
Bounding Inconsistency Using a Novel
Threshold Metric for Dead Reckoning Update
Packet Generation
Dave Roberts1

Rob Aspin
Centre for Virtual Environments, Business House
University of Salford, Salford M5 4WT, UK
d.j.roberts@salford.ac.uk

Damien Marshall1

Seamus McLoone
Declan Delaney
Tomas Ward
National University of Ireland Maynooth
Maynooth, Co. Kildare, Ireland

Human-to-human interaction across distributed applications requires that sufficient consistency be
maintained among participants in the face of network characteristics such as latency and limited
bandwidth. The level of inconsistency arising from the network is proportional to the network delay,
and thus a function of bandwidth consumption. Distributed simulation has often used a bandwidth
reduction technique known as dead reckoning that combines approximation and estimation in the
communication of entity movement to reduce network traffic, and thus improve consistency. How-
ever, unless carefully tuned to application and network characteristics, such an approach can intro-
duce more inconsistency than it avoids. The key tuning metric is the distance threshold. This paper
questions the suitability of the standard distance threshold as a metric for use in the dead reckon-
ing scheme. Using a model relating entity path curvature and inconsistency, a major performance
related limitation of the distance threshold technique is highlighted. We then propose an alterna-
tive time–space threshold criterion. The time–space threshold is demonstrated, through simulation,
to perform better for low curvature movement. However, it too has a limitation. Based on this, we
further propose a novel hybrid scheme. Through simulation and live trials, this scheme is shown to
perform well across a range of curvature values, and places bounds on both the spatial and absolute
inconsistency arising from dead reckoning.

Keywords: Key words text

1. Introduction

A Distributed Interactive Application (DIA) allows partic-
ipants connected by a computer network to communicate
in a virtual world. They leverage the latest developments
in communication and graphical technology to enhance

SIMULATION, Vol. 84, Issue 5, May 2008 239–256
c� 2008 The Society for Modeling and Simulation International
DOI: 10.1177/0037549708092221

collaborative activities across distributed teams, and of-
fer many advantages in today’s globalized socio-economic
information culture. Applications that qualify as DIAs in-
clude collaborative virtual environments, military simula-
tions, video conferencing, collaborative whiteboards and
networked games [1–3].

In a DIA such as a collaborative virtual environment,
a participant controls a virtual entity, which is the virtual
representation of the participant. This virtual entity has a

1. Joint first authors

Volume 84, Number 5 SIMULATION 239



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

number of state variables, which include position and rota-
tion. Communication between participants is achieved by
sharing these state variables using synchronization mes-
sages. These synchronization messages typically contain
the most recent information about the entity’s state. They
are transmitted periodically across the connecting net-
work, and update the remote state of the virtual entity,
which is the state replicated on other participants’ com-
puters.

During transmission, each synchronization message is
subjected to the limitations of the network connecting
participants [4, 5]. The most significant limitations are
network latency and network jitter. Network latency is
the time taken from start of exchange of a synchroniza-
tion message at the application layer of one participat-
ing node to the end of exchange of the same message at
the application layer of a second participating node. Jit-
ter is the variation of latency with time. Latency and jitter
can be attributed to a number of aspects such as speed
of light delays, transmission delays due to the speed of
the communications link and queuing and processing at
nodes within the network [6]. The two latter issues are
related to the bandwidth of the network. Network band-
width is a measure of maximum throughput of traffic on
the network. If the traffic exceeds the bandwidth, then
data will need to be buffered or dropped until the flow
of data decreases. This buffering can occur on a dedi-
cated network node, such as a router, or on the com-
puter hosting the application itself. Latency and jitter, and
loss of data, will increase every time the bandwidth is
exceeded.

Due to the limitations of the network, each synchro-
nization message is not delivered to its intended recipient
for a time period at least equal to network latency. Apply-
ing these updates naively to the virtual world upon receipt
could result in different views of the virtual world for each
participant. In this case, each participant is said to have an
inconsistent view of the shared world. A sufficient level
of consistency is required to maintain the shared sense of
space, time and presence necessary for fruitful collabora-
tion between participants [7].

There is a clear link between consistency and DIA syn-
chronization message transmission rates. If the rate ex-
ceeds network bandwidth, then consistency will be af-
fected by increased network latency due to overloaded
network hardware. To deal with this issue, numerous tech-
niques and approaches have been researched and devel-
oped, which optimize the use of network bandwidth and
assist the maintenance of consistency. These can be sub-
divided into three general categories.

1. Information Management Techniques These all op-
timize the bandwidth usage by reducing the amount
of information transmitted across the network.
Examples include predictive contract agreement
mechanisms, relevance filtering, packet bundling
and packet compression.

