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Abstract In order to increase the overall power produc-
tion efficiency of wave energy technology in the face of sea
state variability, the presence of the control is mandatory. A
model of the system is required to tune the controller parame-
ters and predict the resulting performances. Even though the
relevance of nonlinearities is magnified by the presence of
the controller, the device model employed is usually linear.
An implementation of control in a fully nonlinear simulation
model is desirable, butmissing.Hence, this paper proposes to
use the fully nonlinear computational fluid dynamics (CFD)
environment, implementing the latching control strategy in
the open source software OpenFOAM.A case study has been
analyzed to highlight the nonlinear behavior of a device under
latching control and to evaluate the differences between lin-
ear and nonlinear simulation models. The results show that
the linear model overestimates the amplitude of motion, and,
as a result, the extracted power. Moreover, the choice of the
optimal control parameter is significantly affected by the non-
linear effect on the natural period of the device.

Keywords Latching control · CFD · OpenFOAM · NWT ·
Nonlinear · Optimal latching duration

1 Introduction

For several countries around the world, the exploitation of
ocean wave power may constitute a significant contribu-
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tion to the diversification of the energy production scenario,
increasing the portion of sustainable and renewable resources
(Halamay and Simmons 2011; Fusco et al. 2010; Yang et al.
2010). However, in most cases Wave Energy Converters
(WECs) are not yet efficient enough to be economically com-
petitive in the renewable energy market. An important role
in the achievement of the economic viability is played by the
control strategy, able to double the energy harvested (Babarit
and Clément 2006).

On the other hand, the ability of the controller to mag-
nify power absorption is extremely sensitive to the ratio of
wavelength to device size (Greenhow et al. 1984). A small
device tends to have a larger absorbed-power increase than a
big device, so its performances gain more benefits from the
inclusion of the controller. In order to maximize the power
extracted, a WEC must effectively convert energy in a range
of frequency aswide as possible. For heavingpoint absorbers,
for example, the resonance frequency of the WEC is usually
quite pronounced and the response rapidly decays for fre-
quencies far from resonance. Indeed, the main aim of the
control strategy is to address the sea state variability and
significantly enlarge the amplitude of motion, especially at
frequencies far from the resonance peak. The most common
WEC control strategies for linear WECmodels are based on
a form of complex-conjugate (Nebel 1992) or reactive (Salter
1979) control, which returns the optimal conditions, in the
frequency domain, to maximize the energy absorption, as
shown in chapter 6 ofFalnes (2002).On the other hand, exam-
ples of time domain approaches are given by latching (Budal
et al. 1979; Babarit and Clément 2006; Kara 2010) andmeth-
ods based on numerical optimization (Bacelli et al. 2009).

Regardless of which particular control strategy is adopted,
a comprehensive model of the system is required and the per-
formance of the controller is highly dependent on the model
accuracy. The simplest and common choice is to linearize
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the system, implicitly assuming small amplitudes of motion.
However, under controlled conditions the motion may be
exaggerated and, as a consequence, the relevance of nonlin-
earities increases.

In absence of control, the only external action comes from
the waves, whose steepness is physically limited, as shown
in chapter 17 of Mehaute (1976). The resulting wave excita-
tion force is smooth andwithout high-frequency components.
Conversely, the controller acts directly on the device with
an arbitrary force, limited only by the structural constraints
of the system. An example is given by latching control,
which imposes a discrete on/off force. Peñalba et al. (2015)
implement latching control with both a linear and a partially
nonlinear hydrodynamic model and show how the predicted
power output and theoptimal control calculations are affected
by presence/absence of the nonlinear terms. While the lin-
ear and nonlinear models produce similar WEC motion in
the uncontrolled case, the motions diverge when control is
applied. Specifically, nonlinearities becomes relevant when
the sharp exciting force of the controller directly influences
the dynamics of the device leading to, among other effects,
an asymmetric response.

An accurate evaluation of the performance of the con-
troller, as well as a validation of the results of the simulations,
may be achieved through experimental tests in the sea or in
wave tanks. Bjarte-Larsson and Falnes (2006) tested latch-
ing on an axisymmetric floating body in a wave tank and the
implementation of the control increased the power captured
up to 4.3 times. A comparison between a simulation and tank
tests is reported by Durand et al. (2007), where a latching
control strategy is applied in a wave tank to the SEAREV
device. The controller increased the energy production up to
ten times with regular waves, from 50 to 86 % with irregular
waves.

Unfortunately, experimental tests are not widely per-
formed because they are time consuming, expensive and
require both a device, usually scaled, and a wave tank. A
more feasible evaluation tool is represented by the numerical
wave tank (NWT) that implements a real tank in a computa-
tional fluid dynamics (CFD) environment. The application of
the Navier–Stokes equations allows the inclusion of all the
nonlinearities while the numerical domain makes possible
to simulate the full-scale device and avoid scale effects. On
the other hand, CFD has several drawbacks, among which
the most relevant are: expensive large clusters needed to per-
form the computation in a reasonable time, long setup time
and the expertise required to produce reliable results, as well
as long computational time for each simulation.

Nowadays, in wave energy applications, numerical wave
tanks are mainly used to evaluate fluid–structure interaction
on one or more floating bodies in operational conditions, to
test survivability in extreme conditions (Clauss et al. 2005),
to quantify viscous effects in order to identify the terms of

theMorrison equation andmodel an equivalent viscous force
(Bhinder et al. 2012) or to provide data for system identifi-
cation techniques (Davidson et al. 2015b). Even though the
experimental results demonstrate the impact of a controller
on the system’s dynamics, a real-time control in an NWT
is missing. This paper addresses the absence of a control
strategy in a CFD environment, implementing latching in
the open source software OpenFOAM®. Rather than focus-
ing on a nonlinear control algorithm, which could be based
on the mathematical formulation of Hoskin and Nichols
(1986), the objective of the paper is to show that a real-
time controller in CFD is implementable and to highlight
the prominence of nonlinearWEC behavior under controlled
conditions, which leads to a significant difference between
optimal latching duration for linear and nonlinear WEC sim-
ulation. In particular, the focus is on nonlinearities deriving
from the wave–body interaction, therefore only linear waves
are analyzed.

