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Abstract—In this paper and its companion [1], the identifica-
tion of mathematical models describing the behaviour of wave
energy devices (WECs) in the ocean is investigated through the
use of numerical wave tank (NWT) experiments. This paper deals
with the identification tests used to produce the data for the
model identification. NWTs, implemented using computational
fluid dynamics (CFD), are shown as an effective platform to per-
form the identification tests. The design of the NWT experiments,
to ensure the production of information-rich data for the model
identification, is discussed. A case study is presented to illus-
trate the design and implementation of NWT experiments for the
identification of WEC models.

Index Terms—Wave energy conversion, hydrodynamic
modelling, system identification, numerical wave tank,
computational fluid dynamics.

I. INTRODUCTION

H YDRODYNAMIC models are important for the design,
simulation and control of wave energy converters

(WECs). In the wave energy community, the hydrodynamic
models are normally formulated under the assumptions of small
body motions and wave heights, in an incompressible, invis-
cid and irrotational fluid of constant density. Fully describing
the dynamics of the fluid and its interaction with a structure
involves solving the Navier-Stokes equations, which histori-
cally have been simplified to obtain a linear potential flow
equivalent, whereby solutions are generated by linearising the
problem through assumptions of small amplitude oscillations.
This is a major limitation of this modelling approach, since
WECS are designed to operate over a wide range of sea condi-
tions where large amplitude motions will result from energetic
waves or sustained wave/WEC resonance. At this expanded
amplitude range, the linearising assumptions are invalid, as
nonlinear effects become relevant.

An alternative modelling approach, detailed in this paper and
its companion, is that of system identification, where mod-
els are determined from input/output data measured from the
system under study [2]. System identification, which can be
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considered to be the dynamical equivalent of static function
approximation, has its origins in the methods developed by
Legendre, Laplace and Gauss in the 19th century, which were
used to fit functional forms to (typically) astronomical data [3].
However, since the 1960’s, the field of dynamical system identi-
fication has been consolidated and many successful applications
have been reported using a wide variety of methods across a
broad range of application areas [4].

The fundamental principle of system identification is cap-
tured in Fig.1. The identification procedure follows the follow-
ing steps:

1) A parametric structure is chosen for the model,
2) A suitable input signal, u is synthesised and input to the

system,
3) The input signal, u and resulting output signal, y are

recorded,
4) An identification algorithm is used to determine the opti-

mal parameter vector, Θ, which minimises some error
metric between the actual measured output y and that
produced by the identified parametric model.

One major difficulty in system identification is ensuring
that the input/output data used to determine the model is
sufficiently representative of the system dynamics and, in
particular, must cover the range of frequencies and amplitudes
likely to be encountered during system operation. In the WEC
case, such a range of excitation signals are not likely to be
available in the open ocean (at least not in a reasonably short
time frame) and there are difficulties in exactly enumerating
the excitation experienced by the device, particularly for a
directional device. In short, there is no external control of the
excitation. Alternatively, it is possible to employ tank tests.
However, in addition to the significant cost and the need for
a physical prototype, there may be limitations on the range
of excitation signals available and tank wall reflections may
further limit the range and duration of viable tests. One other
possibility for generating suitable input/output data is to use a
numerical wave tank (NWT) implemented with computational
fluid dynamics (CFD).

The use of CFD-based NWTs to identify hydrodynamic
parameters has been reported by a number of researchers.
For example, [5] used CFD experiments to identify a coeffi-
cient for a viscous damping term to be added to the Cummins
equation. [6] performed harmonic oscillation experiments to
determine the added mass and radiation resistance coefficients
of a floating body at discrete frequencies. [7] and [8] used
free decay experiments to identify the full state dynamics of
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Fig. 1. System identification principle.

a floating body. [9] used free decay experiments and input
waves to identify the state plus input dynamics of an oscillat-
ing water column (OWC). [10] identified the state plus input
dynamics of a floating body, by introducing a power take-off
(PTO) force to the body to drive its motion and also determined
nonlinear hydrodynamic restoring force parameters from the
NWT experiments. [11] used input waves to identify nonlin-
ear hydrodynamic excitation force kernals. [12] gives an initial
exposition of NWT experiments for the identification of hydro-
dynamic models and shows examples of both input waves and
PTO forces in NWT experiments to train and validate a gen-
eralised hydrodynamic model. The work reported in [12] is a
precursor to the more comprehensive study documented in this
paper and in [1].