2. Time Management Techniques These techniques at-
tempt to preserve some rules of time that can get
broken when state is communicated through dis-
crete updates over a network. They include two sub-
categories: those that manage consistency such as
total ordering, causal ordering and wall clock syn-
chronization� and those that hide some perceivable
effect such as delayed consistency, time warp and
local perception filtering.

3. Software and Hardware Architecture Techniques
These all aim to improve the efficiency of process-
ing or disseminating information. Examples include
QoS, protocols, network architectures and software
design.

These techniques and approaches have been summa-
rized and described by previous authors [7–11].

The focus of this work is on one information manage-
ment technique widely adopted in distributed simulation,
known as dead reckoning [12]. Predictive schemes, such
as dead reckoning, attempt to reduce inconsistency by re-
ducing latency due to network saturation. To fully under-
stand the operation of such a technique, it is first neces-
sary to briefly review some of the various types of incon-
sistency considered in the literature [4, 5, 13]. One of the
most popular is remote spatial inconsistency. This mea-
sures the spatial difference between a virtual entity’s local
position and that of its remote representation. However, it
does not consider time. Temporal inconsistency measures
time taken to receive an update following its transmission.
It does not consider the effect of the update on the state of
the virtual world. For example, an update may arrive soon
after its transmission, so temporal inconsistency is low.
However, the update may be applied out of order, so it
still induces inconsistency. Remote time–space inconsis-
tency combines both a temporal and spatial inconsistency
measure into a single value. It considers the length of time
the spatial inconsistency persists, as well as the spatial in-
consistency itself [14, 15]. In this work, it is referred to as
absolute inconsistency.

Dead reckoning operates by providing a controlled
level of spatial inconsistency in order to gain a decrease in
temporal inconsistency via a reduction in network traffic.
It does this by maintaining a model of the actual entity
position, the behavior of which is determined by a para-
metric model of the actual entity position. The difference
between the actual position and the model position is con-
tinually calculated. This gives a measure of local spatial
inconsistency. When this value exceeds a predefined er-
ror threshold, known as the spatial error threshold, the pa-
rameters describing the parametric model are updated to
reflect the most current behavior of the actual entity. A
synchronization message containing these parameters is
then transmitted over the connecting network to interested
remote participants. Upon receipt, each receiving partic-
ipant then uses this data to update the remote position of

240 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

the modeled entity, and to predict the behavior of a remote
entity until the next update. A key aspect in the genera-
tion of synchronization messages is the value of the spa-
tial threshold. A small threshold value tends to increase
the number of messages.

This work questions the use of the standard spatial
threshold value as a suitable criterion for generating up-
date packets in dead reckoning. It is demonstrated how
use of the spatial threshold does not necessarily provide
the best tradeoff between absolute and temporal inconsis-
tency as it can allow a persisting spatial inconsistency over
an extended period of time, which could potentially allow
unbounded absolute inconsistency. The root cause of this
is investigated and a method for capturing and quantifying
it using a measure of absolute inconsistency is illustrated.
Based on this analysis, we propose an alternative crite-
rion, known as the time–space threshold, which is based
on a measurement of both time and distance. Compara-
tive analysis shows that the time–space measure imposes
an upper bound on absolute inconsistency, while the spa-
tial threshold method results in a wide range of unpre-
dictable absolute inconsistency values. However, a limi-
tation of the proposed technique is highlighted and a final
hybrid solution is suggested. The performance of the hy-
brid scheme is then analyzed using simulation and live tri-
als conducted over the Internet.

The rest of the paper is structured as follows. Sec-
tion 2 questions the use of a distance-based threshold in
a dead reckoning predictive contract algorithm. Based on
this analysis, a novel time–space threshold metric is pro-
posed and analyzed in Section 3. Section 4 highlights a
drawback with the time–space threshold metric and con-
siders the use of a hybrid metric. In Section 5, results from
live Internet-based trials using the hybrid metric are pre-
sented. The paper ends with some concluding remarks in
Section 6.

2. The Dead Reckoning Threshold Problem

The success of the dead reckoning scheme largely depends
on the spatial threshold value employed. The threshold
value determines the maximum spatial inconsistency that
can occur between an entity’s actual movement and its
model of that movement. However, in a heavily loaded
networked, the threshold value also impacts the temporal
inconsistency between two nodes, as it directly influences
the number of update packets generated. For example, a
large threshold value results in less update packets lead-
ing to a corresponding decrease in temporal inconsistency
in heavily loaded conditions, but also allows a larger spa-
tial inconsistency to occur for an extended period of time,
which causes an increase in absolute inconsistency.

