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Abstract A recent observation in NOAA’s National Climatic Data Center’s monthly assessment of the state
of the climate was that contiguous U.S. average monthly temperatures were in the top third of monthly
ranked historical temperatures for 13 straight months from June 2011 to June 2012. The chance of such a
streak occurring randomly was quoted as (1∕3)13, or about one in 1.6 million. The streak continued for three
more months before the October 2012 value dropped below the upper tercile. The climate system displays a
degree of persistence that increases this probability relative to the assumption of independence. This paper
puts forth different statistical techniques that more accurately quantify the probability of this and other such
streaks. We consider how much more likely streaks are when an underlying warming trend is accounted for
in the record, the chance of streaks occurring anywhere in the record, and the distribution of the record’s
longest streak.

1. Introduction

The U.S. National Oceanographic and Atmospheric Administration (NOAA) monitoring service provides
real-time assessments of the climate in an accessible way to the public and other stakeholders. This type of
reporting is challenging because it necessitates fast data processing, analysis, and reporting of results. In
their monthly assessment of the state of the climate, NOAA made the following statement in July 2012:

“During the June 2011–June 2012 period, each of the 13 consecutive months ranked among the warmest
third of their historical distribution for the first time in the 1895–present record. The odds of this occurring
randomly is 1 in 1,594,323” [NOAA, 2012].

The statement, and in particular its subsequent reporting in traditional and nontraditional media, engen-
dered much lively discussion in multiple fora. The streak continued for an additional 3 months after the
statement and was broken when October 2012’s temperature checked in slightly under the October tercile
(upper third).

The above probability quote, which is 1 in 313 (or 1 in 316 if the longer streak is considered), assumes that
the temperatures for each month are statistically independent from all other months and that only the most
recent 13 (16) months were considered. We show that such month-to-month independence is invalid, as
is well recognized within the climate community, and put forth several ways of more accurately estimat-
ing the chances of such streaks anywhere in the record. Specifically, we devise realistic estimates of this
streak probability when the record is stationary and when a trend is allowed; the latter quantifies how streak
probabilities change in a warming climate. Unlike the scientists involved in the original statement we can
perform a less time-bound statistical analysis of the problem, which includes fewer simplifying assumptions.
We hope that some of our statistical models and insights can be used to improve real-time reporting of such
streaks in the future.

Before proceeding, we clarify what we mean by an upper tercile event. The practice of NOAA’s National
Climatic Data Center (NCDC) is to declare whether a given month’s temperature is an upper tercile event
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Figure 1. Time series of CONUS average monthly temperatures used in
undertaking regular monthly NCDC monitoring reports. Version used:
November 2012 report.

relative to all current and previous
months in the record. This choice
is driven by the stated mission of
monitoring activities at NOAA to
place the current period of record
in historical context. Phrased math-
ematically, suppose there are N
past and current temperatures for
a given month. Let n be the near-
est integer to N/3. The observation
is declared an upper tercile event if
and only if it is one of the largest n
values among the N past and current
observations for that month. Thus, a

streak of 16 upper tercile events entails 16 consecutive monthly temperatures in the upper third of their
historical record.

The remainder of this paper is arranged as follows. In section 2, brief characteristics of the monthly tem-
perature data used in NCDC’s monitoring products are established. Section 3 supplies probability streak
calculations for independent data. Here we show that the monthly temperatures in question are dependent.
Section 4 describes the individual statistical models and methods of estimation used to derive our various
streak probability estimates. Section 5 presents and compares the estimated upper tercile streak probabili-
ties under different model assumptions, including the absence and presence of a warming trend. Section 6
provides several comments, and section 7 summarizes our findings. The supporting information provides
details of the modeling and computer code used in four different statistical analyses of the temperature
data. The results we provide in this article are drawn from these analyses.

2. The Data

The data used in this analysis are derived from the U.S. Historical Climatology Network, Version 2.5 [Menne
et al., 2012] for the conterminous United States (the contiguous 48 states, abbreviated to CONUS). These
data are a subset of the broader U.S. Cooperative Observer network (COOP) sites supported by NOAA’s
National Weather Service. This subset was assigned in the 1980s based upon geographical coverage and
station completeness. In the Version 2.5 product, the stations have been homogenized using the NCDC’s
Pairwise Homogenization Algorithm [Menne et al., 2009; Williams et al., 2012a, 2012b], which makes pair-
wise comparisons between multiple neighboring stations to identify and adjust for nonclimatic artifacts.
The adjustments use the full COOP network, but only long-term USHCN designated stations (about 1/6 of
the total stations) are retained and analyzed after adjustment. The homogenized station data were then
spatially averaged by NCDC’s monitoring branch to create a national time series, which is studied here. The
data contain monthly temperatures for the 118 year period from 1895 to 2012. We analyze the data through
October 2012, giving 1414 monthly values.

