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ABSTRACT 
 

Automatic structuring (feature coding and object recognition) of topographic data, 

such as that derived from air survey or raster scanning large-scale paper maps, 

requires the classification of objects such as buildings, roads, rivers, fields and 

railways. The recognition of objects in computer vision is largely based on the 

matching of descriptions of shapes. Fourier descriptors, moment invariants, boundary 

chain coding and scalar descriptors are methods that have been widely used and have 

been developed to describe shape irrespective of position, orientation and scale. The 

applicability of the above four methods to topographic shapes is described and their 

usefulness evaluated. 

 

All methods derive descriptors consisting of a small number of real values from the 

object’s polygonal boundary. Two large corpora representing data sets from Ordnance 

Survey maps of Purbeck and Plymouth were available. The effectiveness of each 

description technique was evaluated by using one corpus as a training-set to derive 

distributions for the values for supervised learning. This was then used to reclassify 

the objects in both data sets using each individual descriptor to evaluate their 

effectiveness.  No individual descriptor or method produced consistent correct 

classification.  

 

Various models for the fusion of the classification results from individual descriptors 

were implemented. These were used to experiment with different combinations of 

descriptors in order to improve results. Overall results show that Moment Invariants 

fused with the “min” fusion rule gave the best performance with the two data sets. 

Much further work remains to be done as enumerated in the concluding section. 
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Chapter 1:  INTRODUCTION 

The Intelligent and Graphical Research Group within the Department of Computer 
Science at National University of Ireland, Maynooth (NUIM) is researching into the 
automatic recognition of features and objects on topographic maps. The main 
application of this work is the automatic structuring of topographic data for computer 
cartography and GIS systems. The techniques being evaluated can be divided into two 
broad categories: 

• recognition based on isolated shape (described here), and  

• recognition based on context. 

In shape-based classification, the shape of each object is described using a small 
number of descriptor values (typically 7 to 15 real numbers). Recognition is based on 
matching the descriptors of each shape to standard values representing typical shapes 
and choosing the closest match. Several types of descriptor values have been 
developed (mostly in the field of computer vision). Research at NUIM so far has 
concentrated on four techniques: 

• scalar descriptors (area, dimension, elongation, number of corners etc.),  

• Fourier descriptors,  

• moment invariants and  

• boundary chain encoding.  

These techniques are well understood when applied to images and can be normalised 
to describe shapes irrespective of position, scale and orientation. They can also be 
easily applied to vector graphical shapes.  

Work carried out to date includes the object recognition and classification of buildings 
and parcels (from test data provided by the Isle of Man government) using three of the 
above mentioned techniques namely Fourier descriptors, moment invariants and 
scalar descriptors. Results indicate that no one shape technique alone is powerful 
enough for the task - in different situations one technique will perform better than the 
others and produce significant results (e.g. distinguishing buildings from linear 
features in built-up areas using the moment invariants method).  

In order to test these techniques further, they were evaluated on a corpus of 
topographic data provided by OSGB using the feature codes (object types) used in the 
large-scale OS GB topographic database. The most significant aims were to: 

• statistically analyse the range of descriptor values obtained by each method both 
within and between each OS feature type; 

• evaluate classification performance of each method on all polygons through 
comparison with original data; 
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• investigate possible improvement in performance by evaluating strategies of 
combining methods; and 

• evaluate performance of methods in detecting misclassified features in original 
data. 

This report describes the results of this exercise. It contains the following sections: 

1. The main tasks and aims of the project;  

2. A description of the implementation and integration of the software 
modules for individual methods; 

3. An evaluation of each method; 

4. A comparison between methods; 

5. Combination and selection of methods for optimal results; 

6. Conclusions; 

7. Suggestions for future research derived from the conclusions. 

 



 - 7 - 

Chapter 2: Shape-based Classification 

Topographic data capture for large-scale maps (typically depicted at 1:1250 and 

1:2500) consists of two parts: the digitisation of the geometry and the addition of 

attributes indicating the feature and/or object type being depicted. Whereas the former 

can be automated using image processing and similar techniques, the latter is often a 

manual task. One possible means of automation is object recognition through shape.  

 

This project uses shape recognition techniques borrowed from the field of computer 

vision to describe a measurement of shape to characterise and classify features on 

maps. The main application of this work is the automatic structuring of topographic 

data for computer cartography and Geographical Information Systems (GIS). 

 

Recognition of objects is largely based on the matching of description of shapes with 

a database of standard shapes. Numerous shape description techniques have been 

developed such as, Fourier descriptors, moment invariants and scalar features (area, 

number of points, etc.). Previous work has evaluated these techniques on topographic 

objects as depicted in large-scale mapping. Unlike many applications where the shape 

categories are very exact (for example, identifying a particular type of aircraft in a 

scene), this problem requires the classification of a particular shape into a general 

class of similar object shapes, for example, building, road or parcel. Each technique 

proved partially successful in distinguishing classes of object although no one 

technique provided a general solution to the problem. As part of this report these 

techniques are further evaluated on a real-world problem using a corpus of 

topographic data provided by Ordnance Survey in Great Britain (OS GB). The data 

set consists of the features codes (object types) used on the large-scale OS GB 

topographic database.  

 

This report builds on previous work carried out to produce an accurate combined 

methodology for the classification of general shapes on maps. The following sections 

introduce each of the above named shape recognition techniques individually and 

describe how they are applied as general classifiers to broad classes of topographic 

shape (buildings, fields and road etc.). The overall implementation of the project and 

experiment is outlined and sets out the most significant aims of the report. An 
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evaluation and comparison is made of the effectiveness of each technique in 

recognising features and objects. A data fusion technique is then proposed and 

evaluated. This allows the combining of the results of the Fourier descriptor, moment 

invariants and scalar descriptor techniques respectively, to give an overall score for 

each candidate object category. The purpose of this report is to draw from our results 

the main conclusions and see if they are applicable to OS. 

 

The recognition and description of objects plays a central role in automatic shape 

analysis for computer vision and it is one of the most familiar and fundamental 

problems in pattern recognition. Common examples are the reading of alphabetic 

characters in text and the automatic identification of aircraft. Most applications using 

Fourier descriptors, moment invariants and scalar descriptors for shape recognition 

deal with the classification of such definite shapes. To identify topographic objects 

each of the techniques needs to be extended to deal with general categories of shapes, 

for example houses, parcels and roads. 