The trade-off between temporal and absolute inconsis-
tency is clearly evident in the inconsistency metric pro-
posed by Zhou et al. [15]. Here, the absolute inconsistency
� is defined as:

� �
��� 0 if ���t�� � �� t0��

t0
���t��dt if ���t�� � �� (1)

where � is the difference between the position of a lo-
cal object and its remote replication,�(t) is the equivalent
difference over a duration t, t0 is the start time of the in-
consistency, � is the duration and � is the minimum per-
ceivable distance.

Essentially, � is the area under the graph of spatial
consistency over the period between the transmission of
two updates. When � = 0 absolute consistency has been
achieved. Zhou et al. [15] derive two equations to express
inconsistency when dead reckoning is employed. The first
of these, �1, refers to the inconsistency accrued between
the time an update packet is sent and the time it is re-
ceived at the remote node. The second, �2, refers to the
inconsistency accrued between the time an update packet
is received at the remote node and the time the next update
is sent by the local node. The final value of inconsistency
is simply obtained by adding �1 and �2:

�1 � �	
 Td � �Td � �a�max TDR
T 2

d

2
� (2)

�2 �
�
�	
 � �

2

�
�TDR � Td� � (3)

where v is velocity, 
 is synchronization between remote
and local clocks, TDR is the time between updates, � is the
dead reckoning spatial threshold, Td is the time between
an update being sent and received (latency), and a is ac-
celeration.

We therefore obtain

�1 � �T 2
d (4)

and

�2 �
�
�

2

�
�TDR � Td� � (5)

These equations clearly illustrate the dual nature of tem-
poral and absolute consistency in relation to the spatial
threshold value �. Consider the simplified scenario where
each participant clock is synchronized so 
 is zero. Entity
velocity v is also assumed to be constant, so acceleration
amax is also zero. This scenario is represented in Equa-
tions (4) and (5). The network connecting participants is
also overloaded. Increasing the threshold � causes a de-
crease in synchronization messages, leading to a reduc-
tion in network latency Td. This has the effect of reducing
the value of inconsistency, as �1 is reduced. On the other
hand, increasing the threshold value also causes the time
between updates TDR to increase. This increases the value
of �2, meaning that overall inconsistency increases. The
obvious question then arises: what is the impact of the spa-
tial error threshold value on temporal inconsistency and

Volume 84, Number 5 SIMULATION 241



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

Figure 1. (a) An update is not generated as the entity remains within the spatial threshold� and (b) an update is generated to improve
absolute consistency

absolute or time–space inconsistency? The answer is un-
clear, as increasing the spatial threshold can both increase
and reduce inconsistency in the virtual world.

Using a spatial threshold in the dead reckoning pre-
diction contract mechanism is evidently questionable, as
varying its value within a heavily loaded network has an
uncertain impact on the value of inconsistency. Further-
more, the spatial threshold also exhibits another perfor-
mance related drawback. Consider the diagram in Fig-
ure 1a. In this case, the local user remains within the dis-
tance threshold �, but outside the perceivable error �. Such
a scenario could arise in a network racing car game, for ex-
ample, where an entity navigates a straight section of the
racing track. As far as the spatial threshold is concerned,
the position of the entity is considered to be spatially con-
sistent as it remains within the distance error threshold,
so no dead reckoning updates are generated. However, the
position of the entity then remains spatially inconsistent
over an extended period of time. This scenario could result
in interaction difficulties. For example, in the case of the
racing game, one driver might see a successful overtaking
maneuver, while the other sees a collision. In this case,
an objective outcome may need to be agreed between the
distributed processes, which may leave at least one driver
confused. The chances of this occurring can be reduced by
sending an update when a spatial inconsistency below the
threshold value persists over an extended period of time,
as shown in Figure 1b.

It is clear from this example that it is not sufficient to
only consider the spatial inconsistency when analyzing the
performance of the dead reckoning scheme. The length

of time the dead reckoning model has been inconsistent
also needs to be considered. With this in mind, a model of
the inconsistency arising during a dead reckoning update
period, that takes both time and spatial inconsistency into
account via Zhou’s measure, will now be derived.

An overview of the operation of this inconsistency
model is shown in Figure 2. The position of both the actual
and modeled entity position is simulated. The position of
the actual entity is governed by a path curvature value k. A
high curvature value means that the actual position moves
quickly away from the dead reckoning model, whereas a
lower curvature will replicate the scenario shown in Fig-
ure 1a. At t0 a dead reckoning update is transmitted. Both
the model and actual entity then move with a constant
speed of v. At time t, the model position and actual po-
sition are given by PM and PA, respectively:

PM

�
1

k
� 	t

�
and PA

�
cos 


k
�

sin 


k

�
� (6)