Figure 1 shows a time series plot of the CONUS temperature series. There is a clear seasonal cycle on the
order of 40◦F that is much larger than any long-term warming trend. Consequently, any long-term trend is
hard to discern without first deseasonalizing the series. Winter months are cooler and more variable than
summer months. This is expected, given the partitioning of moist and dry energy terms with absolute tem-
perature [Peterson et al., 2011]. Fitting linear trends to the series for each month by ordinary least squares,
the impact of seasonality on the trend becomes apparent (Table 1), with February showing the most warm-
ing (2.78◦F per century) and October the least (0.57◦F per century). Figure 2 shows the monthly distributions
of temperatures throughout the record. On average, the warmest month is July and the coldest is January.

Table 1. Linear Trend Slope by Month in ◦F Per Century

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Slope 0.86 2.78 1.99 1.08 1.27 1.28 1.49 1.35 0.80 0.57 1.02 1.04
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Figure 2. Side-by-side box plots [Tukey, 1977] of CONUS average
monthly temperatures in ◦F. The thick horizontal line is the median, the
box indicates the first and third quartiles (Q1 and Q3), and the whisker
extends to the most extreme data point within 1.5 box heights (1.5
times the interquartile range, Q3–Q1). Remaining (even more extreme)
data are plotted as circles.

Figure 3 shows a time series plot of the
lower, middle, and upper tercile streaks
for the CONUS series as sequentially cal-
culated from the start of the record. Up
to the year 2000, the longest upper ter-
cile streak is 8 months. A single 12 month
upper tercile streak ends in October
2000. The longest streak in the lower ter-
cile is 6 months and occurs early in the
record. The middle tercile has a number
of streaks exceeding 5 months, with the
longest streak of 13 months occurring
early in the record. Long upper tercile
streaks seem to have become more
common since the late 1970s.

The 16 month streak being studied is
the longest in any tercile in the entire
record. While the choice of the tercile as

our threshold of analysis is somewhat arbitrary, any choice between the top 42% and the top 26% has the
same historical 16 consecutive month streak exceeding that percentile. Hence, the streak is relatively robust
to the exact choice of threshold.

3. Streak Probability Calculations

The calculation given by NOAA [2012] explicitly assumes that all months are independent, so that the
probability that a given month’s temperature exceeds its historical tercile is 1/3. One can view the
month-to-month temperatures and the tercile as a sequence of biased coin tosses, where the probability
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Figure 3. Time series plots of the number of consecutive months in the lower, middle, and upper terciles for the CONUS
average monthly temperature record.
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Figure 4. Estimated autoregressive (AR) coefficients for the monthly
mean CONUS corrected series. The vertical lines are asymptotic pointwise
95% confidence intervals using the mle option in the ar function in R
[R Core Team, 2012].

of heads (a top-tercile exceedence)
in any toss is p = 1∕3 (there is a 1/3
chance of an upper tercile event). When
the tosses are independent, the chance
of a particular k = 16 month sequence
resulting in all heads is indeed pk =
3−16 = 2.323 × 10−8, or about one
in 43,046,721. This chance is not the
probability that a 16 month streak of
heads occurs anywhere within the first
N = 1414 tosses. In tossing a coin inde-
pendently with heads probability p ad
infinitum, one expects to wait

1
p
+ · · · + 1

pk
=

1 − p−k

p − 1

tosses until encountering the first streak of k heads. For a run of 16 heads, one expects to wait 64,570,080
tosses. The probability of not encountering a streak of k or more heads in the N trials has a complicated
expression [Feller, 1968, section XIII.7]. The chance of seeing at least one run of 16 heads in N = 1414 trials is
approximately 2.166 × 10−5, or about 1 in 46,171.

