Q3 2 Q1) and Q1 2 1.5 3 (Q3 2 Q1), where Q1 and Q3 are the 25th and 75th
percentiles, respectively. Values beyond this are identified with red dots. Control
scenarios are highlighted in bold. NSE/NSEcubrt values <0.2 are not shown.
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The favorable results for HBV and GR4J are consistent with previous studies [Perrin et al., 2001; Seiller et al.,
2012, 2015]. The good performance of GR4J may, in part, be attributed to its inclusion of a water exchange
function alongside two independent parallel routing paths, which van Esse et al., [2013] cite as important
both for ground water-dominated catchments and successful transference between contrasting wet/dry
periods. Conversely high BFI catchments with less dynamic flow behavior may be better represented using
linear models. In our case, the higher performance of HBV for responsive catchments may be due to its use
of two linear outflows from the upper reservoir (one of which is threshold activated) allowing better repre-
sentation of lateral and direct flow dynamics during storm events. This is supported by the better perfor-
mance of HBV (GR4J) for the NSE (NSEcubrt) criterion which is more representative of high (low) flow
dynamics. Fenicia et al., [2014] note the importance of storage elements connected in series (versus a paral-
lel configuration) for catchments with impermeable bedrock dominated by lateral flows. Such catchments
may also favor nonlinear models where threshold exceedance activates more direct flow paths. As shown
by others, improvements in HBV simulation of groundwater catchments may be gained (particularly for
recession dynamics) if reservoir discharges were modeled using a power function [Samuel et al. 2012; van
Esse et al., 2013].

The number of model parameters is an important factor that can directly affect model performance. In base
flow dominated catchments, parsimonious models with less complexity (e.g., GR4J) may be sufficient. How-
ever, in catchments with a low BFI and thus higher variability in runoff a more complex model (more param-
eters; e.g., HBV) may be required. When comparing HBV and HyMod—which share similar soil moisture
accounting routines—our results suggest that the greater parametric complexity of HBV and use of a paral-
lel rather than serial routing/storage structure is more successful. Based on the differing number of free
parameters (Table 3), the performance of AWBM and Tank indicates that a greater degree of freedom in
terms of fitting does not necessarily lead to superior performance. In fact, this may increase the risk of over-
fitting during training, and hence a lesser ability to generalize across diverse conditions.

With respect to the BFI, it is worth noting how differences in the storage and routing configuration relate to
infiltration processes and performance for groundwater/runoff dominated catchments. The influence of

Figure 13. NSE scores for ‘‘wet’’/‘‘dry’’ DSST period obtained from four different model averaging techniques plotted against the corresponding NSE value from each model structure
(grey dots). NSE values showing transference between the wettest/driest years for each catchment is plotted; red dots denote the best performing individual ensemble member. Model
averaging improves relative to a single structure where points are plotted below the 458 continuous green line (i.e., x 5 y).
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vertical soil heterogeneity and slope has on runoff generation is well documented [Smith and Hebbert, 1983;
Jackson, 1992]. Typically for catchments with permeable homogeneous soils and a low anisotropy ratio (ver-
tical conductivity/horizontal conductivity), movement through upper layers tends to occur vertically, with
vertical increases in the saturated zone depth having a greater effect on runoff than lateral movements.
Here catchments are likely to have a high BFI owing to better infiltration and delayed routing. In contrast,

Table 5. Frequency (%) With Which Each Model Averaging Technique Outperforms Individual Members of the Model Ensemble
Calculated for Each DSST and Training Perioda

