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Simulations of future climate change impacts are highly uncertain, particularly
for catchment hydrology, where output from models of complex dynamic systems
(global climate) are used as inputs to models of complex dynamic systems
(hydrology models). This is problematic where decision-making for adaptation is
underpinned by future climate predictions, and where policy-makers have opted
to delay adaptation until either uncertainties are reduced, or climate change
signals emerge from observations. This paper, using the Boyne catchment in the
east of Ireland as a case study, discusses the uncertainties involved in climate
change impact assessment for catchment hydrology and highlights why
uncertainties are unlikely to be constrained or reduced in the time-scale required
for adaptation. In addition, by calculating the time required for climate change
signals to emerge from the observational record and the magnitude of change
required for detection, it is highlighted that waiting for climate signals to be
statistically detectable is not an option for effective adaptation. The paper
concludes by considering how a paradigm shift in how we use the output from
climate impact assessments can progress the adaptation agenda given the limits to
prediction identified.
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Introduction

There is growing evidence that human-induced increases in atmospheric greenhouse

gases have driven observed changes in the global hydrological cycle over the past fifty

years (Gedney et al. 2006, Huntington 2006). This includes increases in runoff and

extreme events (flooding and drought) at continental scales (Groisman et al. 2005,

Milly et al. 2008, Dai et al. 2004). At more regional levels, results from hydrological

models that use downscaled output from Global Climate Models (GCMs) often

suggest that river flows will change in a greenhouse gas-induced warmer future

climate. In Ireland, previous research has indicated that, by the 2020s, increases in

winter flows, in addition to significant reductions in summer flows, are likely, with

changes becoming progressively larger as the century progresses (Charlton et al.

2006, Murphy and Charlton 2008, Steele-Dunne et al. 2008).

It is clear that such changes would have widespread implications for water

resource management and effective defence from extreme events while posing risks

to the delivery of targets as part of international commitments (e.g. good ecological

status as part of the European Water Framework Directive). Recent extreme events
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such as the November 2009 floods in Ireland have resulted in calls for investment in

flood protection, while key reports from the Irish Academy of Engineers (IAE

2009) have highlighted the risk posed by climate change to critical infrastructure

that is fundamental to societal well-being. Associated with these calls have been

requests for improved climate scenarios, reduced uncertainties and a move towards

probabilities for future impacts, particularly for extreme events. These are under-

standable requests given the importance of statistical analysis of past, observed,
climate used in the design of critical infrastructure such as flood defences or water

supply infrastructure. Additionally, given the long design life of hydrological

infrastructure and the lead time required for planning and operationalisation, it is

crucial that adaptation be considered as soon as possible. However, these types of

demands may be placing unrealistic expectations on the information that can be

reliably derived from highly uncertain climate change impact assessments. In this

context a paradigm shift is required in how we use future climate projections for

adaptation. As a result of uncertainties, attention is focused on observations and

their analysis to identify climate change signals and the postponement of crucial

decision-making until climate change signals are statistically detected. This paper

argues that it is unacceptable to delay decision making until climate change signals

emerge due to the confounding factors involved in eliciting climate change signals

from observations.

Detection of climate change signals at the scale relevant for decision-making is

hampered due to the relatively weak signal to noise ratio of climate change compared
with the large inter-annual variability of rainfall and river flows. Additionally there

are subjective choices in the identification of indices for analysis, assumptions of

statistical tests and significance testing that need to be met and complicating factors

like urbanisation, arterial drainage, and changes in monitoring practices that

can confound trend detection and association (Kundzewicz and Robson 2004,

Radziejewski and Kundzewicz 2004, Svensson et al. 2005, Wilby et al. 2008, Fowler

and Wilby 2010). Therefore, despite the identification of change points due to

natural climate variability in hydrological records (Kiely 1999), robust attribution of

changes in hydrology at the basin scale is not feasible at present. However, progress is