Independence between months is essential in the above calculations but seems questionable. An assump-
tion of a stationary, but not independent, monthly temperature series may be more reasonable. When the
coin flips are mathematically regarded as a stationary sequence (this assumes far less than month-to-month
independence), streak probabilities can drastically change. Although, in principle, it is possible to con-
struct stationary time series for which the probability of a 16 month upper tercile streak is anywhere
between 0 and 1/3, in practice, we restrict our attention to time series models that are consistent with the
observed data.

In climate modeling, autoregressive (AR) processes, often of first order, are frequently used to capture
dependence impacts in significance assessments [e.g., Santer et al., 2008]. Figure 4 shows autoregressive
coefficient estimates up to order 11 for our series (monthly sample means were first subtracted). The vertical
lines are asymptotic 95% pointwise confidence intervals. These intervals show several significantly nonzero
coefficients and imply that first-order autoregressive models are not appropriate here. Specifically, the AR
coefficient estimates are significantly nonzero at lags 1, 2, 5, and 7. Nevertheless, AR time series processes
are too restrictive for our present purposes and the bulk of the paper is concerned with two more gen-
eral classes of models: those that combine autoregressive and moving-average components (abbreviated
ARMA) and those based on fractional differencing (FD).

The next section describes the time series models we use in detail. These models are then used to simulate
streak probabilities.

4. Methods of Analysis

Several time series models can reasonably describe the CONUS series. As the upper tercile streak probabil-
ity will depend on the model choice, the use of different statistical models recognizes that there is no single
correct way to estimate the streak’s probability. In this paper, four statisticians analyzed the data indepen-
dently, using different statistical models, though they shared intermediate results and made an effort to
ensure that the approaches span a range of plausible approaches to the problem. In this section, we summa-
rize the statistical models and methods of estimation. Section 5 provides the estimated streak probabilities
from these models. The detailed analyses (including code) are described by each of the four statisticians in
the supporting information.

Some general remarks are in order before proceeding. First, diagnostic tests indicate that the CONUS aver-
age monthly temperature series has approximately Gaussian marginal distributions. Second, all analyses
take the periodicity in the mean and standard deviation (see Figure 2) into account in some manner.

CRAIGMILE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5760



Journal of Geophysical Research: Atmospheres 10.1002/2013JD021446

1900 1920 1940 1960 1980 2000
−3

−2
−1

0
1

2
3

Year

S
ta

nd
ar

di
ze

d 
A

no
m

al
ie

s

Figure 5. Time series plot of the standardized anomalies of CONUS
temperatures.

4.1. Stationary Models With
Seasonal Cycles
Let {Xt ∶ t = 1,… ,N} denote the
N = 1414 CONUS monthly temper-
atures. Let m(t) denote the month
of time t (January is 1, February is 2,
…, and December is 12). Perhaps the
simplest model for the data has the
periodic stationary form

Xt = 𝛼m(t) + 𝜎m(t)Zt, t = 1,… ,N.
(1)

Here 𝛼𝜈 is the mean temperature of month 𝜈 and 𝜎𝜈 is the standard deviation of the month 𝜈 temperatures,
𝜈 = 1,… , 12. The model errors {Zt} are assumed to be a zero-mean unit-variance stationary time series.
There is no trend in this model; section 4.2 modifies the above scenario to allow for trends.

Estimates of 𝛼𝜈 and 𝜎𝜈 , denoted by 𝛼𝜈 and 𝜎𝜈 , are simply the monthly sample averages and standard
deviations, respectively. The seasonally standardized anomalies {Ẑt} are calculated from these estimates via

Ẑt =
Xt − 𝛼m(t)

𝜎m(t)
, t = 1,… ,N.

Figure 5 shows a time series plot of {Ẑt} and reveals a trend or long-range dependence. As seen in section 2,
this series is not white noise. Thus, various stationary time series models will be considered for {Ẑt} and
compared for quality of fit.

One type of stationary model for {Ẑt} employs an autoregressive moving-average ARMA(p, q) process
[see Brockwell and Davis, 2002] of orders p and q. ARMA series parsimoniously describe many stationary
time series. To select the autoregressive order p and the moving-average order q, we use the Akaike Infor-
mation Criterion (AIC) [Akaike, 1974] or its asymptotically corrected version AICC [Hurvich and Tsai, 1988;
Brockwell and Davis, 2002]. ARMA models are short-range dependent processes with autocorrelations that
decay geometrically to 0 with increasing lag.