DSST

NSE NSEcubrt Absolute PBIAS

BMA AICA GRA SAM BMA AICA GRA SAM BMA AICA GRA SAM

D (training) 80 80 100 72 99 70 99 85 75 50 66 60
D/D 87 82 94 78 98 71 95 87 57 56 60 57
W/D 89 74 94 81 97 63 92 89 60 54 66 55
W (training) 85 72 100 85 100 75 99 91 58 51 77 60
W/W 89 76 96 82 99 70 97 90 55 54 67 64
D/W 86 77 95 76 97 68 95 86 58 58 70 60
DD (training) 80 68 100 82 99 70 98 85 68 52 65 55
DD/DD 82 70 90 81 90 65 90 82 64 87 68 52
WD/DD 86 69 89 83 95 63 89 91 60 55 60 58
DW/DD 86 67 87 77 91 61 85 86 57 50 63 53
WW/DD 91 68 93 84 95 65 90 92 54 52 64 55
WD (training) 84 82 100 80 99 69 97 79 57 49 75 65
WD/WD 89 86 95 77 80 71 95 80 55 50 69 61
DD/WD 77 71 91 77 91 67 92 88 50 51 64 60
DW/WD 86 76 91 74 96 74 92 85 58 50 63 58
WW/WD 88 77 92 76 96 71 92 89 57 46 61 64
WD (training) 85 80 100 78 100 75 98 85 57 52 80 62
WD/WD 87 82 90 79 98 75 97 86 66 58 76 69
WD/DW 88 77 95 85 96 72 95 90 60 54 66 64
DD/DW 82 71 91 82 92 64 91 88 55 51 64 62
WW/WD 89 73 94 86 96 71 95 91 51 44 59 64
WW (training) 90 81 100 75 100 80 99 82 65 55 78 59
WW/WW 92 84 91 77 92 75 99 86 69 57 76 62
DW/WW 89 79 92 76 95 72 92 85 64 55 69 60
WD/WW 89 76 95 80 96 73 95 89 63 52 68 59
DD/WW 84 73 95 77 93 67 91 86 61 55 66 62

aResults for the training and control periods are listed in bold.

Table 6. Frequency (%) With Which Each Model Averaging Technique Outperforms the Best Individual Model Member of the Ensemble
for Each DSSTa

DSST

NSE NSEcubrt Absolute PBIAS

BMA AICA GRA SAM BMA AICA GRA SAM BMA AICA GRA SAM

D/D 41 5 65 14 86 0 70 49 20 0 15 8
W/D 49 0 68 16 86 5 70 51 17 0 16 14
W/W 46 0 81 27 95 3 86 51 15 0 18 16
D/W 32 3 70 16 84 0 81 32 14 0 16 3
DD/DD 44 3 60 16 75 3 72 43 15 0 19 5
WD/DD 41 0 57 22 70 11 53 57 18 0 18 5
DW/DD 41 0 51 16 62 3 51 41 15 0 14 3
WW/DD 51 3 62 24 76 3 54 62 17 0 13 5
WD/WD 46 10 70 16 72 8 73 43 12 0 15 15
DD/WD 30 0 54 16 57 5 62 41 13 0 15 5
DW/WD 35 5 52 14 78 3 59 35 18 0 16 11
WW/WD 41 5 68 16 84 3 68 43 16 0 12 11
WD/WD 46 8 71 19 89 5 84 27 11 0 12 12
WD/DW 41 5 73 27 81 8 78 46 12 0 15 14
DD/DW 32 0 68 27 68 3 65 46 13 0 11 5
WW/WD 51 0 76 27 86 3 76 51 14 0 10 8
WW/WW 54 5 68 8 80 3 81 30 19 0 17 11
DW/WW 43 3 57 11 78 0 65 35 17 0 15 5
WD/WW 46 8 73 16 78 5 76 46 20 0 18 8
DD/WW 30 3 70 14 73 3 68 32 21 0 11 11

aResults for the control are listed in bold.
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for catchments with a high anisotropy ratio where hillslope processes dominate, lateral flows are likely to
be more significant. Hence, models like HBV, which can better capture vertical variability in soil processes
by using multiple vertical stores and a dedicated soil moisture routine, and which explicitly account for
direct/lateral flows, may be more applicable to low BFI catchments. Furthermore the hillslope can be con-
ceptualized as consisting of two soil layers, with the lower layer capable of retarding vertical flow at the
boundary allowing development of subsurface stormflow. This corresponds well with the inclusion of an
upper soil box in HBV from which two lateral outflows (one threshold based) are represented [Smith and
Hebbert, 1983]. While GR4J also accounts for vertical variability, only two stores (production and routing) are
included, and lateral flows are less well represented. In addition, the model has fewer free parameters to
adjust in order to better capture horizontal/direct flows (e.g., the set 90:10 split between delayed and direct
routing channels).

Figure 14. Best and worst ranked model averaging technique according to DSST results for four (DD, WW, DW, and WD) seasonal precipitation regimes (x axis). Also considered is the
best and worst performing conceptual rainfall-runoff (CRR) model for each scenario. Catchments (y axis) are sorted according to their BFI in ascending order.
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Relative to other criteria, model performance for PBIAS was more varied: notably, in some cases, AWBM was
returned as the best performing model. Performance in simulating the long-term water balance is related
to how precipitation is partitioned between evaporation and streamflow. Hence, performance hinges on
those model parameters relating to evaporation influence on the water balance [Herman et al., 2013]. The
more favorable performance of AWBM may be due to it being the only model that incorporates an adjust-
ment factor for PET. However, determining which parameters influence the overall water balance would
require an in-depth and systematic sensitivity assessment that is beyond the scope of this study. In addition,
as noted by Herman et al. [2013], selecting behavioral parameter sets using RMSE alone (as in this study) is
no guarantee of achieving an accurate water balance. Thus, differences between the NSE and PBIAS criteria
may also reflect the choice of likelihood function.