This paper focusses on the NWT experiments designed
to provide information-rich data for the identification of the
hydrodynamic models detailed in [1]. Section II gives an
overview of NWTs and the underlying CFD used to implement
the NWT simulations. The design of the NWT experiments is
discussed in Section III. A case study illustrating the methods
described in this paper is presented in Section IV and discussed
in Section V. Conclusions are drawn in Section VI.

II. NUMERICAL WAVE TANKS

A NWT is the generic name of numerical simulators for
modelling nonlinear free surface waves, hydrodynamic forces
and floating body motions [13]. Current day computing power
allows the implementation of NWTs using CFD.

A. Computational Fluid Dynamics

The dynamics of fluids is governed by the transfer of mass,
momentum and heat. These three processes are described by the
Navier-Stokes equations, a set of partial differential equations
derived in the early nineteenth century, which form the basis for
the analysis of fluid dynamics [14].

Continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0. (1)

Momentum equation:

ρ
∂u

∂t
= ∇ · τij . (2)

Energy equation:

ρ
∂e

∂t
= ∇ · (k∇T )− p∇ · u+ τvij

δui

δxj
. (3)

Fig. 2. Schematic of CFD process for fluid-structure interaction.

where ρ is the fluid density, u the velocity, e the internal
energy, T the temperature, k the thermal conductivity and τij
is the stress tensor comprising the pressure, −pδij , and viscous
terms, τvij :

τvij = μ

{
δui

δxj
+

δuj

δxi

}
+ δijλ∇ · u. (4)

where μ is the coefficient of viscosity, δij is the Kronecker
delta function and λ is the bulk viscosity.

The coupled continuity, momentum and energy equations,
Eqs. (1)–(3), are indeterminate and require two more equations
to obtain closure which are provided by the ideal gas laws:

p = ρRT. (5)

and

e = cvT. (6)

where cv is the specific heat at constant volume.
In general, these equations have no known analytical solu-

tion, however, they may be solved numerically using CFD by
discretising the domains of space and time to form a system of
linear algebraic equations, which are computer implementable.
CFD treats the fluid-structure interaction problem, using the
scheme outlined in Fig. 2. This process allows fully nonlin-
ear hydrodynamic calculations, including effects neglected by
traditional linear velocity potential methods such as viscos-
ity, large wave amplitudes and body motions, green water and
vortex shedding, however at great computational expense.

The use of CFD to simulate wave energy converters has been
validated against experimental data and shown to produce accu-
rate results by many researchers, see for example [15], [16],
[17] and [18]. The focus of this paper is not on the validation
of the CFD simulations, but rather on their use for the identifi-
cation of hydrodynamic models, and therefore assumes that the
CFD simulations are sufficiently accurate.

B. NWT Experiments for Identification of Hydrodynamic
Models

Using a CFD based NWT to generate data for WEC model
identification has the following advantages:

- Reflections from ‘tank’ walls can be effectively controlled
by numerical absorption techniques,

- Can test the device at full scale, eliminating scaling
effects,
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- A wide variety of excitation signals which are useful for
system identification can be implemented, including inci-
dent waves, forces directly applied to the device and free
response tests,

- The device can be constrained to different modes of
motion without requiring mechanical restraints, which
can add friction and alter the device dynamics,

- Hydrodynamic force on the body can be measured,
- Signals can be passively measured without requiring

physical sensor devices, which can alter the device or fluid
dynamics and are subject to measurement error, and, most
importantly,

- Specialist equipment, including a prototype WEC device,
is not required.

However, NWTs are not without their drawbacks. The chief
disadvantage, over a conventional wave tank, is the exces-
sively long time to perform the numerical computation of the
response, and typical computation times can be up to 1000
times the simulation time i.e. 1 s of simulation time takes 1000 s
to compute. The modelling method presented in this paper and
[1] directly addresses the computational complexity issue, by
using NWTs to develop sets of representative responses, which
can subsequently be used to produce computationally efficient
parametric models. The construction of these system identifica-
tion tests needs to be carefully considered, so that representative
input/output behaviour over the operational space is recorded,
while minimising overall computation time.