As an alternative, long-range dependent time series models for {Ẑt} are also considered. Long-range depen-
dent (also called long memory) processes are series in which the autocorrelations decay polynomially to 0
with increasing lag [see, e.g., Beran, 1994; Palma, 2007]. These models are popular because they can capture
long-range variations in the atmosphere and are commonly used as temperature models [e.g., Caballero
et al., 2002; Király and Jánosi, 2005; Craigmile and Guttorp, 2011]. The simplest example of a long mem-
ory process is the fractionally differenced (FD) process [Granger and Joyeux, 1980; Hosking, 1981], although
more complicated models such as autoregressive fractionally integrated moving averages and the fractional
exponential models were also considered.

The simplest way to fit the model in (1) first estimates the 𝛼𝜈 and 𝜎𝜈 parameters as the monthly sample
means and standard deviations and then estimates the time series model from {Ẑt}. A more advanced
paradigm estimates the 𝛼𝜈 and 𝜎𝜈 parameters jointly with the parameters governing {Zt}. In many cases, this
makes little difference to the quality of fit compared with separately estimating the {𝛼𝜈, 𝜎𝜈 ∶ 𝜈 = 1,… , 12}
and time series parameters, but for trend models based on (2) below, the two parts of the estimation prob-
lem cannot be cleanly separated so we have to consider some form of joint estimation. The estimation
techniques that were used include generalized least squares, maximum likelihood, and Bayesian estimation.

4.2. Time Series Models With Trends
Figure 5 suggests that the standardized anomalies are increasing over the period of study. Thus, we consider
a variety of models with a trend. As before, suppose that {Zt} is a zero-mean Gaussian series, {𝛼𝜈}12

𝜈=1 are
monthly location parameters, and {𝜎𝜈}12

𝜈=1 are seasonal scale parameters. Additionally, let yt denote a time
index at time t. Two possible ways of defining this index are yt = t or yt is the year corresponding to month
t. Either way, a model for the temperatures {Xt} that allows for a linear trend in the temperatures is

Xt = 𝛼m(t) + 𝛽yt + 𝜎m(t)Zt, t = 1,… ,N. (2)

CRAIGMILE ET AL. ©2014. American Geophysical Union. All Rights Reserved. 5761
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This model is a version of the periodic regression model adopted in Lund et al. [1995] and Craigmile and
Guttorp [2011].

A more general nonlinear temperature trend model is

Xt = 𝛼m(t) + 𝜇t + 𝜎m(t)Zt, (3)

where {𝜇t} is a nonlinear trend component which smoothly varies over time, perhaps based on splines
or wavelets.

An alternative parameterization of the trend supposes linearity after a standardization:

Xt − 𝛼m(t)

𝜎m(t)
= 𝛽yt + Zt, t = 1,… ,N,

which is equivalent to

Xt = 𝛼m(t) + 𝛽𝜎m(t)yt + 𝜎m(t)Zt, t = 1,… ,N. (4)

A generalization of this model allows the linear trend to vary by month:

Xt = 𝛼m(t) + 𝛽m(t)𝜎m(t)yt + 𝜎m(t)Zt, t = 1,… ,N. (5)

As in the previous subsection, we consider a number of different stationary models for {Zt} in our above
regression equations.

Comparing different ARMA model fits, we often found that a high-order model (such as ARMA(7,5)) had
the smallest AIC or AICC. However, the AIC criterion tends to overparametrize [e.g., Hurvich and Tsai, 1988].
Specifically, the constraints on the ARMA model parameters tend to make the optimization procedure unsta-
ble. Lower order models often had nearly equivalent AICC scores without incurring the same instability
issues. We therefore concentrate on two relatively low-order models: ARMA(3,1) and ARMA(4,2). Residu-
als from the ARMA(3,1) and ARMA(4,2) passed several white noise tests, including spectral analysis, further
ARMA-fitting, and autocorrelation analysis, indicating a satisfactory fit. The higher-order ARMA models yield
similar results in terms of simulated streak probabilities (see the supporting information for details).

As mentioned above, an alternative to ARMA modeling involves long-range dependent models. Simple frac-
tionally differenced (FD) processes provide good fits to the data. Our analyses include both a simple FD
model estimated by a joint maximum likelihood (FD-ML) approach and a Bayesian approach (FD-Bayes).