being made in determining the time horizons within which the formal detection of

trends will be possible. Work in the US and UK suggests that climate-driven trends in

seasonal runoff are unlikely to be found until at least the second half of the twenty-

first century (Zeigler et al. 2005, Wilby 2006). Wilby (2006) has also used detection-

time relationships to estimate the strength of trend required for detection by specified

time horizons in the UK. Results suggest that changes of �25% in runoff would be

needed for detection by the 2020s in the most sensitive basins and significantly longer

for basins with high levels of natural variation (Wilby 2006).
In such situations, adaptation must take place in advance of change being

detected. Similarly the prospect of reducing uncertainty in any significant way in the

timescales required for adaptation are remote, and in fact the opposite is likely to be

the case. In exploring these issues, this paper, using the Boyne catchment in the east

of Ireland as an exemplar, will illustrate the challenges and opportunities that present

themselves. The paper is structured as follows; section 2 places the challenge of

uncertainty in context, while section 3 discusses the range of future impacts typical

for the flow regime of the Boyne catchment. Given the wide ranges of future impacts

derived, section 4 will counter the argument of waiting for a climate change signal to
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be observed by indicating the time required for climate change to emerge and

providing an indicative magnitude of change required for statistical detection over

the coming decades. The paper concludes with a discussion on how we might proceed

with implementing anticipatory adaptation.

The challenge of uncertainty

Walker et al. (2003 p.8) define uncertainty as ‘. . . any departure from the

unachievable ideal of complete determinism’, a departure that is omnipresent in

modelling dynamic, chaotic, non-linear natural systems. This is particularly the case

for climate change impact assessments on hydrological response where output from

models of complex dynamic systems (global climate models) are used as input to
models of complex dynamic systems (catchment hydrological models). In addition to

random processes, uncertainty in the prediction of climate change impacts is also

introduced as a result of non-random factors, which are in many cases unquantifi-

able. Non random or epistemic uncertainties are particularly evident in the definition

of model structures, the estimation of boundary conditions, uncertainties about the

future (e.g. political, social, economic change) and indeed human behaviour in

response to risk, that cannot be assessed in a probabilistic way.

Foley (2010) highlights the additional uncertainties introduced by the current
epistemological limitations of science in effectively modelling the climate system.

Despite our ability to recognise the complexities, thresholds and feedbacks in natural

systems, our inability to represent in mathematical form the complexity that is

perceived in natural dynamic systems results in subjective simplifications of reality.

Similar problems are evident in the simulation of catchment hydrology. Our inability

to mathematically describe these complex systems in quantitative terms requires

simplifying assumptions to be made in representing key processes through

parameterisations, or approximations. In cases of complexity coupled with still
limited computing power, the omission of processes that are deemed to have a

negligible effect on the system, despite our incomplete understanding of their role

under conditions different to that in the observational record, is commonplace. As a

result, different models (both global climate models and hydrological models) will

have different model structures, while different routines used to parameterise

complex processes will result in different model simulations, thereby introducing

uncertainty into model outcomes.

Calibration as a process also induces uncertainty. Measurements themselves can
be subject to error and may be recorded at different scales to that required in the

models; a particular problem for the representation of sub-grid processes in coarse

GCMs and a common problem in hydrology, e.g. the modelling of hydraulic

conductivity (Beven 2009). Calibration, a process heavily dependent on the

information content of observations also requires assumptions, where, in a system

undergoing change, past observations are unlikely to be a robust estimator of future

behaviour. The issue of non-stationarity brought about by climate change is well

covered by Milly et al. (2008) in the context of water management.
An associated problem is related to the increased number of processes included in

models brought about by increasing computing power. The limited information

content of observations, along with added complexity has increased the risk of over-

parameterisation, where models may perform well for observations after optimisation,
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but may not be robust estimators of performance outside of the constraints of

calibration data. How do we calibrate hydrological models to represent extreme events