 

The data used for the experiments described in the following sections was extracted 

from vector data sets representing large-scale (1:1250) plans of the Purbeck and 

Plymouth areas in Great Britain (Ordnance Survey). The data had been pre-processed 

to extract minimal closed polygons and OS feature codes had been applied. An 

interpolation method was applied to sample the shape boundary at a finite number (N) 

of equidistant points. These points are then stored in the appropriate format for 

processing with each shape description technique. The shapes can then be described 

using a small set of descriptor values (typically 7 to 10 real numbers). The recognition 

is based on matching the descriptors of each shape to standard values representing 

typical shapes and choosing the closest match. 

 

2.1 Fourier Descriptors 

 

2.1.1 Background 

 

Fourier transform theory (Gonzalez and Wintz 1977) has played a major role in image 

processing for many years. It is a commonly used tool in all types of signal processing 

and is defined both for one and two-dimensional functions. In the scope of this paper, 
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the Fourier transform technique is used for shape description in the form of Fourier 

descriptors. The Fourier descriptor is a widely used all-purpose shape description and 

recognition technique (Granlund 1972, Winstanley 1998). The shape descriptors 

generated from the Fourier coefficients numerically describe shapes and are 

normalised to make them independent of translation, scale and rotation. These Fourier 

descriptor values produced by the Fourier transformation of a given image represent 

the shape of the object in the frequency domain (Wallace and Wintz 1980). The lower 

frequency descriptors store the general information of the shape and the higher 

frequency the smaller details. Therefore, the lower frequency components of the 

Fourier descriptors define a rough shape of the original object  

 

2.1.2 Theory 

The Fourier transform theory can be applied in different ways for shape description. 

One method works on the change in orientation angle as the shape outline is traversed 

(Zahn and Roskies 1972), but for the purpose of this paper the following procedure 

was implemented (Wood 1986). The boundary of the image is treated as lying in the 

complex plane. So the row and column co-ordinates of each point on the boundary 

can be expressed as a complex number, x + jy where j is sqrt (-1). Tracing once 

around the boundary in the counter-clockwise direction at a constant speed yields a 

sequence of complex numbers, that is, a one-dimensional function over time. In order 

to represent traversal at a constant speed it is necessary to interpolate equi-distant 

points around the boundary. Traversing the boundary more than once results in a 

periodic function. The Fourier transform of a continuous function of a variable x is 

given by the equation:  

( ) ( )∫∞
∞−

−= dxeufuF uxj π2
 

(1) 

When dealing with discrete images the Discrete Fourier Transform (DFT) is used. So 

equation (1) transforms to: 

( ) ( ) N
N

x

xj

euf
N

uF
π2

1

0

1
−

∑−
=




=  
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(2)  

The variable x is complex, so by using the expansion e[-j A] = cos (A) – j. sin (A) 

where N is the number of equally spaced samples, equation (2) becomes: 

( ) ( ) ( ) ( )( )∑−
=

−+


=
1

0

sin.cos.)
1 N

x

AxjAxjyxf
N

uF  

                                                                      (3) 

where A = 2πu/x. 

The DFT of the sequence of complex numbers, obtained by the traversal of the object 

contour, gives the Fourier descriptor values of that shape. 

 

The Fourier descriptor values can be normalised to make them independent of 

translation, scale and rotation of the original shape.  Simply, translation of the shape 

by a complex quantity having x and y components, corresponds to adding a constant x 

+ jy to each point representing the boundary. Scaling a shape is achieved by 

multiplying all co-ordinate values by a constant factor. The DFT results in all 

members of the corresponding Fourier series being multiplied by the same factor. So 

by dividing each coefficient by the same member, normalisation for size is achieved. 

Rotation normalisation is achieved by finding the two coefficients with largest 

magnitude and setting their phase angle equal to zero (Keyes and Winstanley 1999). 

 

2.1.3 Fourier Descriptors of cartographic shapes 

To apply the Fourier descriptor technique to cartographic data, the points are stored as 

a series of complex numbers and then processed using the Fourier transform resulting 

in another complex series of the same length N.  If the formula for the discrete Fourier 

transform were directly applied each term would require N iterations to sum. As there 

are N terms to be calculated, the computation time would be proportional to N2. So 

the algorithm chosen to compute the Fourier descriptors was the Fast Fourier 

Transform (FFT) for which the computation time is proportional to NlogN. The FFT 

algorithm requires the number of points N defining the shape to be a power of two. In 

the case of this project it was decided to use 512 sample points. 
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The FFT algorithm is applied to these 512 coefficients. The list is normalised for 

translation, rotation and scale. This results in the first two terms always having the 

values 0 and 1.0 respectively which makes them redundant for classification. 

Calculation of the Fourier Spectrum builds a new list and disposes of the Fourier 

transform list. The result is 510 Fourier descriptor terms. 

 

The nature of the Fourier transform means that general shape information is modelled 

in the first few terms while the later terms reflect small detail. Therefore in shape 

classification, a limited number of terms are used. In this project, the first 16 terms are 

used in the evaluation. 

 

2.2 Moment Invariants 

2.2.1 Background 

Moment Invariants have been frequently used as features for image processing, 

remote sensing, shape recognition and classification. Moments can provide 

characteristics of an object that uniquely represent its shape. Invariant shape 

recognition is performed by classification in the multidimensional moment invariant 

feature space. Several techniques have been developed that derive invariant features 

from moments for object recognition and representation. These techniques are 

distinguished by their moment definition, such as the type of data exploited and the 

method for deriving invariant values from the image moments.  

 

It was Hu ( Hu, 1962), that first set out the mathematical foundation for two-

dimensional moment invariants and demonstrated their applications to shape 

recognition. They were first applied to aircraft shapes and were shown to be quick and 

reliable (Dudani, Breeding and McGhee, 1977). These moment invariant values are 

invariant with respect to translation, scale and rotation of the shape.  

 

Hu defines seven of these shape descriptor values computed from central moments 

through order three that are independent to object translation, scale and orientation. 
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Translation invariance is achieved by computing moments that are normalised with 

respect to the centre of gravity so that the centre of mass of the distribution is at the 

origin (central moments). Size invariant moments are derived from algebraic 

invariants but these can be shown to be the result of a simple size normalisation. From 

the second and third order values of the normalised central moments a set of seven 

invariant moments can be computed which are independent of rotation. 