5. Estimating the Upper Tercile Streak Probability

We estimate the distribution of upper tercile streaks by simulation. Simulating many CONUS series from
each model allows us to estimate the probability of obtaining an upper tercile streak length of at least
16 months in 1414 months, along with a measure of the uncertainty of that estimate. The simulation scheme
is simple: for k = 1,… , K , independent time series from a given statistical model are simulated. In simula-
tion k, the longest upper tercile streak Rk is computed. Our estimate of obtaining an upper tercile streak of
at least L months is

p̂ =
∑K

k=1 I(Rk ≥ L)
K

,

where I(A) is an indicator function defined to have value 1 if the statement A is true and 0 otherwise. This

estimated probability has an estimated standard error (ese) of ese
(

p̂
)
=

√
p̂
(

1 − p̂
)
∕K . We take L = 16 to

focus on the streak length of interest. In most cases, K = 100,000 simulations were conducted. For nearly all
cases, p̂ < 0.1 and the standard error is hence less than 0.001. Some of the simulations also allow for vari-
ability of the parameter estimates by using the normality of estimates from Gaussian series or by sampling
from the posterior distribution in the case of a Bayesian analysis.

Our first set of simulations assumes that the seasonally standardized anomalies are stationary as in (1) and
considers different Gaussian time series models for {Zt}. One should consider these as streak probability
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Table 2. Estimate of the Probability of Obtaining an Upper Tercile Streak of at Least
16 Months, Assuming Different Statistical Models for the Temperaturea

Assumption for {Zt}
Model ARMA(3,1) ARMA(4,2) FD-ML FD-Bayes

Stationary model (1) 0.031 0.034 0.019 0.035
Trend model (2) 0.065 0.069 0.116 0.145
Model (2), zero slope 0.007 0.008 0.008 0.013
Nonlinear trend model (3) 0.135 0.141 0.269 0.163
% Increase 830 790 1260 1030

aThe last line shows the percentage increase in the probability as we go from
model (2) with a zero slope to model (2) with the actual slope observed for the
temperature series. The first three columns are taken from Table S8 of the support-
ing information and agree (subject to the margin of error) with results presented
in Table S3 and on p. 12 of Text S1. The last column for the fractionally differenced
Bayesian model is taken from the p = 0 case of Figure S5.

estimates under a stationary climate (seasonal periodicities are allowed). To generate a realization of
Xt , a simulated Zt is multiplied by the estimated 𝜎t and then added to the estimated 𝛼t . The estimated
probabilities in the stationary case are summarized in first line of Table 2 and are clearly much larger
than (1∕3)16.

The second set of simulations move to cases with a linear trend as in (2). The only difference to the pre-
vious set is that a linear trend is added to the simulated values to allow for climate change (in fashions
depending on the model). These models are listed in the second line of Table 2. The streak probabilities are
much higher.

The third set of simulations views, in essence, the residuals from the linear trend fit as a model of the nat-
ural variability of the CONUS climate. In this case, we use model (2) but set the slope parameter, 𝛽 , equal
to 0. This demonstrates how the streak probabilities would behave under the assumption of stationary cli-
mate, observed without the trend component. The results from simulations based on these models are
given in the third line of Table 2. The fourth set of simulations is based on nonlinear trends, as in model (3),
represented by either splines or wavelets and are given in the fourth line of Table 2.

A number of comparisons are possible based on these simulations, but we focus on the effects of including
a linear trend. Specifically, the fifth line of the table shows how much more likely the observed streak is in a
changing climate than in a stationary one, based on the second and third lines of Table 2.

Figure 6 shows a histogram of the maximum streak lengths when {Zt} is an ARMA(3,1) process under three
different trend assumptions. All histograms are right skewed. The centers and spread of the distributions
vary by model; for example, the streak distribution clearly has smallest spread for the linear trend model
with a zero slope.
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Figure 6. Histograms of the maximum run of upper tercile streak when {Zt} is an ARMA(3,1) process for different
assumptions made for the trend.
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Figure 7. Time series plots of the number of months in the upper terciles for the CONUS average monthly temperature
record, according to calculating the upper tercile (a) using the NCDC sequential method, (b) based on the first 40 years,
and (c) based on the last 40 years. The horizontal dashed lines in each panel denote 13 and 16 months, respectively.