that are likely to increase in magnitude and frequency from observations that contain

little information on such events, and have confidence in their output? Further, there is

no guarantee that the optimally-identified parameters are the only ones that will give a

good fit to the observations; rather there may be many such model formulations, a

concept known as equifinality. While equifinality is becoming accepted as common

place in hydrological modelling, long computing times and the movement towards

physical realism in GCMs has meant that the assessment of such has been entirely

neglected to date. Even more fundamentally, we are currently forced to assume that

parameters are optimal for all time steps, modes of response, and will remain

representative over time-scales of a century or longer, which is particularly

problematic when extremes are of interest and the values of parameters estimated

through optimisation are expected to represent floods, droughts and average

conditions. This assumption of time invariant parameters is currently being tackled

at NUI Maynooth and we hope we can provide some directions forward on this

important issue.

Uncertainty due to random processes, epistemic sources and subjectivity in the

decision-making process of the application of models is manifest in the entire

methodology for producing climate change impacts on hydrological response. This

uncertainty can be traced back to problems of representing our understanding in

model formulations, problems of scale and space, and problems of representing

uncertainty; in that not all uncertainties are quantifiable, errors may be difficult to

extract and the use of different methods of representing uncertainty for decision-

makers results in different estimates of uncertainty. Therefore it is incumbent upon

modellers to quantify uncertainties using the available methods so as the best

possible data, with the highest information content achievable, within limiting

conditions, are provided for policy-makers.

Unfortunately, the cascading and additive nature of uncertainties in climate

change impact assessment means that it is highly unlikely that we can reduce

uncertainties to the extent required to attribute robust likelihoods to specific impacts

for implementing adaptation options. This conclusion is supported by Dessai et al.

(2009) who draw attention to the fact that, following more than 20 years at the top of

international research agendas, the uncertainty ranges for climate sensitivity

(temperature response of the global climate to a doubling of carbon dioxide levels

in the atmosphere) have not been significantly reduced, while no approaches have

emerged for successfully constraining uncertainties. In reality the further exploration

of epistemic uncertainty is likely to uncover further processes and feedbacks that

were previously unknown, thereby increasing uncertainty. This is exemplified by the

increased uncertainty associated with sea level rise due to the discovery of new

processes involved in the melting of large land-based ice sheets.

The most promising approach for reducing uncertainty in modelling is increased

investment in monitoring, but much work is required here if we consider that even for

heavily monitored catchments it is impossible to measure all of the variables in which

we are interested (Blöschl and Zehe 2005). Therefore future decisions on climate

change at the catchment scale will require the development of methodologies for

decision-making under conditions of deep uncertainty.
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Such large ranges of uncertainty have not been welcomed by policy-makers. Hall

(2007) draws attention to the heavy criticisms proffered to the ranges of future

changes presented in the Intergovernmental Panel on Climate Change’s (IPCCs)

Fourth Assessment Report, for not providing sufficient information on which to base
decisions about the future and the conception that uncertainty ranges are so large as

to be useless. In essence these criticisms have called for likelihoods to be associated

with future impacts projections. However, given the uncertainties outlined above,

probabilistic approaches are subject to the same difficulties as the scenario

approaches presented, particularly epistemic uncertainty, and can only represent a

fraction of the uncertainty space. Hall (2007) highlights that probabilistic outputs are

highly conditional on the assumptions made in their construction, the models used

and even the statistical methods adopted.
For example, Bayesian Model Averaging (BMA) and the Generalised Likelihood

Uncertainty Estimation (GLUE) methods are widely used for the propagation of

uncertainty in impact studies. Bastola et al. (2011) derived quite different ranges of

model outputs for average river flow conditions for selected catchments in Ireland,

depending on the technique used. Therefore there is uncertainty about uncertainty

analysis and it is difficult to prioritise one approach over the other in terms of

performance (Beven 2006). There is also no guarantee that the adopted techniques

provide statistically valid prediction limits for future impacts, where subjective
choices such as the selection of an informal likelihood measure in GLUE, is based on

the modeller’s perception of uncertainty.