As speed is constant, the distance l traveled by both
the modeled and the actual position in each time interval
is equivalent. Using the standard arc length formula, the
angle 
 is found to be vkt. At each time-step the distance
between the actual and the modeled position d can be cal-
culated as:

d �
�
�PA�x�� PM�x��

2 � �PA�y�� PM�y��
2

�
��

cos�	kt�

k
� 1

k

�2

�
�

sin�	kt�

k
� 	t

�2

� (7)

242 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

Figure 2. Model of actual and dead reckoning model positions

Approximating cos(vkt) and sin(vkt) using the Taylor se-
ries expansion i.e.

cos�	kt� � 1� �	kt�2

2
� �	kt�4

4
and

sin�	kt� � 	kt � �	kt�3

3
(8)

reduces Equation (7) to

d � 0�5	2kt2� (9)

Evaluating Equation (9) gives the distance between the
model and actual entity position at any time t during an
update period. When d is equal to the spatial threshold �,
an update is transmitted. Hence, reworking Equation (9),
the time taken to transmit an update tupdate given a path
curvature and spatial threshold value can be expressed:

tupdate �
��

2�

	2k

�
� (10)

According to Equation (1), absolute inconsistency dur-
ing the update period tupdate can now be calculated as:

t0�tupdate	
t0

d�dt� �
t0�tupdate	

t0

0�5	2kt2 � 	2kt3

6


tupdate

t0

� (11)

Using Equation (10), the times taken to transmit an up-
date for varying path curvature values and a spatial error
threshold value of 1, 10 and 20 world units were calcu-
lated. Note, these threshold values were chosen to be rep-
resentative of a low, medium and high threshold value for
an entity of 5 world units in width. These values were then
used in Equation (11) to calculate the local absolute incon-
sistency arising during a particular update period. The re-
sults of these calculations are presented in Figure 3, where

local absolute inconsistency is plotted against varying cur-
vature values. In all cases, v is arbitrarily set to a con-
stant value of 25 world units per second (which is approxi-
mately 1.5 m s�1). Note, this model assumes that all pack-
ets are delivered successfully, and that network latency is
zero.

Analyzing Figure 3, it is clear that the spatial threshold
performs poorly at the lower end of the spectrum of curva-
ture values. When curvature is high, the time between up-
dates is short, meaning absolute inconsistency is low. On
the other hand, when curvature is low, the time between
update packets is long. In this case, the modeled entity can
remain inside the error threshold over an extended period
of time, leading to an increase in absolute inconsistency.
Clearly this is not an ideal scenario. By using the measure
of absolute inconsistency, situations such as that presented
in Figure 1a can be quantified and identified, providing a
more complete reflection of the true performance of the
spatial threshold. In the next section, it is demonstrated
how this measure can be employed in a novel error thresh-
old scheme, in order to prevent the scenario depicted in
Figure 1a occurring.

3. The Time–Space Threshold Metric

In an attempt to alleviate some of the drawbacks associ-
ated with the spatial threshold, and inspired by Zhou et
al’s inconsistency metric, we propose a novel threshold
metric, known as the time–space threshold metric, which
takes both distance and time into account during its oper-
ation. Under this scheme, the local spatial modeling error
is integrated over the time interval between two successive
update packets. This gives a measure of local time–space
inconsistency, represented by the shaded area in Figure 4.
Update packets are then generated when this local incon-
sistency value exceeds a specified threshold value. In this
way, absolute inconsistency has an upper bound and will
never be able to increase indefinitely.

Volume 84, Number 5 SIMULATION 243



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

Figure 3. Absolute inconsistency for varying curvature: spatial threshold metric used

Figure 4. The actual and modeled path using dead reckon-
ing and a spatial threshold metric

In order to fully evaluate the time–space threshold and
compare its performance to that of the spatial threshold, a
number of experiments were conducted. These will now
be described, along with an analysis of the results col-
lected.

3.1 Experimentation and Analysis

An experimental test platform was implemented using the
Torque game engine [16]. The engine was extended to
support logging of player position. Positional data from
three different participants of varying sex, age and virtual
environment experience were collected in a game environ-
ment that consisted of a single route from a start to target
position. A plan view of the test environment can be seen
in Figure 5a. Each participant was first given a practice run
with the environment in order to familiarize themselves
with the controls and the environment itself. The behavior
of each participant was then recorded for three separate
attempts at the course.

This data was then used as input for a Matlab simula-
tion. This simulation applies a first order dead reckoning
algorithm to the input data, which is recorded from the
experimental platform. The threshold metric and thresh-
old value was varied for each experiment. The simula-
tion results are now presented and discussed. It should be
noted that results are given for only one typical player,
but similar results were obtained for all players. Figure 5

244 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

Figure 5. Actual and modeled positions for a spatial threshold of 7 world units and a time–space error threshold of 7 world units-seconds.
(b) A zoomed-in section of the graph in (a).