6. Discussion

Our analysis takes the CONUS record as correct. There are at least two issues with this. First, our analysis does
not consider uncertainties involved with changepoint adjustments made on the data [Williams et al., 2012c;
Muller et al., 2013; Fall et al., 2011]. Changepoint adjustments are made on the individual series for station
moves, instrument changes, etc. There is substantial evidence that the NCDC algorithm used to homoge-
nize the U.S. temperature record is conservative [Williams et al., 2012c, Venema et al., 2012] in that the true
long-term warming trend is underestimated. Second, the uncertainty in the CONUS series due to spatial
averaging has not been taken into account. Different plausible ways to calculate a CONUS-type series for
the U.S. from the spatially and temporally incomplete station network could produce different conclusions,
permitting an assessment of uncertainty. Having such series would allow us to improve our trend estimates.
Shen et al. [2012] calculated some uncertainties for a variant of the CONUS data; the results changed the
significance of the trend estimate [Guttorp and Kim, 2013].

Our analysis broadly adopts the tercile definitions of NOAA’s NCDC. Specifically, the terciles are updated with
each new data point. For example, when a new January temperature is added, January terciles are recal-
culated from this and all previous January measurements. This is one of several approaches that could be
employed in creating terciles. One could equally well decide that terciles should be based on a recent sub-
period of the record to reflect the recent range of normal, which the general public may better understand.
One could also use a fixed historical period to compute terciles to show how climate has changed rela-
tive to this past period. Approaches exist that are intermediate between these. Figure 7 shows how NCDC
upper tercile streak lengths change when the terciles are computed from the first and last 40 years. Addi-
tional data will inevitably change some of the terciles. However, as noted in section 2, the particular streak of
16 months was very robust to the actual quantile used. Substantial changes in future data would be needed
to invalidate the 16 month streak.

The comparison in the bottom line of Table 2 is only one of many possible comparisons. It is a rough attempt
to compare the streak probability based on a linear trend to what it would be if there were no such trend.
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Apparently, the series in Figure 5 is not stationary; hence, fitting a stationary model to the data tends to push
the parameter estimates toward a nonstationary condition. In effect, the fitted stationary model is doing
its best to reproduce the observed nonstationarity. This explains why the probabilities estimated under the
stationary model are closer to those estimated from the trend model than to those estimated when the
trend is set to 0.

Finally, as discussed in section 3 there is a distinction to be made between the chances of a streak arising
anywhere within the series and the chances that it arises in a given location within the series. The latter is a
specific subset of the former, with a smaller probability as a result. Therefore, it is important to understand
the hypothesis being tested. NOAA’s monitoring activities are generally assessing the probability of the
restricted test of the streak arising at a fixed location of “present” at any given time. Such location-specific
probabilities will always be lower than the probability of an event arising anywhere within a series. In the
presence of a trend they also will not be time-invariant.

7. Conclusions

The streak of 16 consecutive months of upper tercile mean temperatures in the contiguous United States
that occurred between June 2011 and October 2012 was an unusual event in the context of the observa-
tional record that started in 1895. Indeed, it was the longest streak in any tercile anywhere in the record by a
substantial margin. However, it is certainly far less rare than would be implied by naively assuming that each
monthly temperature is independent of all preceding and following temperatures. There are two factors,
which are both present in the record and need to be taken into account, in assessing this streak: temporal
dependence and an underlying trend. Several approaches to describe these factors in a statistical manner
were documented and explored. Our resulting calculations imply that in the absence of a trend, the proba-
bility of a 16 month or greater streak is likely in the range of 0.02 to 0.04, which is small but not so small as
to make the event completely implausible. When a linear trend of the magnitude observed in the histori-
cal record is included, this probability increases to the range of 0.06 to 0.15. Even larger probabilities were
obtained when nonlinear trend models were considered. However, the estimated streak probabilities were
roughly 10 times smaller in cases where the time series model was first fitted with trend and then the trend
set to 0 for the simulations. In most cases, estimated streak probabilities for FD models were larger than
those for ARMA models, which is expected given the larger high-lag correlations of the FD models; however,
the results were still qualitatively similar under the two sets of models.

Overall, the paper shows that in the absence of trend, the probability of a streak of 16 consecutive top-tercile
events is low enough that one could legitimately query its plausibility. When either a linear or nonlinear
trend is included, the probability increases to the point where such a result is not out of the ordinary.
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