 

2.2.2 Theory 

Traditionally, moment invariants are computed based on the information provided by 

both the shape boundary and its interior region (Hu 1962). The moments used to 

construct the moment invariants are defined in the continuous but for practical 

implementation they are computed in the discrete form. Given a function f(x,y), these 

regular moments are defined by:  

dxdyyxfyx qp
pq ),(∫ ∫=Μ  

(4) 

Mpq is the two-dimensional moment of the function f(x,y). The order of the moment is 

(p + q) where p and q are both natural numbers. For implementation in digital form 

this becomes:   

),( yxfyx qp
pq ∑∑

Χ Υ

=Μ  

                            (5)                                                                                        

To normalise for translation in the image plane, the image centroids are used to define 

the central moments. The co-ordinates of the centre of gravity of the image are 

calculated using equation (5) and are given by: 

00

10

Μ
Μ=x     

00

01

Μ
Μ=y                                                                 

(6) 

The central moments can then be defined in their discrete representation as:    

∑∑
Χ Υ

−−= qp
pq yyxx )()(µ  
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(7) 

The moments are further normalised for the effects of change of scale using the 

following formula:  

γµ
µη

00

pq
pq =  

(8) 

Where the normalisation factor: γ = (p + q / 2) +1. From the normalised central 

moments a set of seven values can be calculated and are defined by: 

φ1 = η20 + η02 

φ2  = (η20 - η02)2 + 4η2
11 

φ3 = (η30 - 3η12)2 + (η03 - 3η21)2 

φ4 =  (η30 + η12)2 + (η03 + η21)2 

φ5 = (3η30 - 3η12)(η30 + η12)[(η30 + η12)2  

       –3(η21 + η03)2] + (3η21 - η03)(η21 + η03)      

       × [3(η30 + η12)2 – (η21 + η03)2] 

φ6 =  (η20 - η02)[(η30 + η12)2 – (η21 + η03)2]  

       + 4η11(η30 + η12)(η21 + η03) 

φ7  = (3η21 - η03)(η30 + η12)[(η30 + η12)2  

        - 3(η21 + η03)2] + (3η12 - η30)(η21 + η03)    

        × [3(η30 + η12)2 – (η21 + η30)2]              (9)        

                                                                         

These seven invariant moments, φI, 1 ≤ I ≤ 7, set out by Hu, were additionally shown 

to be independent of rotation. However they are computed over the shape boundary 

and its interior region and so are not easily derived from vector graphics. 
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2.2.3 New moments 

For the purpose of this project, an algorithm was implemented that calculates the 

moment invariants using the shape boundary alone. These can be proven to be 

invariant under object translation, scale and rotation (Chaur-Chin Chen 1993). Then, 

using the same notation for convenience, the moment definition in equation (4) can be 

expressed as: 

∫=Μ
C

qp
pq dsyx                                      

(10) 

For p, q = 0,1,2,3, where ∫∫∫∫c is the line integral along the curve C and ds = √((dx)2 + 
(dy)2). The central moments can be similarly defined as: 

∫ −−=
C

qp
pq dsyyxx )()(µ                       

(11) 

Given that the centroids are as in the original method: 

                             (12) 

for a digital image, then equation (11) becomes  

∑
∈ΥΧ

−−=
C

qp
pq yyxx

),(

)()(µ  

(13) 

 

Thus the central moments are invariant to translation. These new central moments can 

also be normalised such that they are scaling invariant. 

γµ
µη

00

pq
pq =  

           (14) 

where the normalisation factor is: γ = p + q + 1. The seven moment invariant values 

can then be calculated as before using the results obtained from the computation of 

equation’s (10) to (14) above.  
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Using the same data sets as in the Fourier descriptor method described earlier, the 

moments technique is applied. However, for moments the points extracted from the 

map are stored not as complex numbers but represent the x and y co-ordinates of the 

polygonal shape. These points are processed by a moment transformation on the 

outline of the shape, which produces seven moment invariant values that are 

normalised with respect to translation, scale and rotation using the formulae above. 

The resulting set of values can be used to discriminate between the shapes.  

 

2.3 Scalar Descriptors 

Scalar descriptors are based on scalar features derived from the boundary of an object. 

They use numerous metrics of the object as shape descriptors. Simple examples of 

such features include: 

• the perimeter length;  

• the area of the shape; 

• the elongation i.e. ratio of the area of a shape to the square of the length of 

its perimeter (A/P2); 

• the number of nodes (junctions) in the boundary; 

• the number of (sharp) corners. 

Many other scalar descriptors can be devised. 
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Chapter 3: Classification 

 

3.1 Supervised v Unsupervised Classification 
Shape description techniques, such as those described in chapter two, generally 

characterise an object’s shape as a set of real numbers. Classification of objects based 

on shape therefore consists of comparing these descriptors. Two general forms of 

classification are possible: unsupervised and supervised. 

 

Unsupervised learning occurs where the distribution of descriptor values of objects in 

a data-set is analysed. Clusters of objects of similar shape are identified. These are 

assumed to represent a class of similar objects. In this scheme, the classes identified 

emerge from the analysis of the data-set and can depend both on that analysis and the 

data-set in use.  

 

Supervised learning occurs when the classes to which objects are to be assigned are 

decided beforehand. Values of descriptors that characterise each object class are 

determined in some way and objects are classified through the similarity of their 

descriptors to these characteristic values. Supervised learning therefore requires a way 

to determine some norms for the values of a particular class and a way to measure 

whether the descriptor values of an unclassified object belong to the group defined by 

those norms. 

 

A common method to determine the norms for a class is to take a sample of shapes we 

know to belong to that class and calculate the mean or median values for each 

descriptor. In addition, a measure of the distribution of values within the sample can 

be made. Classification then consists to comparing the values of its descriptors with 

that of the mean, possibly taking into account the distribution for the class. 

 

Given two sets of descriptors, how do we measure their degree of similarity? If two 

shapes, A and B, produce a set of values represented by a(i) and b(i) then the distance 

between them can be given as c(i) = a(i) – b(i). If a(i) and b(i) are identical then c(i) 
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will be zero. If they are different then the magnitudes of the coefficients in c(i) will 

give a reasonable measure of the difference. It proves more convenient to have one 

value to represent this rather than the set of values that make up c(i). The easiest way 

is to treat c(i) as a vector in a multi-dimensional space, in which case its length, which 

represents the distance between the planes, is given by the square root of the sum of 

the squares of the elements of c(i). In this way classification can be performed by 

choosing the class mean that is closest to the shape to be classified. 

 

Earlier work on this project used this distance measure in classification with some 

limited success (Keyes and Winstanley 1999, 2000). However, this method takes no 

account of the distribution of descriptor values for each class. Therefore it was 

decided to incorporate the information given by the distribution using Bayesian 

statistics. 