Volume 84, Number 5 SIMULATION 245



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

Figure 6. Local absolute inconsistency for (a) a spatial error threshold of 7 world units and (b) a time–space error threshold of 7 world
units-seconds

246 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

Figure 7. Average packets required for increasing spatial and time–space error threshold

shows the actual player path, along with the modelled po-
sition using both the distance and the time–space thresh-
old metrics. An error threshold of 7 world units and world
units seconds was used for both models. This value was
chosen, as the virtual entity used in the experiments is
approximately 3.5 world units in width. The expanded
view clearly shows that update packets are sent at different
times depending on the threshold metric used.

Figures 6a and b show the local absolute inconsistency
arising during the simulation for a spatial threshold metric
and a time–space threshold metric, respectively. The peaks
in both cases represent a time when an update packet is
generated. When this occurs, the measure of local absolute
inconsistency reinitialized to 0. Figure 6a shows a wide
range of varying local absolute inconsistencies when the
spatial threshold metric is used. The highlighted section
in Figure 6a corresponds to the section highlighted in the
expanded view in Figure 5. In this case, it can be seen that
the actual position deviates around the model position, but
does not exceed the error threshold. This is a low path
curvature scenario, which results in the high absolute in-
consistency visible in the highlighted section in Figure 6a.
In contrast, the time–space threshold metric results in a

clearly upper-bounded local inconsistency measure (Fig-
ure 6b), thus preventing an indefinite increase in inconsis-
tency, as would be the case for the situation demonstrated
in Figure 1b. This result seemingly vindicates the use of
the latter threshold metric.

3.2 Limitations of Proposed Technique

As with all bandwidth optimization techniques, it is of ut-
most importance that the packets generated by the scheme
are examined. Figure 7 shows the average number of up-
date packets required for varying error threshold values
of both the spatial and time–space error threshold values.
As expected, the number of packets decreases as the error
threshold increases in both cases. Intuitively, it would be
expected that the time–space threshold would always gen-
erate a higher number of packets than the spatial threshold
value, as it provides a lower level of inconsistency. How-
ever, upon analysis of the collected data, it was found that
at lower threshold values this was not the case� more up-
date packets are required when the spatial threshold met-
ric is employed. The reason behind this can be fully un-
derstood by examining the performance of the time–space

Volume 84, Number 5 SIMULATION 247



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

Figure 8. Spatial inconsistency for varying curvature: time–space threshold metric used

threshold scheme from the point of view of spatial incon-
sistency, similar to the analysis carried out earlier in the
context of the spatial threshold and absolute inconsistency.
This can be achieved using Equations (9) and (11).

Using Equation (11), the time between updates when a
time–space threshold of 1, 10 and 20 world units-seconds
was calculated for varying path curvature values. Again, v
was set to 25 world units per second. The resulting time
values were then employed in Equation (9) to determine
the amount of local spatial inconsistency that would have
arisen during that update period. The results from these
calculations are shown in Figure 8, where local spatial in-
consistency is plotted against varying curvature values.

Figure 8 demonstrates that, in terms of spatial inconsis-
tency, the time–space threshold performs poorly at higher
path curvature values. For example, at very high curvature,
a time–space threshold of 10 world unit-seconds yields a
spatial inconsistency of approximately 30 world units dur-
ing an update period. This occurrence (a very large spatial
error in a very short period of time) is due to the fact that
integrating the model error up to a point in time t1 can
actually result in a smaller value than the distance error
between at time t1, as demonstrated in Figure 9. Here, a
scenario of high path curvature is shown, where the dead

Figure 9. Limitation of using a time–space threshold met-
ric

reckoning model becomes very inaccurate very quickly.
If a distance-based threshold metric is employed, then an

248 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

Figure 10. Local spatial inconsistency for (a) a spatial error threshold of 7 world units and (b) a time–space threshold of 7 world units-
seconds

Volume 84, Number 5 SIMULATION 249



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

Figure 11. The different threshold schemes allow different levels and types of inconsistency

update packet will be forthcoming almost immediately,
which is what we would hope for. However, if a time–
space threshold metric is used, it could take significantly
longer before an update packet is sent, as a small time in-
terval counters the large modeling error. This means that
an entity’s remote movement could potentially be very in-
accurate over a short period of time, resulting in extremely
poor spatial consistency.

This analysis is evident in the results shown in Fig-
ure 10. Using the same input trajectory and MatLab simu-
lation as the experiments outlined in Section 3.1, the spa-
tial inconsistency was recorded for both a spatial thresh-
old of 7 world units and time–space threshold of 7 world
unit-seconds. The results are shown in Figures 10a and
b, respectively. As would be expected, spatial inconsis-
tency is bounded to the spatial error threshold value. In
the case of the time–space threshold metric however, spa-
tial inconsistency varies, and can be likened to the local
absolute inconsistency measured when a spatial threshold
is employed as shown in Figure 6a.