Given all this, Hall (2007) highlights that the traditional use of probabilities in

engineering for optimum design is potentially dangerous in the context of climate

change, if the major caveats and assumptions involved are not communicated in a

transparent manner. Indeed, he also stresses that calls to reduce all of the uncertainty

in climate change impacts modelling to a single probability distribution function is to

misrepresent and place unrealistic demands on current scientific knowledge. Existing
statistical theory is not adequate in the context of such epistemic uncertainties and

non-stationarities (Beven 2008).

In advancing the science of climate change prediction, Beven (2006) highlights

that we need to deal with uncertainty in an open and transparent manner and

identify ways of constraining it. This is unlikely to happen in the near- or medium-

term future given the complexity of the problem. The current movement in the

science is also toward increasing the physical realness of models, as evident by the

current focus in many climate modelling centres on increasing the complexity,
resolution and sub-grid parameterisations of models, rather than exploring the

ranges of possible outcomes. With end-users and policy makers this approach can

run the risk of confusing precision and accuracy. This confusion is often evident in

the selection of dynamically downscaled regional climate model output over the same

information statistically downscaled directly from GCMs because of the spatial

resolution of the former.

Estimating the range of future impacts

In order to portray the range of impacts associated with future climate change, the

range of simulations produced for the Boyne monthly flow regime is presented here.

The approach presented accounts for the uncertainty derived from GCM, emission
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scenario and impact models. While this is by no means an exhaustive representation

of associated uncertainty it does represent the fullest account taken for Irish

conditions to date. For illustrative purposes the work uses the GLUE method to

propagate uncertainty into future simulations. Four conceptual rainfall-runoff

models are calibrated to represent the hydrological response of the Boyne catchment.

The models are; HyMOD (see Wagener et al. 2001), NAM (see Madsen 2000),

TANK (Sugawara 1995) and TOPMODEL (Beven et al. 1995). Each of these models

varies in the way they conceptualise key hydrological processes and in their

complexity, primarily related to the number of parameters requiring calibration.

Among the four selected models, NAM and TANK describe the behaviour of each

component of the hydrological cycle at the catchment level by using a group of

conceptual elements. Conversely, TOPMODEL and HyMOD are both variable

contributing area models. In TOPMODEL the spatial variability is taken into

account through indices derived from topography, whereas in HyMOD the model

spatial variability within the basin is modelled using a probability distribution

function. All four models employ a single linear reservoir to model groundwater.

The GLUE method is based on the premise that for a physically-based

hydrological model, no single optimum parameter set exists; rather a range of

different sets of model parameter values may represent the process equally well.

Different model structures, as well as different parameter sets in a particular model

structure, can be easily combined within this framework. The technique is based on

Monte Carlo simulation where a model is run a large number of times with different

parameter sets. In GLUE, it is assumed that the error associated with a particular

model and/or parameter set will be similar in prediction to those found in

calibration. Full details on the calibration of models and the application of the

GLUE technique can be found in Bastola et al. (2011).

The calibration (1971�1990) and validation (1991�2000) results for the Boyne

catchment are shown in Table 1 where results from each conceptual rainfall runoff

model are shown independently in the form of the Nash Sutcliffe goodness of fit

measure (NSE) calculated for the median of simulations, the Count Efficiency (CE),

which represented the proportion of observations contained within the GLUE

prediction bounds and the Prediction Interval (PI) representing the range of the

uncertainty bounds for each model. Best performance values in terms of NSE are

obtained for HyMOD and NAM, while similar performance levels for both

calibration and validation highlight the robustness of each of the models in

capturing the hydrology of the catchment. The combined prediction interval of

simulations is shown in Figure 1 for selected years in the calibration and validation

periods.

Table 1. Calibration and validation performance for each rainfall runoff model.