 

3.2 Classification using Bayes Theorem 

 
Bayesian statistics allows us to use the distribution of the values for each descriptor 

for each class of object in determining the probability that a particular object belongs 

to that class. Given a particular value for a descriptor, we can calculate the likelyhood 

of that value occurring in the distribution of values for a particular class. Applying 

Bayes theorem, we can calculate from this the probability of the object belongs to that 

class. We can calculate such a probability for each class. We then decide that the 

object belongs to the class for which it that descriptor gives the highest probability. 

 

The objective is to design classifiers that will classify an object in the most probable 

of the classes given. For example, in the experiment described later in this report, our 

classification task has six classes, Buildings, Defined Natural Land Cover, Multiple 

Surface Land, General Unmade Land, Made Road and Road Side, 61 ,...,ωω  

respectively, and an unknown feature type taken from the data-set ( for example a 

building) represented by the feature vector  x . From this the conditional or posteriori 

probabilities 1,2,...,6  i ),|( =xP iω  can be formed which represent the probability that 

the unknown feature type belongs to the respective class iω  given that the 
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corresponding feature vector takes on the value x . To calculate the posteriori 

probabilities, Bayes decision theory principles are applied.  

 

The first step involves the calculation of the prior probabilities )( iP ω for each class. 

Take for example the Building class 1ω  and Defined Natural Land Cover (Defined 

Land) class 2ω . Then, )( 1ωP and )( 2ωP denote the probabilities of a feature type 

belonging to either class 1ω  or 2ω  respectively before we have considered any 

descriptor values. As we have a previously classified data-set, we can estimate this 

priori probabilities as: 

 

rOFeaturesTotalNumbe
ildingsNumberOfBu

P =)( 1ω  

rOFeaturesTotalNumbe
findLAndNumberOfDe

P =)( 2ω  

 

Given these probabilities )( 1ωP and )( 2ωP  the first criterion for deciding whether an 

observed feature type is of type Building or Defined Land would simply be to take the 

class with the larger probability, which can be written as: 

 

121    then )(      )(   ωωω PPif ≥  

221    then )(      )(   ωωω PPif <  

       

Better probability results can generally be obtained by considering additional 

information about the features such as the mean and standard deviation of each class.  

Let this additional information be identified by the descriptor vector x  (using feature 

vector to represent more than one single measured feature). Using this information the 

conditional probabilities )|( xP iω discussed earlier can be formed. The classification 

criterion can now be described as:  

 

121 decide   then )|(      )|(   ωωω xPxPif >  

and 

212 decide   then )|(      )|(   ωωω xPxPif >  
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Bayes laws can be applied to these conditional probabilities to redefine them in terms 

of their density functions, which are denoted by )|( 1ωxf and )|( 2ωxf . The 

derivation of the new classification criterion, now in terms of the conditional density 

functions )|( 1ωxf and )|( 2ωxf states that 

 

∑
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So equation above can be rewritten as: 
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Bayes decision rule is obtained by eliminating the denominator and is as follows: 

 

12211    then )|()(      )|()(  ωωωωω xfPxfPif ≥  

                              22211    then )|()(      )|()(  ωωωωω xfPxfPif <                             ? 
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P
P
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From the conditional density functions a likelihood ratio )(hL  and threshold T can be 
obtained. Using these functions the above criterion now be expressed as: 
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1   then )(      ωxLT ≥  

2   then )(      ωxLT <  

which reads  if 1 decide   then )(      ωxLT ≥ 2 decide ωelse . 

 

This criterion can be generalised quite easily to situations involving more than two 
classes and multiple dimensional feature spaces. So, let k be the number of classes 
involved in this project which equals six and using the respective conditional density 
functions )|( ixf ω  the Bayesian classification can now be written as follows: 

 

i
,1

     )}()|({)()|(  ωωωωω selectthenPxfMaxPxfif kk
kk

ki
=

=  

 

3.3 Implementing Bayesian Classification 
Applying Bayes Theorem to classification therefore requires: 

• the calculation of  prior  probabilities of each class occurring 

• the modelling of a distribution function of the likelihoods of values occurring for 
each class 

Both of these were estimated through an analysis of the classification of a data-set 
provided by Ordnance Survey. The distribution function for each descriptor was 
approximated as a normal curve, modelled from the means and standard deviations 
calculated from the data-set. 

 

Using Bayesian classification a class can be assigned to each object based on the 
value of one descriptor. This is accompanied by a probability estimate that the 
classification is correct. We are evaluating three shape description methods, each 
containing several descriptors (25 descriptors in all). If, as is likely, these disagree as 
to the classification, we require a method of combining them to produce an overall 
consensus as to the correct classification. 
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Chapter 4: Combining Classifiers 

 

When setting out to design a shape recognition system the ultimate goal is to achieve 

the best possible classification performance. Attaining this goal involves the 

application of suitable classification schemes/techniques to the problem. Traditionally 

an analysis of the results produced by each technique became the basis for choosing 

one of the classifiers as a final solution. However, it has been observed in many 

studies that although one technique would yield the best performance, the set of 

shapes miss-classified by the different classifiers would not necessarily overlap. This 

suggests that different classifier techniques can offer complementary descriptions of 

the shapes to be classified, which leads to the combining of the classifiers for 

improved performance. 

 

4.1 The Fusion Model 

Using and combining multiple learned classification models for increasing accuracy 

and efficiency is an area attracting much interest recently. The central problem 

involved is how to integrate several classifiers (or “experts”) to produce a single final 

classification. Figure 1, illustrates the decision combination topology used in this 

report.  

Figure 1, Decision combination topology used for fusing the results of three 
shape recognition methods. 

 

Fourier descriptors Moment invariants Scalar descriptors 

Σ data fusion algorithm 

map feature data 
set 

classified 
feature 
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The approach taken here to the fusion of the recognition techniques used follows a 

classifier combination scheme developed by Kittler et al[1998]. 

 
4.2 Theory 

The fusion of individual classifiers is based on a theoretical framework set out in 

Bayes theorem. Before fusion can take place probabilities must be assigned or 

calculated indicating the likelihood that a particular object belongs to each available 

class.  

 

Considering the classification problem, where Z is to be assigned to one of m possible 

classes ),...,( 1 mωω ,assume there are R classifiers each representing the given pattern 

by a distinct measurement vector, the measurement vector used by the ith classifier 

being denoted by xi. In the measurement space each class kϖ is modelled by the 

probability density function )|( kixp ω and its priori probability of occurrence is 

denoted )( kP ω . The models are considered to be mutually exclusive which means 

that only one class can be associated with each object. According to Bayes theorem, 

given measurements ix , ,,...1 Ri = the pattern, Z, should be assigned to the class 

jω provided the a posteriori probability of the interpretation is maximum, i.e.  