It is clear from the analysis presented here and in Sec-
tion 2 that both threshold metrics are sensitive to oppo-
site ends of the spectrum of curvature values, and tend to
under-perform within these regions. Further examination
of the data presented in these sections, particularly Fig-
ures 6 and 10, suggests that the obvious solution is to use
both threshold metrics in one dead reckoning algorithm. In
the next section, such a scheme is discussed, and its ability
to bound both types of inconsistency is demonstrated.

4. The Hybrid Threshold Scheme

In order to deal with the two key performance-related is-
sues of both schemes, a novel hybrid dead reckoning al-
gorithm is now proposed. Under this scheme, both met-
rics are simultaneously evaluated. As soon as one has

reached the error threshold, an update packet is trans-
mitted. Both spatial and time–space inconsistency mea-
sures are then reinitialized to zero. The benefit of using
the hybrid threshold scheme can be appreciated by ex-
amining Figure 11. Here, spatial inconsistency is plotted
against time. Absolute inconsistency is the shaded area
underneath the plotted graph lines. If the spatial thresh-
old is employed, the amount of spatial inconsistency is
limited to the threshold value. Similarly, when the time–
space threshold metric is used, absolute inconsistency is
also bounded to the time–space threshold value. The line
representing this level is curved as, under the time–space
threshold scheme, a small spatial inconsistency over a
long period of time is equivalent in terms of inconsistency
to a large spatial inconsistency in a short period of time.

The lightly colored areas in the figure expose the lim-
itations of both techniques. Using either scheme in iso-
lation allows extra inconsistency to occur. The spatial
threshold allows extended absolute inconsistency over
longer time periods, whereas the time–space scheme can
give rise to increased spatial inconsistency over short
time periods. By using both in tandem, inconsistency is
bounded to the darkly shaded area.

To test the hybrid scheme, a number of MatLab simu-
lations were again conducted. Figure 12 shows the local
spatial and absolute inconsistency for a dead reckoning
routine using the hybrid metric. An error threshold of 7
is used for both metrics. The input trajectory is again the
same as employed in previous tests. The effect of simul-
taneously using the two threshold metrics is evident from
Figure 12. There are now bounds placed on both levels of
inconsistency. To further demonstrate these bounds, two
sections of both figures have been emphasized. The ar-
eas marked as A1 in both figures highlight a low path
curvature scenario. This situation was quickly identified
using the time–space threshold, however, and an update

250 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

Figure 12. (a) Local spatial inconsistency and (b) local absolute inconsistency for a hybrid error threshold of 7 world units and 7 world
units-seconds

Volume 84, Number 5 SIMULATION 251



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

Figure 13. Varying updates are transmitted as the curvature of the course changes

was generated. The areas marked as A2 indicate a high
path curvature scenario. Using the time–space threshold
in isolation here could have allowed a large spatial in-
consistency. As the hybrid threshold is being employed,
this situation is identified by a breach of the spatial error
threshold.

5. Internet-Based Trials

To strengthen the mathematical and analytical analy-
sis presented in the previous sections, a number of live
Internet-based trials were conducted using the experimen-
tal test platform implemented in the Torque games engine.
The engine was further modified to support the three dead
reckoning threshold schemes (spatial, time–space and the
hybrid). As dead reckoning relies on replicated databases,
the engine was also modified to support a peer-to-peer
network architecture [17]. Six participants of varying age,
sex and virtual environment experience participated in the
trials which took place across the Internet, ensuring that
data was subject to real network problems such as latency
and jitter. Three participants were based in University of
Salford, UK and the others were based in the National
University of Ireland, Maynooth, Ireland. Each participant
was first given a chance to familiarize themselves with the

course and the controls of the virtual environment. A plan
view of the course can be seen in Figure 1s. The objec-
tive of the task assigned to participants was to complete
the given course before the other participant. For ease of
analysis, each section of the course was given a constant
curvature value.

Two participants, one from each of the two universities,
were involved in each trial. Six experiments were con-
ducted during each trial. These experiments tested the use
of the three different threshold metrics for error threshold
values of 5 and 10 (world units and world units-seconds,
depending on the threshold employed). The clocks on par-
ticipant machines were synchronized at the start using the
Network Time Protocol [18]. On each game tick (approx-
imately 32 ms), each participant logged the position of all
virtual entities visible on their local machine, including
their own position. Each participant also logged the num-
ber and type of updates transmitted during the simulation.
Each log entry was time stamped with synchronized wall
clock time.