III. EXPERIMENT DESIGN

One important issue in system identification is the specifi-
cation of the system input signal. The signal should excite the
system over its whole range of operation, providing informa-
tion of the system’s behaviour for all the conditions which the
identified model will be required to replicate. For example, a
purely sinusoidal input signal will only give information of the
system’s behaviour at that single frequency. In general, a good
test signal should satisfy the following properties:

• Good coverage of the frequencies where the system has a
significant non-zero frequency response,

• Good coverage of the full input and output signal ranges
(if the system is nonlinear), and

• Economic use of the test time.
Typically useful signals for the identification of linear sys-

tems are pseudo-random binary sequences, which have a flat
frequency spectrum, or multi-sinusoids which contain a set of
closely-packed frequencies [19]. For nonlinear systems, there
is an additional input/output signal amplitude dependence in
the model, so the full operational range of amplitudes will
also, ideally, need to be present in the identification signal.
Therefore pseudo-random sequences with randomly varying
amplitudes (or random amplitude, random period [RARP]) can
be employed for nonlinear systems, while chirp and multi-sine
signals are also useful, since the input signal varies continu-
ously over the allowable input amplitude range.

Fig. 3 shows an examples of chirp (a), RARP (b) and mul-
tisine (c) signals. The spectral content and amplitude distribu-
tions of these signals are then plotted in Fig. 4, displaying their

Fig. 3. Time series of potential identification signals.

Fig. 4. Spectrum and amplitude distribution for signals in Fig. 3.

respective frequency and amplitude domain coverage. Each
signal has different attributes regarding their spectral and ampli-
tude properties, and also regarding the dependence of these
properties on the signal length. Obviously, from a CFD compu-
tation standpoint, the shorter the simulation length, the better.

The chirp signal’s (Fig. 3-(a)) frequency linearly sweeps a
desired range during the evolution of the signal; therefore, its
frequency content is distributed fairly evenly across that range,
shown in Fig. 4-(a). The amplitude of the chirp signal is well
bounded (Fig. 4-(b)), with free choice in setting the maximum
amplitude, however, there is no free choice over the amplitude
distribution.

The frequency content (Fig. 4-(c)) and amplitude distribution
(Fig. 4-(d)) of the RARP vary due to the inherent random-
ness of the signal. However as the signal length increases, the
amplitude distribution converges to an even coverage of the
desired amplitude range and the frequency content converges
to a distribution influenced by the maximum allowable ran-
dom switching period (1s for the signal in Fig. 3-(b)). The
amplitude distribution can be controlled by filtering the random
numbers produced for the amplitude with a desired probability
distribution function (e.g. Gaussian).

The multisine allows strong control over the spectral con-
tent (Fig. 4-(e)), with free choice for the amplitude of each
harmonic. The amplitude distribution (Fig. 4-(f)), is determined



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

by the amplitude and the phases of the harmonic components,
which leads to control over the amplitude content in the multi-
sine signals through phase optimisation techniques [19]. The
multisine signal in Fig. 3 has a fundamental frequency of
0.05 Hz and equal amplitude for every harmonic up to 1 Hz
with random phases.

Free surface elevation (FSE) and wave excitation force
signals are constrained by underlying fluid dynamics (e.g.
no square waves), therefore the possibility of utilising RARP
or chirp signals is limited to excitation using an external
(e.g. PTO) force input. It is not possible to create input FSE
multisine signals with a flat broadbanded spectrum in the
NWT due to limiting wave steepness, higher frequency waves
have shorter wavelengths and therefore smaller maximum
allowable amplitudes. For typical wave spectrums observed
in the ocean, the spectral content for frequencies (f ) above
the peak decay with a f−5 tail [20]. However, external forces
on the WEC from the mooring and PTO can contain high
frequency components, which can be replicated by a direct
force signal to the WEC in the NWT.

IV. CASE STUDY

Here a case study is presented to illustrate the design and
implementation of NWT experiments for the identification of
WEC models. The data produced from the numerical wave tank
experiments reported in this paper are then employed in [1]
to determine suitable black-box hydrodynamic models for the
device under test.

A. Case Study Description

The case study considers a two dimensional (2D) NWT,
whereby the NWT is one cell thick and symmetry planes are
imposed on the front and back faces of the domain. The 2D
NWT is used to allow timely investigation of the optimal exper-
iment design, before moving to the much more computationally
complex 3D NWT for real WEC geometries.