 

assign   jZ ω→    if 

),...,|(max),...,|( 11 Rk
k

Rj xxPxxP ωω =  

(15) 

The Bayesian decision rule (15) states that in order to use all the available information 

correctly to reach a decision, it is essential to compute the probabilities of the various 

hypotheses by considering all the measurements simultaneously.  This is however a 

very expensive computation therefore rule (15) is simplified and expressed in terms of 

decision support computations performed by the individual classifiers, each exploiting 

only the information conveyed by the vector ix . Rewriting the a posteriori probability 

),...,|( 1 Rk xxP ω using Bayes theorem we have: 
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)
),...,(

)()|,...,(
),...,|(

1

1
1

R

kkR
Rk xxp

Pxxp
xxP

ωωω =  

 (16) 

where ),...,( 1 Rxxp is the unconditional measurement joint probability density. This 

can be expressed in terms of the conditional measurement distributions as follows: 

 

∑
=

=
m

j
jjRR Pxxpxxp

1
11 )()|,...(),...,( ωω  

(17) 

Therefore, in the following placing the concentration only on the numerator terms of 

(16).  

 

4.2.1 The Product Rule 

The measurement )|,...( 1 kRxxp ω represents the joint probability distribution of the 

descriptor values extracted by the classifiers. Treating the representations used as 

conditionally statistically independent (as outlined by Kittler et al ), the following can 

be obtained, 

 

∏
=

=
R

i
kikR xpxxp

1
1 )|()|,...,( ωω  

(18) 

where )|( kixp ω is the measurement model of the ith representation. Substituting 

from (18) and (17) into (16) gives: 
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(19) 

and using (19) in (15) gives the following decision rule. 

 

assign   jZ ω→   if 

)|()(max)|()(
111
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 (20) 

Putting this in terms of the a posteriori probabilities yielded by the respective 

classifiers: 

 

assign   jZ ω→   if 

)|()(max)|()(
1

)1(

11

)1( ∏∏
=

−−

==

−− =
R

i
ikk

R
m

k

R

i
ikj

R xpPxpP ωωωω  

(21) 

The decision rule in (21) quantifies the likelihood of a hypothesis by combining the a 

posteriori probabilities produced by the individual classifiers by means of a product 

rule. It can be a severe rule of combining the classifier outputs as a single descriptor 

to inhibit a particular interpretation by outputting a close to zero probability for it.  

 

4.2.2 Sum Rule 

Kittler et el [1998] developed a scheme for the fusion of individual classifiers called 

the sum rule which he based on the above theoretical framework. Considering the 

decision rule in (21) and based on the assumption that the a posteriori probabilities 

computed by the respective classifiers will not deviate dramatically from the prior 

probabilities, the posteriori probabilities can then be expressed as: 

 

)1)(()|( kikik PxP δωω +=  

(22) 

where kiδ  satisfies kiδ << 1.  Substituting (22) for the posteriori probabilities in (21) 

gives: 

∏∏
==

−− +=
R

i
kik

R

i
ikj

R PxPP
11

)1( )1()()|()( δωωω  

(23) 

Expanding the product and neglecting any terms of second and higher order, we can 

approximate the right hand side of (23) as: 
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(24) 
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By substituting (24) and (22) into (21) the sum decision rule is obtained. 

 

assign   jZ ω→   if 

)]|()()1[(max)|()()1(
11

1 ik

R

i
k

R

i

m

k
ikj xPPRxPPR ωωωω ∑∑

== =
+−=+−  

(25) 

The sum of the classifiers R is obtained for each class ωk and the likelihood class 

computed by taking the maximum a posteriori probabilities produced by the sum 

combination scheme. 

 
4.3 Classifier Combination 

The product and sum decision rules in (21) and (25) form the basic schemes for 

classifier combination.  Many combination strategies can be developed from these 

rules by noting that: 

 

)|(max)|(
1

)|(min)|(
1 11 1

ik

R

i

R

i
ikik

R

i

R

i
ik xPxP

R
xPxP ωωωω ∑∏

= == =
≤≤≤  

(26) 

This shows that the product and sum rules can be approximated by the upper or lower 

bounds suggested by (26), as appropriate. Also the hardening of the a posteriori 

probabilities )|( ik xP ω to produce binary valued functions ki∆  as 
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(27) 

result in the combining of a decision outcome rather than just the combining of 

posteriori probabilities. From these approximations the following rules can be 

constructed. All the combination schemes and their relationship are represented in 

Figure 2. 
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4.3.1 Majority Vote Rule 
Using the sum rule from (25) and the above assumption of equal priors and by hardening the 

probabilities according to (27) gives: 

 

assign   jZ ω→   if 

∑∑
== =

∆=∆
R

i
ki

R

i

m

k
ji

11 1
max  

(28) 

When calculating the majority vote rule for each class ωk, the sum on the right hand side counts the 

votes received for the individual classifiers. The class, which receives the largest number of votes, is 

selected as the majority decision and the final single classification.  

 

4.3.2 Min Rule 

Starting with the product rule in (21) and bounding the product of posteriori probabilities from the 

above we obtain 

 

assign   jZ ω→   if 

)|(min)(max)|(min)(
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(29) 

 

which under the assumption of equal priors simplifies to  

 

assign   jZ ω→   if 

)|(minmax)|(min
111

ik

R
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xPxP ωω

===
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(30) 

The min rule combination scheme quantifies the likelihood of a given shape belonging to a particular 

class by determining the minimum a posteriori probability for each class ωk. The final decision is then 

based on the maximum of the obtained minimum probabilities for each individual classifier. 

 

4.3.3 Max Rule 

Starting from the sum rule in (25) and approximating the sum by the maximum of the 

posteriori probabilities gives 

assign   jZ ω→   if 
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(31) 

which, under the assumption of equal priors, simplifies to 

 

assign   jZ ω→   if 
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(32) 

This strategy obtains a decision by computing the maximum posteriori probability for 

each class and then taking the maximum of these values. 

 

4.3.4 Median Rule 

Under the assumption of equal priors the sum rule in (25) can be viewed to be 

computing the average a posteriori probability for each class over all the classifier 

outputs, 

 

assign   jZ ω→   if 
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(33) 

That is, the rule assigns a shape to the class in which the average posteriori probability 

is maximum. However it is possible that a classifier might output an a posteriori 

probability for some class which is a outlier. Such an output would affect the average, 

which could lead to an incorrect decision. Another robust method for finding the 

mean is the median. The following rule bases the combined decision on the median of 

the posteriori probabilities.  