5.1 Results and Analysis

We now examine the results collected in the live trials
described above. Figure 14 shows remote spatial and ab-

252 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

Figure 14. (a) Absolute and (b) spatial inconsistency using a hybrid threshold of 10 world units and 10 world units-seconds

Volume 84, Number 5 SIMULATION 253



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

solute inconsistency obtained when a hybrid threshold of
10 world units-seconds is used. A plot of the course curva-
ture is also shown in both figures in order to aid analysis.
It should be noted that, while the results presented in this
section are for a single user, they are nevertheless repre-
sentative of all the users. Also, the actual value of time
in the graphs of both figures represents the point in time
in which data was collected with respect to the start of
the time server. Furthermore, Figure 13 plots the types
of updates transmitted during the simulation from Fig-
ure 14. This is superimposed over the participant trajec-
tory. Results were also collected for both the spatial and
time–space threshold being employed in isolation. How-
ever, they are similar to that presented in Section 3 and
have not been reproduced here.

The effect of latency and jitter on the simulation is ev-
ident from Figure 14. Each peak represents a point where
an update is generated. It can be seen how some peaks
rise above the threshold level of 10 in both cases. The ef-
fect is greater in Figure 14a, as the absolute inconsistency
measure takes both time and space into account. The in-
creased inconsistency in this case is due to the extra time
caused by latency and jitter (Td in Equations (1) and (2)).
However, taking the latency factor into account, it can be
seen how using the hybrid threshold value places bounds
on both levels of inconsistency arising from the dead reck-
oning scheme.

By comparing both plots in Figure 14 with their respec-
tive curvature plots and considering the results presented
in Figure 13 it can be seen that the impact of curvature
demonstrated in our previous analysis, although still evi-
dent, has now been mitigated. It can be seen in Figure 14b
that on the sections of the course with low curvature, spa-
tial inconsistency is approximately 8 world units or lower,
and would not have generated an update. However, the
time–space threshold can capture and quantify this behav-
ior, resulting in an update being generated during this pe-
riod. This effect is evident in Figure 13, where it can be
seen how the start and end sections of the track, those
with the lowest curvature, have the highest frequency of
breaches of the time–space threshold. On the other hand,
in the middle section of the track and on the sharp corners
where curvature is higher (Figure 13), the frequency of
spatial threshold updates increases. This effect is also ev-
ident by analyzing the absolute inconsistency falling un-
der the high curvature area in Figure 14a. Absolute incon-
sistency is approximately 6 unit-seconds or lower in this
area, and would not have generated an update until a later
time.

The tighter bounds placed on inconsistency by the hy-
brid scheme result in higher levels of both absolute and
spatial consistency, supporting more accurate and objec-
tive shared experience of relative movement of the virtual
entities. However, this tighter consistency has an impact
on the number of packets generated in the environment,
as can be seen in Figure 15. Here, the average number
of packets generated per user in the live trials for spa-

tial, time–space and hybrid threshold values of 5 and 10
are considered. The results show that the hybrid thresh-
old results in a relatively small increase in packets across
the network. This increase in packet number is expected,
as the hybrid threshold reduces inconsistency when com-
pared to both other approaches.

6. Conclusions

The maintenance of a low level of inconsistency in the
face of network limitations is a key issue in distributed
interactive applications. An important tool in the mainte-
nance of a low level of inconsistency is dead reckoning.
This approach uses a measure of local spatial inconsis-
tency to determine when to transmit synchronization mes-
sages. In this work, the effect of using such a measure with
dead reckoning was examined, and a key performance-
related issue was highlighted. It was shown that the spatial
threshold value alone cannot identify scenarios where lo-
cal spatial inconsistency persists over an extended period
of time. Its use can result in a large level of absolute in-
consistency.

This was examined in further detail using a model
of entity path curvature and local absolute inconsistency.
This analysis concluded that the spatial threshold per-
forms poorly when the modeled entity path curvature is
low. Based on this result a new threshold, known as the
time–space threshold, was proposed. This metric mea-
sures local absolute inconsistency and when this value
reaches a predefined error threshold, a dead reckoning up-
date is generated. Simulation results using this threshold
show that while this metric prevents the case of indefinite
local absolute inconsistency, it can result in a large local
spatial inconsistency over short time periods.

A novel hybrid threshold metric, which evaluates both
the spatial and time–space threshold simultaneously, was
then proposed. Simulation results demonstrate that this
approach places a bound on both local spatial and local
absolute inconsistency, thus providing the increased per-
formance benefits of both metrics.

A number of live trials were then conducted using the
spatial, time–space and hybrid threshold schemes. Analy-
sis of the remote inconsistency values collected during
the live trials confirms our theoretical analysis in the face
of actual network latency and jitter. The hybrid threshold
scheme places bounds on spatial and absolute inconsis-
tency. However, it results in a relatively small increase in
network traffic. As with the spatial threshold, the actual
impact of this extra network traffic on inconsistency is un-
clear in a heavily loaded network. The increase in traffic
improves absolute inconsistency, but may reduce temporal
inconsistency. Future work will investigate this trade-off
in detail.