Differences in the performance criteria suggest that model selection should give due consideration to
those components of the flow regime that are most relevant to the study objectives. For example,
AWBM may be more appropriate for assessing climate driven changes in the long-term water balance,
as opposed to assessing changes in dynamic behavior (e.g., timing and magnitude of flood peaks). How-
ever, given that it only provides a measure of systematic error, and is thus a less comprehensive indica-
tor of overall performance, selecting a model on the basis of mean bias alone lacks rigor. Hence, to
inform robust model selection for climate studies, modelers should examine temporal transferability giv-
ing weight to multiple performance criteria. Here each criterion can be treated equally, or based on the
study objective weights can be used to place greater emphasis on performance for particular parts of
the hydrological regime.

When benchmarked against a single model structure, the ensemble average provides a better overall esti-
mator. The performance of averaging techniques was shown to remain relatively consistent under transfer-
ence. Additionally, methods based on objective weighting are recommended over simple averaging. The
results confirm findings from previous studies which stress the value of a multimodel strategy [e.g., Shamsel-
din et al., 1997; Vel�azquez et al., 2010, 2011, Seiller et al., 2012, 2015; Arsenault et al., 2015]. When bench-
marked against the best individual model structure, greater variation in the averaging methods emerged.
These differences are related primarily to the choice of evaluation criteria rather than the DSST scenario or
catchment selected. All methods performed considerably better for the NSE as opposed to PBIAS measure.
This suggests that any potential bias toward certain error types should be considered when selecting an
averaging technique.

As reported by previous studies, the AICA method was found to perform relatively poorly [Diks and Vrugt,
2010; Arsenault et al., 2015] due to a tendency to heavily weight a single member, thereby discounting addi-
tional information provided by the ensemble. As implemented here, AICA is strictly a model averaging tech-
nique. This is generally not the case with conventional information criterion methods which seek to identify
the single ‘‘best’’ model based on parsimony and performance. This suggests that, although it can be used
as a model averaging technique, there are better alternatives. But the method does have value if there are
any concerns about overfitting models with a large number of parameters.

Overall, GRA produced the most consistent results across catchments and DSST periods. While BMA was
found to perform comparably, this method is computational demanding and requires considerable run
time to achieve convergence. However, it is acknowledged that the deterministic nature of this study
ignores the importance of uncertainty in model averaging. For this purpose, BMA provides a coherent
framework which allows explicit quantification of both within and between model uncertainties. Given its
importance for robust decision making, the benefit of selecting an averaging method like BMA which pro-
vides a comprehensive and statistically robust framework for uncertainty assessment should receive due
consideration.

It could be argued that a more carefully selected model may provide a better tool for impact assessment.
While this may be appealing, particularly given the additional resources required to develop a multimodel
ensemble, it ignores the fact that structural uncertainties make this a particularly risky strategy. This will
always be the case because of our inability to fully explore model behavior under (unknowable) future cli-
mate forcing using historical data. It is also noted that the process of parameter selection (whether using an
optimization routine or a method such as GLUE), and the training data used, limit model ability to produce
accurate simulations when extrapolated beyond this context.
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Our results demonstrate that the best model varies depending on the DSST scenario, performance measure
and catchment considered, thus making optimal model identification unlikely. Such an approach would
also require tuning the selection for each catchment, which an adequate averaging technique should
achieve without necessitating prior screening. An alternative strategy might be to select an optimum model
subset. However, this process is subject to the same uncertainties outlined above, and is complicated by
the optimal subset not always being comprised of the best individual models [Vel�azquez et al., 2011; Seiller
et al., 2012, 2015]. This approach further runs the risk of pooling insufficient information to provide a good
measure of structural uncertainty, with too few members resulting in diminished predictive power and the
added benefit of the ensemble ultimately being lost.

Future work will examine why the individual CRR models performed differently across the catchment sam-
ple used in this study. Exploring parameter sensitivity to time-varying hydroclimatic conditions would help
link physical processes with model formulation and provide insight to the relative skill of ensemble mem-
bers under different forcing scenarios (e.g., wet/dry and seasonal transitions). This would also help to estab-
lish the influence which information content in the training data and the associated activation frequency of
key parameters have on transferability between contrasting regimes.