NSE (Median) CE PI (m3/s)

Period (Calib/Valid) Basin (Model) Calib Valid Calib Valid Calib Valid

Boyne (HyMOD) 0.79 0.76 0.80 0.83 28.2 29.4

1971�1990/1991�2000 Boyne(NAM) 0.76 0.74 0.77 0.78 23.8 25.1

Boyne (TANK) 0.70 0.73 0.67 0.75 25.6 27.1

Boyne (TOP) 0.69 0.68 0.52 0.57 23.3 24.7
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Six sets of statistically downscaled climate scenarios derived from three GCMs

and two SRES emission scenarios, namely A2 and B2, downscaled for Ireland by

Fealy and Sweeney (2007) were used to characterise future climate evolutions.

The GCMs considered included: HADCM3 from the Hadley Centre for Climate

Prediction and Research (Met Office, UK); CCGCM2, from the Canadian Centre

for Climate Modelling and Analysis (CCCMA, Canada) and CSIRO-Mk2 from the

Commonwealth Science and Industrial Research Organisation (CSIRO, Australia).

The A2 and B2 scenarios represent future emissions levels that could be considered

‘medium-high’ (A2 emission) and ‘medium-low’ (B2 emission).

Simulations for three future time horizons representing early, mid- and late-

century are shown in Figure 2. The prediction intervals and median simulations

presented are the likelihood weighted output of the GLUE technique. These

simulations account for uncertainties in greenhouse gas emissions scenarios, GCM

sensitivity and uncertainty in rainfall runoff model structure and parameters. Even

these do not comprise the full range of uncertainty, of notable absence is the

uncertainty derived from regionalisation technique. Nonetheless, the range of

uncertainty surrounding the future evolution of the monthly flow regime of the

0

50

100

150

200

250

01
/0

1/
73

01
/0

5/
73

01
/0

9/
73

01
/0

1/
74

01
/0

5/
74

01
/0

9/
74

01
/0

1/
75

01
/0

5/
75

01
/0

9/
75

S
tr

ea
m

flo
w

 (
C

um
ec

s) 90% Prediction range
Observed

(a)

0

50

100

150

200

250

01
/0

1/
19

97

01
/0

4/
19

97

01
/0

7/
19

97

01
/1

0/
19

97

01
/0

1/
19

98

01
/0

4/
19

98

01
/0

7/
19

98

01
/1

0/
19

98

01
/0

1/
19

99

01
/0

4/
19

99

01
/0

7/
19

99

01
/1

0/
19

99

S
tr

ea
m

flo
w

 (
C

um
ec

s)

90% Prediction range
Observed

(b)

Figure 1. Prediction interval for Boyne basin including observed flow produced from

multimodal ensemble of four selected models using Generalised Uncertainty Estimation

(GLUE) method for the selected period a) from 1973 to 1975 (calibration) and b) from 1997 to

1999 (validation).

(b) Boyne: 2050s
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(a) Boyne: 2020s
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(c) Boyne: 2070s
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Figure 2. Total uncertainty envelopes derived from six climate scenarios and four hydrological

models for Boyne basin and for three time periods using Generalised Likelihood Uncertainty

Estimation method (GLUE).
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Boyne catchment is abundantly clear. Simulations of extreme events rather than

monthly means are likely to result in greater uncertainty. Of particular note from

Figure 2 is that the direction of change relative to the control period (1971�1990)

shows no clear direction of change for any month. Additionally, the 90% prediction
intervals for mid-century and beyond show a significant increase, most notably for

wetter months.