 

assign   jZ ω→   if 
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(34) 
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4.4 Implementing Data Fusion 
All the methods of data fusion described above were implemented. Each shape was 

classified by individual descriptors with accompanying measure of certainty or 

confidence. These were then fused in each of 8 methods and then the resulting 

classifications measured against the known classes the object belonged to. 
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Chapter 5: Experimental Results and Conclusions 

 

Two data sets were provided by Ordnance Survey to evaluate shape classification on 

topographic data: Purbeck and Plymouth. Because supervised learning was being 

used, it was necessary to have an example data set to derive the statistics to provide 

the likelihood distributions for each descriptor for each class of object. It was decided 

to use the Purbeck data set for this purpose.   

 

The Purbeck data for all the polygons representing six of the most common feature 

types (Table 1) were extracted. The four scalar descriptors for each polygon were 

calculated directly from these boundaries. Each boundary was sampled at 128 points 

and this sampled boundary used to calculate the Fourier descriptors (FDs) and 

moment invariants (MI). The sampling results in 128 FDs but it is known that most of 

the shape information is contained in the first few. Therefore the first 16 were used 

with FD(0) and FD(1) beings redundant due to normalisation.  

 

 Label used here OS Type OS Description 

1 building 2210321 Building (Type A) 

2 defined land 1900300 Defined Natural Land Cover 

3 multiple surface land 2400339 Multiple Surface Land 

4 unmade land 1400342 General Unmade Land 

5 road 2610330 Made Road 

6 roadside 2610331 Roadside Unknown Land 

Table 1: Object types used in classification experiment. 

 

Therefore for each polygon we have 25 descriptor values (four scalars, seven moment 

invariants and fourteen Fourier Descriptors (FD(2) to FD(16)). The values for each 

descriptor obtained by all polygons for each of the six chosen feature codes in the 

Purbeck data were statistically analysed to obtain measures of the mean and standard 

deviation. A normal distribution was assumed. These distributions were then used to 
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classify each polygon in both data sets using each individual descriptor (i.e. 25 results 

per polygon). 

 

The individual results from individual descriptors for each polygon were then fused 

using each method described in chapter 4 producing an overall result treating all 25 

descriptors equally. This was also done for each of the three descriptor types. Finally, 

the results for each descriptor type were then fused to produce an overall result from 

all descriptors.  

 

Detailed results are tabulated in appendix 1 (Purbeck) and 2 (Plymouth). Table 2 

shows the performance of the individual classifiers on the Plymouth data set. It can be 

seen that as expected performance was variable depending on descriptor(s) and fusion 

method used. Best performer was Moment Invariants fused using the Min rule (81% 

correctly classified). Poorest were most of the descriptors using the Sum rule adjusted 

(i.e. normalised) (2%) which is symptomatic of the theoretically weak basis for this 

method [Kittler 1998]. It is also note-worthy that fusing all methods using the 

techniques described here produces poorer performance than Moment Invariants 

alone. 

 
7.3 Performance of fused descriptors over all selected features
Number of polygons processed: 8837

7.3.1 All 25 Descriptors
ALL majority max min median sum sum adj product product adj

number 5978 5974 7047 5992 5992 186 6938 6603
percent 68 68 80 68 68 2 79 75

7.3.2 Scalar Descriptors
SCALARS majority max min median sum sum adj product product adj

number 6195 6010 6592 6223 6185 196 6381 6552
percent 70 68 75 70 70 2 72 74

7.3.3 Fourier Descriptors
FOURIERS majority max min median sum sum adj product product adj

number 5940 5958 5789 5921 5949 175 5837 5815
percent 67 67 66 67 67 2 66 66

7.3.4 Moment Invariants
MOMENTS majority max min median sum sum adj product product adj

number 6192 6051 7122 6281 6119 6026 7004 6973
percent 70 68 81 71 69 68 79 79

7.3.5 Majority of 3 methods
MAJORITY majority max min median sum sum adj product product adj

number 6102 6025 6544 6134 6076 198 6294 6419
percent 69 68 74 69 69 2 71 73  

Table 2: Summary of performance of fusion of descriptors on all features in 
Plymouth data set showing number and percentage correctly classified. 
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The remainder of this chapter consists of the following sections: 

1. An evaluation of each individual description methods (i.e. FDs, MIs and 
scalars); 

2. A comparison between methods; 

3. An evaluation of Fusion methods; 

4. Conclusions; 

5. Suggestions for future research derived from the conclusions. 

 
 

5.1  Performance of individual descriptors 
In this section a sample of the results produced by the application of the Fourier 

descriptor, moment invariants and scalar descriptor techniques are presented to 

evaluate and compare their usefulness in shape discrimination of general topographic 

features. Figure 3 plots the average values, obtained for five categories of objects 

from a sample data set (using the Moment Invariant method in this example). This 

shows some separation between classes in the n-descriptor space. However, in order 

to classify shapes with any degree of certainty, the variation within classes must in 

general be less than that between classes. 
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Figure 3. Average descriptor values of five sample shapes  

(Moment Invariants using Isle of Man data). 
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To evaluate each of the methods as shape recognition techniques, several shapes from 

the map (buildings, parcels and roads) were used as test shapes. For the Fourier 

descriptor and moment invariants methods, the descriptor values used to describe the 

objects are computed from the equally spaced (x,y) points along the boundary of each 

of the test shapes using the formulae derived in chapter 2. The scalar descriptors are 

calculated from the boundary of the objects also, using the scalar shape recognition 

aspects described in chapter 2. The aspects used are: area; perimeter length; 

elongation; and number of points. Table 3 is an example of the first 16 low-order 

Fourier descriptors obtained for a house shape, FD(0) represents the first descriptor 

value. 

 

0 1.0000 0.0440 0.0415 0.0461 0.0283 0.0095 0.0050 

0.0153 0.0013 0.0013 0.0067 0.0048 0.0006 0.0019 0.0043 

Table 3: Fourier descriptor values calculated for a house shape. 

 

From inspection of the values produced for each polygon, most of the shape 

information is described by the first few descriptors and so only the first 16 terms 

were used for comparison, remembering that due to the normalization procedures, 

FD(0) and FD(1) are redundant. Table 4 is an example of a set of seven invariant 

moments (IM) obtained for a house, road and parcel shape (starting a index IM(0)).  