254 SIMULATION Volume 84, Number 5



BOUNDING INCONSISTENCY FOR DEAD RECKONING UPDATE PACKET GENERATION

Figure 15. Average number of packets generated for the different error threshold metrics during the live Internet trials.

7. Acknowledgements

This work was supported by Science Foundation Ire-
land and Enterprise Ireland under grant IRCSET/SC/04/
CS0289 and by Marie Curie HPMT-CT-2001-00390.

8. References

[1] Gautier, L. and C. Diot. 1998. Design and Evaluation of MiMaze, a
Multi-player Game on the Internet. In Proceedings of IEEE In-
ternational Conference on Multimedia Computing and Systems,
June 28–July 1, Austin, Texas, pp. 233–236.

[2] Kauff, P. and O. Schreer. 2002. An immersive 3D video-conferencing
system using shared virtual team user environments. In Proceed-
ings of the 4th international conference on Collaborative virtual
environments, September 30–October 02, Bonn, Germany, pp.
105–112.

[3] Churchill, E. and D. Snowdon. 1998. Collaborative virtual environ-
ments: An introductory review of issues and systems. Virtual Re-
ality 3(1), 3–15.

[4] Delaney, D., T. Ward, and S. McLoone. 2006. On consistency and
network latency in distributed interactive applications: A survey
– Part I. Presence: Teleoperators and Virtual Environments 15(2),
218–234.

[5] Delaney, D., T. Ward, and S. McLoone. 2006. On consistency and
network latency in distributed interactive applications: A sur-
vey – Part II. Presence: Teleoperators and Virtual Environments
15(4), 465–482.

[6] Roehle, B. 1997. Channeling the data flood. IEEE Spectrum 34(3),
32–38.

[7] Singhal, S. and M. Zyda. 1999. Networked virtual environments: de-
sign and implementation. ACM Press/Addison-Wesley Publish-
ing Co.: New York.

[8] Roberts, D. 2004. Communication infrastructures for inhabited infor-
mation spaces. Inhabited Information Spaces, Living with your
Data: p. 233–267.

[9] Joslin, C., T. Di Giacomo, and N. Magnenat-Thalmann. 2004. Col-
laborative virtual environments: from birth to standardization.
Communications Magazine, IEEE 42(4), 28–33.

[10] Delaney, D., T. Ward, and S. McLoone. 2003. Reducing Update
Packets in Distributed Interactive Applications using a Hybrid
Mode. In Proceedings of 16th International Conference on Par-
allel and Distributed Computing Systems, August 13–15, Reno,
USA, pp. 417–422.

Volume 84, Number 5 SIMULATION 255



Roberts, Marshall, McLoone, Delaney, Ward and Aspin

[11] McCoy, A., T. Ward, S. McLoone, and D. Delaney. 2006. Multi-
step-ahead Neural-Networks for Network Traffic Reduction in
DIAs. To appear in. ACM Transactions on Modelling and Com-
puter Simulation (TOMACS).

[12] IEEE. 1993. IEEE Standard for Distributed Interactive Simulation:
Application Protocols, in IEEE Std 1278, IC Society, Editor.
IEEE: New York.

[13] Bouillot, N. and E. Gressier-Soudan. 2004. Consistency models for
distributed interactive multimedia applications. ACM SIGOPS
Operating Systems Review 38(4), 20–32.

[14] Gautier, L., C. Diot, and J. Kurose. 1999. End-to-end Transmission
Control Mechanisms for Multiparty Interactive Applications on
the Internet. In Proceedings of INFOCOM ’99. Eighteenth An-
nual Joint Conference of the IEEE Computer and Communica-
tions Societies, March 21–25, pp. 1470–1479.

[15] Zhou, S., W. Cai, B. Lee, and S. Turner. 2004. Time-space consis-
tency in large-scale distributed virtual environments. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 14(1),
31–47.

[16] Llyod, J. 2004. The Torque Game Engine. Game Developer, 8–9.
[17] Marshall, D., S. McLoone, T. Ward, and D. Delaney. 2006. Does

Reducing Packet Transmission Rates Help to Improve Consis-
tency in Distributed Interactive Applications? In Proceedings of
9th International Conference on Computer Games: AI, Anima-
tion, Mobile, Educational & Serious Games, 22–24 November
2006, Dublin, Ireland, pp. 88–92.

[18] Mills, D. 1989. Network Time Protocol (version 1): Specification
and implementation. DARPA Network Working Group Report
RFC-1119, University of Delaware, September.

256 SIMULATION Volume 84, Number 5