Obviously such uncertainty presents significant challenges for adaptation,

particularly when adaptation in the water sector is likely to involve significant

expenditure of exchequer finances on the maintenance, upgrade and development of

existing and new infrastructure. This challenge is made all the more pressing given

the current lack of capacity in water supply systems nationally, and the lack of

knowledge of the protection provided by many of the state’s flood defences in highly
exposed areas and the inappropriate development on flood plains evident over the

last decades. The scale of this challenge in terms of the social impact and monetary

cost of failure is clearly illustrated by the hardships endured by flooding in

November/December 2009 and the failure of water supply due to extreme weather

conditions in December/January 2009/2010. In response, the government allocated

t508 million for funding water services infrastructure in 2010, while the Office of

Public Work’s budget for flood alleviation and protection has been increased to t50

million in 2010 (an increase of 38%). Serious questions need to be raised in terms of
how climate change and the associated uncertainties can best be factored into this

significant investment, given the long design life of such critical infrastructure, upon

which our modern society depends.

The uncertainty presented also gives rise to difficulties in terms of how engineers

approach the design of such infrastructure. The traditional approach of optimising

the design of, and investment in, long life infrastructure has, for a long time, been

based on statistical assessments of meteorological and hydrological observations.

Given that climate change introduces non-stationarity to statistical techniques which
are fundamentally based on the assumption of stationarity, coupled with the

uncertainty in future simulations, the realisation of optimum design for adapting

to climate change impacts may not be possible. The idea of sub-optimal design,

involving trade offs in ensuring performance across a range of conditions, is not a

concept that sits comfortably with many. Therefore, the uncertainty confronted

increases the risk of significant over- or under- design with associated significant

excess expense and risk of failure.

Detection times for climate change and magnitudes of change required for detection

In the face of such high levels of uncertainty and risk, a common, and indeed

understandable, response has been to ‘wait and see’ on climate change, until

observational records reveal a climate signal that can serve to reduce uncertainty and

focus resources. However, this approach is problematic. There is a general absence of

robust, significant trends in Irish streamflow records that can be related to climate

change. Indeed the identification of trends is complicated given the dynamic
interaction between society and the natural system, with the lack of naturalised

flows complicating the identification of trends. Of particular relevance to Ireland are

the effects of arterial drainage which can have a profound impact on the statistical

analysis of river flow records, while other confounding factors include land use

88 C. Murphy et al.



change, urbanisation and channel engineering. In addition, where trends are

identified, both the direction and strength of trends are highly dependent on the

length of data investigated and by the presence of outliers at the beginning or end of

particular series. In the context of climate change when these difficulties are

considered along with those of extracting a climate change signal from large amounts

of noise introduced by natural climate variability, the general absence of climate

change-related trends in river flow records is not surprising. Nonetheless, the absence

of trend is widely used as an argument against the implementation of adaptation

planning.
Given the lack of robust climate change signals from observations, this section

aims to perform two tasks; first, the strength of trend (% change) needed in order to

become statistically detectable under widely used significance levels for the Boyne by

early-century (2025) and mid-century (2055) was calculated. Second, the detection

time, in years, for changes in streamflow due to climate change was estimated for

annual, winter and summer flows. The methodology adopted is based on climate

change detection work by Ziegler et al. (2005), Wilby (2006).

Trend detection in environmental series can be confounded in two ways. Firstly

by Type I errors in which stochastic variations in the record are mistakenly accepted

as trend, most notably for short records influenced by natural decadal variability.

Secondly by Type II errors where a real trend is not identified because it is swamped

by short-term stochastic variations. Errors of Type I are addressed by setting the

probability of erroneous detection (a) at a predetermined level of confidence. The

probability of making a Type II error (1 �b) depends on the power of the statistical

test to detect a specified trend at the required confidence level a, and so varies with

record length, trend magnitude and the distribution of the time series (Wilby 2006).

In line with Ziegler et al. (2005) and Wilby (2006)Wilby (2006a) conservative

approach was taken towards committing Type I and II errors, with a�0.05 and

b�0.10 when estimating the strength of detectable trends or detection times. Sample

variances of the observed time series were taken from reconstructed river flows

derived by Harrigan (2010). To examine the sensitivity of detection times to the

variance of observations, samples were taken from two sub-periods of the hindcast

records; a long period (1951�1990) and a shorter period (1975�1990). The future

climate change projection used is that of the median simulated flow described above

for the Boyne, which provides a central estimate of the future evolution of river flows.