The NWT is implemented using OpenFOAM, as detailed in
[21]. The tank geometry is depicted in Fig. 6, having a 50m
depth and walls located 100m from the device, with wave cre-
ation/absorption implemented via the waves2FOAM package
[22] utilising two 90m long relaxation zones situated 10m either
side of the device. A 2D circular device geometry is simulated,
which relates to the cross-section of a horizontally aligned
cylinder of infinite length. The radius of the cylinder is 1m with
a density of half that of the water so that it rests 50% submerged.
Fig. 5 shows a view of the mesh around the cylinder.

The cylinder’s motion is constrained to heave, in all exper-
iments, to allow the identified models in [1] to focus on this
single degree of freedom for simplicity and clarity of presenta-
tion. Depending on the operational characteristics of the device,
it may be desirable to identify models with multiple degrees of
freedom (DoF). The NWT is well suited for this purpose, allow-
ing the device motion to be constrained or actuated along any
number of coupled modes of motion, which is very difficult to
implement mechanically in a real wave tank. Although passing
to multiple DoF will considerably increase the simulation time

Fig. 5. Side view of the 2D geometry and the mesh used in the CFD simulation.

Fig. 6. Tank used for the case study experiments.

Fig. 7. Block diagram of the two different model types considered in the case
study.

of the experiment, requiring all possible combinations of ampli-
tude and frequency for each DoF to be excited, the ever increas-
ing power and reducing cost of high performance computing
allows well designed multiple DoF simulations to be feasible.

The identification of two different types of models is con-
sidered in this case study: FSE to body motion and input force
to body motion, as outlined in Fig 7. Section IV-B details the
wave excitation experiments used to provide identification data
for the FSE to body motion model, while Section IV-C details
the input force experiments for the input force to body motion
models.

B. Wave Excitation Experiments

The wave excitation experiments are used to identify a model
between the FSE and the device motion (Block A - Fig. 7).
Two time series vectors are produced by these experiments for
the model identification in [1], one containing the FSE, {η(k)},
and the other the body displacement, {y(k)}. A wave creation
zone on one side of the device is used to create the input wave
time series and an absorption zone on the leeward side of the
device prevent these waves from being reflected back, as shown
in Fig. 6.

The identified model considers as input, the FSE at the
body’s centre of mass, which can not be measured directly
whilst the body occupies this space. Therefore, the experiment
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Fig. 8. Schematic of the procedure for the wave excitation experiments.

Fig. 9. (a) Input wave signal created on the free surface of the NWT, and (b) the
corresponding frequency spectrum.

is performed in two stages; first, the input waves are created
without the body in the tank, and the FSE measured at the
desired position to obtain {η(k)}. Next, the same input waves
are generated, but with the body in the tank, and the result-
ing body motion recorded to obtain {y(k)}. This procedure is
illustrated in Fig 8.

The input wave signal is a 600s multisine signal, shown in
Fig. 9-(a), consisting of 100 equally spaced frequencies from
0.005–0.995 Hz with randomly assigned phases and amplitudes
determined by targeting a JONSWAP spectrum with a peak
period of 8s, significant wave height (Hs) of 0.6 m and a peak-
iness (γ) value of 2. Fig. 9-(b) shows the frequency content of
the input signal by plotting the Fourier transform of the FSE
measured from the NWT experiment. The experiment is per-
formed twice, using the same input wave spectrum but with
different random phases for each frequency, to produce one data
set for model training and a second for model validation in [1].
Fig. 10 shows a plot of both the FSE and resulting body motion
from part of the wave excitation experiments.

To show the comparability of wave and input force excita-
tions, in terms of amplitude of body motion, Fig. 11 shows
the relative displacement (distinct from body position) of the
device with respect to water surface. This will be seen to be
commensurate with the relative displacement for the direct
force tests, where no external waves are present.

Fig. 10. Simulated free surface elevation, and corresponding body motion,
measured from the NWT wave excitation experiments.

Fig. 11. Relative displacement of device with respect to water surface for wave
excitation.

C. Input Force Experiments

The input force experiments are used to identify a model
between an input force and the device motion (Block B - Fig. 7).
Two time series vectors are produced by these experiments for
the model identification in [1], one containing the input force,
{fIN (k)}, and the other the body displacement, {y(k)}. The
input force experiments use wave absorption zones on both
sides of the device to prevent waves radiated by the device
from being reflected from the side walls and contaminating the
results.