While the current study considers six dissimilar CRR models, each has a fixed structure which, it is assumed,
will generalize across a variety of catchment types. However, there is scope for exploring temporal transfer-
ability using a flexible modeling framework such as SUPERFLEX [Fenicia et al., 2011] or FUSE [Clark et al.,
2008]. Previous studies have highlighted the benefits of moving away from the ‘‘one-size-fits-all’’ approach
to one based on developing a structure commensurate with the hydrological complexity of the study catch-
ment [Staudinger et al., 2011; Euser et al., 2013]. Although potentially allowing for more appropriate struc-
ture selection this would still require DSST to evaluate capabilities beyond the training set(s). Similarly using
a flexible framework, whereby the effect of individual components can be isolated allows a more tenable
link between physical catchment properties/processes and the model structure. Parametric uncertainty not-
withstanding, it facilitates attributing differences in performance to specific structural configurations.

5. Conclusion

This study employed Differential Split Sample Testing (DSST) to scrutinize the temporal transferability of six
conceptual rainfall-runoff models based on contrasting 2/3 year noncontinuous periods. Using 37 Irish
catchments with diverse hydrological regimes, model performance was assessed when transferred between
the wettest/driest years on record and between contrasting wet/dry seasonal combinations. The study also
considered the benefits of employing combined model estimates derived from four different ensemble
averaging techniques.

Overall, HBV, GR4J, and to a lesser extent NAM were consistently the best performing models, with HBV
(GR4J) generally ranking highest for catchments with a lower (higher) groundwater contribution. Transfer-
ability of individual structures was found to vary depending on the DSST scenario, catchment and testing
criteria used. The greatest declines in performance were associated with transference to drier conditions,
with the extent of decline dependent on the performance criterion used.

The results confirm that it is impossible to identify a single structure that performs optimally across all
catchments, DSST scenarios and performance criteria. Moreover, the collective ensemble was shown to out-
perform the majority of individual ensemble members. However, averaging methods were found to differ
considerably with respect to the frequency with which they surpass the best individual member, particularly
for volumetric errors. Bayesian Model Averaging (BMA) and the Granger-Ramanathan Averaging (GRA)
method were found to perform better under transference than using the simple arithmetic mean (SAM)
and Akaike Information Criteria Averaging (AICA). Further work could be done on the potential added value
of using different variants of GRA including nonconstrained weights and a bias correction step, as well as
the transferability of averaging techniques that implement dynamic weighting [See and Openshaw, 2000;
Hu et al., 2001; Wagener et al., 2003].

Given that the historical record may not provide sufficient analogues to represent the plausible range of
projected climate changes, it is likely that the predictive errors from DSST will be underestimated and the
demand for models to offer functional simulations under increasingly different conditions will almost
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certainly be greater than can be captured here. It is noted that we only examined performance based on
mean seasonal/annual conditions. Other objective functions could be used to test model performance
under extreme high or low flows (which may be of greater interest to decision-makers than average flow
conditions).

Moreover, there is scope to develop an expanded DSST methodology that incorporates an assessment of
extremes, particularly as transferability at seasonal/annual timescales may mask performance with respect
to exact nonstationarities in the intensity and occurrence of extreme events. Similarly, while we focus on
precipitation, it may be helpful to consider using other climate variables (e.g., temperature, evaporation,
wind speed, and cloud cover) when selecting contrasting periods of record for model training and transfer-
ence testing [e.g., Seiller et al., 2012, 2015]. This may be particularly pertinent in regions where evapotranspi-
ration and/or snowmelt presently play a greater role, or where climate scenarios suggest that such drivers
are likely to become more/less significant in the future.

In closing, we emphasize that the predictive skill of hydrological models under different climate conditions
should be considered routinely, particularly when results are used to inform adaptation decision making.
Thus, it is important that codes of good practice are established to ensure models are applied in consistent
and appropriate ways. On the basis of our findings, we offer the following five recommendations:

1. Clearly articulate the objectives of the climate assessment; these will define the options in the next four
choices (below).

2. Set up the DSST to select the best available analogues of expected annual mean, seasonal mean, or sub-
seasonal (extreme) climate conditions for model training and evaluation, depending on the study
objectives.

3. Apply multiple performance criteria that are pertinent to the study objectives when assessing the trans-
ferability of model parameters between contrasting climate conditions; do not rely on a single perfor-
mance metric.

4. Test parameter transferability using a range of catchment types to better appreciate the form(s) of
hydroclimatic regime that are simulated with more or less reliability by a given model, and for the speci-
fied objective function(s).

5. Use a multimodel ensemble in conjunction with an objectively based averaging technique—ideally BMA
or GRA—to obtain the most reliable estimate of future river flow under a changing climate.
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