 

 Buildings Roads Parcels 
IM(0) 0.00021913563 0.0191903068 0.19419031 
IM(1) 1.4175713e-08 0.0028776518 0.0093515524 
IM(2) 3.3163274e-12 0.0000022101 0.00055687797 
IM(3) 7.332081e-14 0.0000002565 1.0685037e-05 
IM(4) 2.4223892e-14 0.0000001930 5.696268e-05 
IM(5) -7.51903311e-18 -3.7718e-08 -6.2343667e-07 
IM(6) 2.12921403e-26 -1.5393e-14 3.212549e-11 

Table 4: Moment invariant values calculated for house, road and parcel shapes. 

 

In this paper each of the shape description techniques, Fourier descriptors, moment 

invariants and scalar descriptors, were computed for three types of feature, namely 

buildings, parcels and roads in six different sub-categories used in Ordnance Survey 

large-scale data-sets (Table 1). 
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Figure 4, shows a plot of the mean values for each of these categories in three-

dimensional space (using the moments invariants method in this example).  

10
-6

10
-4

10
-2

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

IM 0IM 1

IM
2

+  =  build in g
*=  defin edland
< = surface lan d
o =  unm ade-lan d
    =  road
x = roadside

 
Figure 4: Average moment invariants (IM) of six shape categories (Purbeck 

data) 

 
A sample of the results produced by the application of the Fourier descriptors is 

presented to evaluate their usefulness in the shape discrimination. These results 

obtained for each data set were plotted using the Fourier descriptor s (FD(2), FD(3), 

FD(4)) to observe how well the formed separate groups. Figure 5 (a) and (b) and 

Figure 6 (a) and (b) below show the degree to which these data set cluster in FD(2), 

FD(3), FD(4) space. Note,  that due to normalisation the first two terms obtained in 

the Fourier descriptors set, FD(0) = 0 and FD(1) = 1 are redundant.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 (a): Clustering of the polygon shapes, buildings and defined natural land 

cover in three-dimensional space of the features FD(2), FD(3) and FD(4), (b): 
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Cluster of the polygon shapes, buildings and made-road in three-dimensional 
space FD(2), FD(3) and FD(4 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 (a): Clustering of the polygon shapes, made-road and roadside in three-
dimensional space of the features FD(2), FD(3) and FD(4), (b): Clustering of the 
polygon shapes, surface land, unmade-land and buildings in three-dimensional 

space FD(2), FD(3) and FD(4). 
 

As thses plots show, often no two feature classes are completely distinct from each 

other. This evidence therefore indicates that Fourier descriptors are not very good for 

use in shape description where the data sets are of a very general shape. To show this 

mathematically the repeatability function was computed for each of the six map 

categories. Table 5 shows these measurements in FD(2) as it is the most significant 

descriptor value. The repeatability of the measurements of each class is represented as 

three times the standard deviation and can be seen in the shaded diagonal column of 

the table. The repeatability of each class is sizeably larger than the distance between 

the mean values for all the six classes which shows that the classes are not distince 

enough to conclude any significant positive results. 

 
 Buildings Definedland Surfaceland Unmade-land MadeRoad Roadside 
No. polygons 7976 3147 3003 1251 487 458 
Buildings 0.5166 0.0890 0.3590 0.1095 0.0495 0.0343 
Definedland  1.1877 0.2700 0.0205 0.0395 0.0547 
Surfaceland   1.7972 0.2495 0.3095 0.3247 
Unmade-land    1.3156 0.0600 0.0752 
MadeRoad     1.1323 0.0152 
Roadside      0.7112 

Table 5: Comparison of repeatability within feature classes and distance between 
classes for the Fourier descriptor technique in FD(1). 

 

A sample of the results produced by the application of the moment invariants 

technique was also evaluated. The Figure 7 shows plots obtained for the moment 
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invariants technique for a sample of each feature type, each plot showing the degree 

to which each set of objects cluster in their three-dimensional space. 

 

10
-8

10
-6

10
-4

10
-2

10
-30

10
-20

10
-10

10
0

10
-20

10
-15

10
-10

10
-5

IM0IM1

IM
2

unmadeland

surfaceland

building

10
-10

10
-5

10
0

10
-30

10
-20

10
-10

10
0

10
-20

10
-15

10
-10

10
-5

IM0IM1

IM
2

 definedland

buildings

10
-5

10
0

10
-15

10
-10

10
-5

10
0

10
-20

10
-15

10
-10

10
-5

definedland
and
unmadeland

10
-10

10
-5

10
0

10
-30

10
-20

10
-10

10
0

10
-20

10
-15

10
-10

10
-5

IM0IM1

IM
2

MadeRoad

buildings

 
Figure 7. Clustering of the polygon shapes, buildings and made-roads, in three-

dimensional space of the features IM(0),IM(1) and IM(2). 

 

Figure 7 shows the degree to which the data sets, building and defined land cover 

cluster and also in a cluster plot of the data sets, defined land cover and unmade-land. 

In contrast, it can be seen how the features buildings and roads separate when plotted. 

 

To measure the clustering obtained, the repeatability function and mean value 

measurements were computed for each set or the sample shapes. The results can be 

seen in table 6. Only the first moment invariants measure, IM(0) is used here to make 

it easier to read the table as it is the most significant moment result. 

 
 Buildings Definedland Surfaceland Unmade-land MadeRoad Roadside 
No. polygons 7976 3147 3003 1251 487 458 
Buildings 5.2005e-005 8.8572e-004 1.5488e-005 0.0034 0.0014 4.8116e-004 
Definedland  0.0138 8.7023e-004 0.0025 5.5596e-004 4.0456e-004 
Surfaceland   3.9330e-004 0.0033 0.0014 4.6567e-004 
Unmade-land    0.0231 0.0019 0.0029 
MadeRoad     0.0188 9.6051e-004 
Roadside      0.0048 
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Table 6: Comparison of repeatability within feature classes and distance between 

classes for the moment invariants technique in IM(0). 

 

Each output for the moment invariants method in the shape recognition of general 

shapes on maps, show that there is a significant separation occurring between most of 

the classes. Although overlap does exist (also seen by the human eye) good 

classification occurs. On examining Table 6 more closely it can be seen that the 

repeatability for the buildings is smaller than the distance between the mean values 

for all categories except for the surface land data set though these values are close. 

This is also true for the repeatability measure for the surface land class where the 

distance between the means values is larger except for buildings. Comparing the 

figures obtained for the other data sets we see that for many the repeatability measure 

is larger but still close to the mean distance for most cases. 