Figure 3 shows the associated annual, summer and winter trends derived from this

projection from 1990 to 2055, with the slope of the line used to derive future trend

magnitudes.

Table 2 shows the magnitude of trend required for detection of the climate change

signal by 2025 and 2055 based on the long and short period variances. Evident is the

fact that large changes are required for statistical detection, particularly for summer

flows where the variances are large. For instance, based on the variance of

observations calculated from 1951�1990, a change of 96% in summer flows would

be required in order to be detected using standard statistical approaches such as the

Mann Kendall test for trend. The magnitudes of change required are smaller for

annual and winter flows, but are still in excess of 40% by 2025 and 30% by 2055.

Again there is consistency between the variances where river flow series with higher

variances require larger magnitude changes for detection.
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These results have important implications for adaptation and policy formulation

in the area of water management. In particular, the magnitude of changes required

for detection by 2025 and even 2055 are larger than the changes projected by impact

assessments to date. Therefore adaptation will have to take place before climate

change signals are statistically detectable, moving the emphasis away from a ‘wait
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Figure 3. Trends in the evolution of climate scenario used for the estimation of detection times

for a) annual, b) winter and c) summer for period 1990 to 2055.
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and see’ philosophy towards the need for anticipatory adaptation, thereby increasing

the pressure placed on decision making under highly uncertain model outputs.

Table 3 displays the number of years required to significantly detect the climate

change signal for the Boyne using the Mann Kendall statistic. Again the results are

closely tied to the variance of observations. In terms of the long period variance, the

simulated changes in annual flow for 2025 would require 110 years for detection,

assuming no change in the variance of flow with climate change. Once again the

results from such an analysis highlight the importance of anticipating and adapting

to the impacts of climate change, in many cases long before the signal has emerged

from observations. The results presented here for both the magnitude of change and

detection times are consistent with previous work of Ziegler et al. (2005) and Wilby

(2006) for the US and UK respectively.

Adaptation under uncertainty

In responding to this challenge, a number of authors have highlighted the potential

for strategies that are robust to uncertainty (Lempert and Schlesinger 2000,

Hallegatte 2009, Wilby and Dessai 2010). Robust strategies have been qualified as

those that: (1) are low-regret, in that they are functional and provide societal benefit

under a wide range of climate futures; (2) are reversible, in that they keep at a

minimum the cost of being wrong; (3) provide safety margins that allow for climate

change in the design of current infrastructure or easy retrofitting; (4) use soft

strategies that avoid the need for expensive engineering and institutionalise a long

term perspective in planning; (5) reduce the decision time horizons of investments;

Table 2. Magnitude of change (% change) required for statistical detection of climate change

signal by 2025 and 2055 using long and short period variances.

Year Long Short

Annual 2025 43 33

2055 32 24

Summer 2025 96 108

2055 71 79

Winter 2025 46 30

2055 34 22

Table 3. Number of years from 1990 required to significantly detect climate signal derived

from simulations for the Boyne. Results for both long and short period variances of

observations are presented.

Year Long Short

Annual 2025 110 91

2055 413 343

Summer 2025 151 163

2055 151 162

Winter 2025 115 86

2055 181 176
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and (6) are flexible and mindful of actions being taken by others to either mitigate or

adapt to climate change (Hallegatte 2009, Wilby and Dessai 2010).

However, the movement to such an approach to adaptation necessitates a

paradigm shift in how we deal with climate change data, requiring a movement away

from predict and provide, top-down approaches, towards bottom-up approaches that

allow climate scenarios to be used in exploratory modelling exercises that test the
functionality of adaptation options to the uncertainties involved. Work in this

respect is progressing and frameworks for robust adaptation and example applica-

tions in the water sector are beginning to emerge in the international literature

(Dessai and Hulme 2007, Lopez et al. 2009, Hall and Murphy 2010). Key among

these emerging examples is the usefulness of moving away from considering climate

change impacts explicitly, but rather identifying where and when vulnerability to

climate change may emerge and the application of frameworks for the identification

and selection of robust adaptation options.