Unlike the input wave experiment, where the choice of input
signal is constrained by the laws of fluid dynamics, the input
force experiment allows total freedom over the choice of input
signal to be applied to the system. It is important to ensure
that the input signal covers the frequency range of interest
and that input power is applied to the parts of the spectrum
where the identified model is required to perform well. Fig. 12
depicts a block diagram of the input force type model for
the wave energy case, where the input force is the sum of
the wave excitation, PTO and mooring forces. Therefore, the
input frequency range not only depends on the wave spec-
tra in which the WEC is expected to operate, but also on
the mooring and PTO loads, which may subject the device
to high frequency inputs from mooring snap loads, maximum
stroke end-stop collisions, latching control etc. The pragmatic
approach, taken in this study, is to perform preliminary exper-
iments (Section IV-C1) to ascertain some rough measurement
of the resonant frequency and bandwidth of the device, inform-
ing the identification experiments (Section IV-C2) where their
input power spectrum should be allocated.

1) Preliminary Experiments: Two simple preliminary
experiments can be used to determine the frequency bandwidth
of the device’s natural and forced responses. Both preliminary
experiments involve a very low total amount of kinetic energy
in the device and the NWT fluid, which results in relatively
fast CFD simulations. This allows the preliminary experiments
to be quickly simulated before the identification experiments,
to inform the design of the identification signals’ frequency
range.
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Fig. 12. Representation of the input force to a WEC model.

Fig. 13. Device free response in (a) time and (b) frequency domains.

The device’s natural response is determined via a free decay
experiment, whereby the device is initially displaced from its
equilibrium position and allowed to freely oscillate back to rest.
Fig. 13-(a) shows a free decay experiment performed on the
case study set-up and Fig. 13-(b) displays the Fourier transform
of the free decay and gives an indication of the device resonance
and bandwidth (state dynamics).

The device’s forced response is determined via a small ampli-
tude chirp signal experiment, whereby a chirp signal is applied
as a direct force on the device. Unlike the chirp signal used for
the later identification experiments, which must cover a desired
amplitude range, the chirp signal in the preliminary experiments
is of very low amplitude allowing fast simulation times. The
small amplitude chirp signal experiment therefore gives a fre-
quency response identification of the total forced dynamics
around the equilibrium position. This response is shown in
Fig. 14.

Figs 13 and 14 give an indication of the system’s band-
width, where both figures show a resonant peak around 0.45 Hz.
Inspection of the frequency response informs the frequency
range for which the identification experiments should be valid
for. For this case study, the identification experiments will be
designed to span the region of 0–1.5 Hz.

2) Identification Experiments: Three different signal types
are investigated for the input force experiments, a RARP signal,
a multisine signal and a chirp signal input. Each signal is 600s
in length and is applied as a direct vertical force acting on the
device. The signals are designed to span the force amplitude

Fig. 14. Preliminary frequency response determination using a small amplitude
chirp signal as input.

Fig. 15. A 100 second portion of the RARP signal used for identification,
(a) input and (b) output.

range of ±1 kN per meter of cylinder length in the horizon-
tal direction of the 2D symmetry planes (±1 kN/m), and the
frequency range of 0–1.5 Hz. Two versions of each signal are
generated: one to be used for model training and the second for
model validation.

The RARP signal is designed with a maximum random
switching period of 0.67 s (1.5 Hz) and random force ampli-
tudes with even probability across the ±1 kN/m range. The
signal is randomly generated twice under these constraints,
with one signal being used for model training and the sec-
ond for model validation in [1]. A sample of the input RARP
force is plotted in Fig. 15-(a) and the resulting body motion in
Fig. 15-(b).

The multisine signal, is designed with a flat frequency spec-
trum with a fundamental frequency of 1/600 Hz and all har-
monics up to 1.5 Hz. All frequency components are given equal
amplitudes, to create a flat spectrum, and are assigned random
phases. The amplitude of the frequency components is man-
ually tuned until the time series distribution spans the range
±1 kN/m. The signal is generated twice using the same fre-
quency spectrum but with different random phases, with one
signal for model training and the second for model validation.
The input force multisine signal is plotted in Fig. 16-(a) and the
resulting body motion in Fig. 16-(b).