 

As presented above for the Fourier descriptor and moment invariants methods, a 

sample of the results produced by applying the scalar descriptor technique to the data 

set is evaluated also. Figures 8 to 11 show the resulting cluster graphs and the degree 

to which the features separate in the three-dimensional space of area, perimeter and 

number of points. 
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Figure 8 Clustering of the polygons, buildings and defined land cover, in the 
three-dimensional space area, perimeter and number of points 
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Figure 9 Clustering of the polygons, defined land cover and unmade-land, in the 
three-dimensional space area, perimeter and number of points 
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Figure 10  Clustering of the polygons, buildings and made-road, in the three-
dimensional space area, perimeter and number of points 
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Figure 11  Clustering of the polygons, buildings, surface land and unmade land, in 
the three-dimensional space area, perimeter and number of points 

 

Figure 8 shows the cluster plot of the data sets defined natural land cover and 

buildings. In Figure 9 a cluster plot of the features defined natural land cover and 

unmade land. Figure 10 and Figure 11 show the degree to which the data sets 

buildings and made-roads cluster and the degree to which the data sets buildings, 

surface land and unmade land cluster.  

 

To analysis the results further the results are again represented mathematically, in this 

case by computing the repeatability function and mean value measurements for the 

area, which is considered the most significant feature descriptor for the scalars.  The 

table for the repeatability and mean values is as follows: 

 Buildings Definedland Surfaceland Unmade-land MadeRoad Roadside 
No. polygons 7976 3147 3003 1251 487 458 
Buildings 962.3439 1.2793e+04 250.4747 3.8176e+04 1.0369e+03 255.5874 
Definedland  1.0665e+05 1.2543e+04 2.5382e+04 1.1757e+04 1.2538e+04 
Surfaceland   1.7478e+03 3.7925e+04 786.3982 5.1127 
Unmade-land    1.1575e+05 3.7139e+04 3.7920e+04 
MadeRoad     6.7577e+03 781.2856 
Roadside      1.7528e+03 

Table 7: Comparison of repeatability within feature classes and distance between 
classes for the scalar descriptor technique in area. 
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The outputs obtained for the scalar descriptor method of general shapes on maps show 

that there is a significant distinction between the majority of the classes. Some overlap 

exits but overall classification is good. On examination, table 7 shows, especially for 

the building features, that the repeatability is smaller than than the distance between 

the mean values which indicates good classification performance for the scalar 

method. 

 

As shape descriptor techniques the evidence published to date is that all three 

techniques evaluated, Fourier descriptors, moment invariants and scalar descriptors, 

are very good features to use when dealing with very specific shapes such as a 

particular aircraft or alphanumeric character. On investigation of their usefulness for 

the shape description of general shapes on maps, for example houses, roads, parcels 

etc. the Fourier descriptors do not appear to be very successful. However, the moment 

invariants technique proved to be significantly more successful in its task and specific 

scalar measures are also very discriminatory. This is illustrated by the pie charts in 

Figure 12 derived from the results summary in Appendix 5. Each chart shows the 

classification results on objects belonging to each of the six feature types considered.  

For example, scalar descriptors correctly classified almost 100% of buildings. 
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 Figure 12  Recognition performance of descriptor methods by feature type. 
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5.2 Fusion methods 
Six methods of data fusion were implemented: majoity vote, max rule, min rule, 

median rule, sum rule and product rule). Two of these (sum and product) had two 

versions whether they included or excluded the adjustment for normalisation. They 

were applied to fuse the classification results given by the descriptors obtained from 

each polygon in three ways:  

• Each descriptor (25 in all) treated equally to obtain a global result (Table 8, 

section 7.3.1) 

• Each descriptor fused into its group (3 groups i.e. scalar, FD and MI) to obtain a 

result for each group (Table 8, section 7.3.2 – 7.3.4) 

• Each group result fused to obtain an overall result (Table 8, section 7.3.5). 

Table 8 shows that, with notable exceptions, the classification accuracy obtained was 

fairly consistent no matter which was used. Best performer was the min rule followed 

by the product rule. Worst performer by far was the normalised sum rule. This 

confirms the arguments in [Kittler 1998] which questions the theoretical basis of the 

sum rule. 

 
7.3 Performance of fused descriptors over all selected features
Number of polygons processed: 8837

7.3.1 All 25 Descriptors
ALL majority max min median sum sum adj product product adj

number 5978 5974 7047 5992 5992 186 6938 6603
percent 68 68 80 68 68 2 79 75

7.3.2 Scalar Descriptors
SCALARS majority max min median sum sum adj product product adj

number 6195 6010 6592 6223 6185 196 6381 6552
percent 70 68 75 70 70 2 72 74

7.3.3 Fourier Descriptors
FOURIERS majority max min median sum sum adj product product adj

number 5940 5958 5789 5921 5949 175 5837 5815
percent 67 67 66 67 67 2 66 66

7.3.4 Moment Invariants
MOMENTS majority max min median sum sum adj product product adj

number 6192 6051 7122 6281 6119 6026 7004 6973
percent 70 68 81 71 69 68 79 79

7.3.5 Majority of 3 methods
MAJORITY majority max min median sum sum adj product product adj

number 6102 6025 6544 6134 6076 198 6294 6419
percent 69 68 74 69 69 2 71 73  

Table 8: Summary of performance of fusion of descriptors on all features in 
Plymouth data set showing number and percentage correctly classified. 
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5.3 Conclusions and future work 
Based on the results presented here, we can claim partial success in demonstrating the 

application of shape classification to the recognition and feature coding of objects on 

large-scale topographic maps. We have identified that performance is variable 

depending on the descriptors used and the object types we are trying to distinguish. 

However, to further investigate and develop this project we have the following 

recommendations for the future extension of this research: 

 

1. More data through the current systems 

• Perform more trials on more data obtained from Ordnance Survey; the larger data 

sets available for Basingstoke and Scotland are obvious candidates. These trials 

will be to: 

� Generate fuller results for supervised learning using the statistical analysis from 

the Purbeck data set 

� Provide a larger data set for use in supervised learning. 

� Perform trials on a larger set of feature/object types 

 

2. Evaluation of further types of shape descriptor 

• Extend scalar descriptors to include more values, for example 

� Sharp corners 

� Corners 

� Parallelism of sides of shape 

� Major/minor axes 

� Rectangularity 

� Topological descriptors (holes etc.) 

• Fast Shape Descriptors 

• Shape Context Descriptors 

• Boundary chain encoding 

• Wavelet-based shape description 

• Mathematical morphology 

• Fractal shape descriptors 

 

3. Improvement with data fusion techniques 
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• Implementation of other fusion techniques from the fusion literature 

• Cleverer application of fusion to take into account shape types and contexts 

 

4. Combine shape description methods with non-shape recognition techniques, such 

as 

• Context models 

• Structure mapping 

• Markov models 
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