In Ireland, Hall and Murphy (2010) conducted a vulnerability analysis of future

public water supply for catchments over the coming decades by accounting for

current and future pressures within the water supply system. Where vulnerability was

identified, potential adaptation options were screened for robustness using explora-

tory modelling to assess the effectiveness and robustness of the options portfolio. In

the case of the Moy catchment, a realistic reduction of losses from leaking water

infrastructure greatly reduced the vulnerability identified under all climate scenarios
investigated up to mid-century, revealing a low regret strategy that is robust to

uncertainty (Hall and Murphy 2010).

In a similar study of the Wimbleball water resource zone in southwest England,

Lopez et al. (2009) used the ensemble of the ClimatePrediction.net experiment to test

the performance of different adaptation options under climate change. By analysing

the frequency of failures to meet peak water demand it was concluded that the

previously-identified option of increasing reservoir capacity was not enough to tackle

successive dry years and that demand reduction measures were also needed (Lopez

et al. 2009).

Such studies suggest that adaptation must be approached as context specific; a

successful set of adaptation options may work well in one region but may not be

applicable in another. Adaptation has to be planned and implemented on

international (for trans-boundary river basins), national and regional (basin) level.

National planning and water management at the river basin scale can help us to

understand current and future vulnerabilities and insufficiencies which need to be
recognised and subsequently addressed (Stakhiv 1998). Detailed adaptation plans

have to be implemented at individual river basin level. The fine-tuning of these plans

ideally takes palace with a broad range of stakeholder involvement, to ensure that all

possible options are considered. With stakeholder involvement, adaptation can allow

water users to influence the adaptation process, enhancing the likelihood of success.

Adaptation strategies have to be evaluated according to the best available knowledge

on a regular basis, and reconsidered if necessary. This adaptation approach ensures

flexibility and the ability to respond to changes as new scenarios emerge. This also

reduces the risk of maladaptive action which will significantly constrain our future

possibilities (Matthews and Le Quesne 2009). Matthews and Le Quesne (2009)

therefore promote the application of a process-oriented ‘vulnerability thinking’

instead of ‘impacts thinking’ approach in adaptation planning. A ‘vulnerability
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thinking’ approach combines flexibility with planning over long time horizons and

monitoring, as well as adaptive management, recognising the uncertainty in

projected hydrological changes.

Conclusions

Modelling the future impacts of climate change is an inherently uncertain process. To

date, the dominant approach to adaptation has been based on the ‘predict and

provide’ approach to information provision for decision-makers. As highlighted by

Wilby and Dessai (2010), the number of tangible adaptation practices that have

emerged from this top-down approach are limited globally as a result of the wide

ranges of associated impacts. As such, the demands placed on climate modellers to

provide scenarios with reduced uncertainty they are unlikely to emerge in the time-

scale necessary for adaptation, while climate change signals are unlikely to be
detectable in river flow observations for some decades to come. Probabilistic

approaches are subject to the same fundamental uncertainties as scenario-based

approaches. In light of these constraints, it is incumbent upon researchers to develop

alternative approaches to facilitating adaptation. The identification of vulnerability

and the assessment of robust adaptation options through exploratory analysis using

climate scenarios, that best quantify uncertainties in future outcomes, represents one

potential, and promising, direction. However this approach, given its departure from

traditions of optimal design, requires a paradigm shift towards sub-optimal solutions
that are robust to the uncertainty in climate change modelling. A flexible and robust

planning process is required where adaptation options can be re-evaluated and

pathways adjusted as new emerging information becomes available.
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