The chirp signal is designed to linearly sweep from 0 to
1.5 Hz with a maximum oscillation amplitude of 1 kN/m.
Fig. 17-(a) shows the body motion from the chirp signal used
for model training. To generate a second signal for model vali-
dation, the chirp signal is reversed, linearly sweeping from 1.5
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Fig. 16. A 100 second portion of the multisine signal used for identification,
(a) input and (b) output.

Fig. 17. Output of chirp signal experiment used for (a) model identification and
(b) model validation.

to 0 Hz. The resulting body motion from the reversed chirp
signal used for model validation is shown in Fig. 17-(b).

V. DISCUSSION

Identifying WEC models from recorded NWT data requires
that the data is representative of the conditions that the models
will encounter. The design of the NWT experiments is therefore
dependent on the required use of the model. The case study
presented in Section IV-B considered a model to be used to
simulate device motion in the presence of input waves. The fre-
quency and amplitude range for these experiments is limited
by the underlying fluid dynamics and limiting wave steepness
(e.g. there are no square shaped waves on water), which are
observed in the open ocean as well as the NWT under noraml
WEC device power production conditions. The choice of input
signals should be guided by the sea states the WEC is expected
to operate in. The experiments can be designed using either
specific individual sea spectrums, or by creating a generalised
broadbanded spectrum spanning the entire set of expected spec-
trums likely to be encountered at a location. As example, the
frequency content and amplitude distribution of the input FSE
signal for the presented case study was designed to replicate a

Fig. 18. Distribution density plot of the output device displacement excited by
the different input signals.

commonly occurring sea state at the EMEC test site [23]. The
tank depth of 50m was also chosen to correspond to the water
depth at the EMEC site.

The input for the wave excitation model in Section IV-B was
the FSE at the centre of the device. The use of such models
is generally for predictive assessment of device performance
using pre-measured wave data. In other situations, wave excita-
tion models can be used for real-time control and take upstream
measurements of the wave field as input. This type of scenario
can be replicated in the NWT, by measuring the upstream FSE
and the body motion in a single experiment, unlike the case
in Section IV-B where it was necessary to measure the FSE
and body motion in separate experiments. Another possible
input variable to this type of model could be the pressure value
probed at a location in the NWT, to replicate a pressure sensor
mounted on the surface of the device or on the sea floor.

For nonlinear systems, which exhibit an input/output ampli-
tude dependence, it is important for the signals to also span
the amplitude range of interest. For the case in presented in
Section IV-B the amplitude range was determined by the input
sea state. For Section IV-C2, the input amplitude range investi-
gated was 0 to 1 kN/m, and three different signal types (chirp,
RARP and multisine) were designed to span this range, as well
as the specified frequency range (0 to 1.5 Hz). The fidelity of
the identified models in the companion paper [1], may be used
an indicator of the efficacy of these three identification signals,
both from validation and cross validation results. The identified
models in [1] are nonlinear autoregressive with exogenous input
(NARX) models, whereby the present output value is deter-
mined from the input as well as past output values. Therefore,
the output amplitude range excited by the input signals is
also important. The output amplitude distribution is plotted in
Fig. 18, where it can be seen that the chirp signal excites the
largest amplitude range but also spends the majority of its time
around the equilibrium, due to the small response to the high
frequencies in the tail of Fig 17. The multisine signals shows a
more broadbanded output amplitude distribution and the RARP
is seen to have the most evenly distributed output amplitude of
the three signals.
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For the case study, the models are used for the heave motion
of the floating body; therefore, the body is constrained to this
single degree of freedom in the NWT. This is a nontrivial task in
physical wave tanks requiring mechanical restraints which can
alter the device dynamics and add friction to the system. It is
also possible to perform multi-degree of freedom experiments
in the NWT, with free choice over which modes of motion, if
any, are to be constrained.

VI. CONCLUSION

The field of system identification is successfully used for
many applications and is demonstrated in this paper, and its
companion [1], as a viable solution for obtaining WEC models.
One difficulty, in using system identification for WEC mod-
elling, is obtaining appropriate input/output data from open
ocean or physical tank testing; however, the use of CFD based
NWTs offers an avenue to overcome these difficulties and pro-
vide high fidelity device simulation to provide the data for
model identification. The identification experiments for data
generation must be well designed to ensure the data has good
coverage of the expected operational conditions while making
economical use of the test time.
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