Likewise, additional PTO damping has not been included
since, even without PTO, the system is already damped
enough to avoid unacceptably large oscillations; it will be
shown that the maximum oscillation achieved (0.028 m) is
just the 22 % of the device radius (see Fig. 11 or Table 1).
With no PTO, there is no power extraction, so the objec-
tive of the optimization is to exaggerate the amplitude of
oscillation. Nevertheless, Babarit et al. (2004) show that, for
latching control in a linear system with regular waves, maxi-
mization of the amplitude of oscillation is as effective as the
maximization of the power extracted.

The reminder of the paper is organized as follows: Sect.
2 presents the mathematical and computational description
of the software’s structure while Sect. 3 shows the control
strategies available in the proposed latching algorithm. In
Sect. 4, results are presented and, in Sect. 5, comparisons are
drawn between CFD simulations and linear simulations. In
Sect. 6, some conclusions and final remarks are presented.

2 Numerical wave tank

Numerical wave tanks are computer implementations, in
either two or three dimensions, of wave tanks (Tanizawa
2000). Having a numerical facility brings several advantages
over the real one: a more cost-effective evaluation of motion
and power capture, passive access to individual hydrody-
namic forces (e.g., restoring or viscous forces) and status
variables (e.g., pressure or velocity) in every point of the fluid
domain, implementation of ideal constraints and restraints
and no need of a real tank and device, so no scale effects.
Several drawbacks also exist, among which the most rel-
evant by far is the high computational time, typically 1000
times bigger then the simulation time (Ringwood et al. 2015).
Furthermore, the setup of a spatial mesh, which ensures
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a reasonable compromise between computational time and
accuracy, requires time and experience.

The fluid dynamic in CFD is ruled by a set of differ-
ential equations called Navier–Stokes equations, chapter 2
of Temam (2001). Under the incompressibility assumption,
only the equation of transfer of mass (1) and momentum (2)
are utilized:

∇ · u = 0 (1)

ρ
∂u
∂t

+ ρu · ∇u = −∇ p + ∇ · T + ρg (2)

where u is the fluid velocity, ρ is the fluid density, p is the
pressure, g is the acceleration of gravity and T is the stress
deviator, given by.

T = μ[∇u + (∇u)T ] (3)

where μ is the dynamic viscosity.
The software discretizes the time and space domains in

order to form a system of linear algebraic equations. The
software utilized in this paper is the open sourceOpenFOAM,
version 2.3.

2.1 OpenFOAM

The development of NWTs in OpenFOAM is a rich research
topic and numerous research theses and reports are avail-
able (Afshar 2010; Cathelain 2013). In the wave energy field,
OpenFOAM has been used to simulate wave energy convert-
ers in operational (Palm et al. 2013; Schmitt et al. 2012) and
extreme events (Vyzikas et al. 2013) conditions.

The wave generation application is called waveFoam and
was created by Jacobsen et al. (2012) as an extension of the
built-in interFoam. The free surface elevation is described
by an interface-capturing method known as volume of fluid
(VOF) (Hirt and Nicholis 1979). Within the tank, there are
three different zones: in the middle region the dynamics are
purely governed by the Navier–Stokes equations; hence, this
is the actual experimental area of the tank. Upstream, there is
the wave generation zone, where the required wave profile is
gradually imposed on the fluid domain. Downstream, there
is the absorption zone, where the waves are gradually erased
to avoid reflections. Figure 1 shows the generic configura-
tion of a numerical wave tank, where the curved profiles in
the generation and absorption zones represent the proportion
with which the wave profile is imposed on the fluid domain.

A further development of the wave generation application
is called waveDyMFoam, based on the built-in interDyM-
Foam, which allows the presence of a floating body thanks
to a dynamic mesh that moves and deforms according to the
body motion. In the version 2.3 of OpenFOAM, the intro-
duction of the sixDoFRigidBodyMotion solver considerably

Fig. 1 Scheme of a numerical wave tank implemented in OpenFOAM
using waveFoam

improves the mechanism taking care of the movement of
the body and the consequent deformation of the surrounding
mesh. Moreover, constraints and restraints are more reliable
and efficient than in the previous versions.

The main reason for the choice of OpenFOAM instead
of other CFD commercial software is its flexibility and open
source availability. Besides the undeniable relevance of being
cost-free, the biggest value is the possibility to access and
modify the source code, which allows a deep understand-
ing and total control over the calculations performed by the
software.

OpenFOAM is written in C++, which makes straightfor-
ward to insert a new customized subroutine into the main
structure of the software. Indeed, new compatible applica-
tions are easy to create, making the software flexible and
adaptable to the user’s needs. In Sect. 2.2, the basic steps to
follow to implement a new application are explained, as well
as the instructions to download, compile and use the latching
control application created by the authors.

2.2 Implementation of latching control

The proposed control algorithm is born as a customized ver-
sion of the built-in sixDoFRigidBodyMotion, which can be
found in the source code folder of OpenFOAM. The orig-
inal application’s task is to apply Newton’s second law of
dynamics, integrating all the forces acting on the body sur-
face, eventually including external restraints, to calculate
and update both linear and rotational acceleration, velocity
and position. Furthermore, if present, constraints are ana-
lytically imposed, directly setting to zero the displacement
in the blocked degree of freedom. Note that, in previous ver-
sions of OpenFOAM, constraints were indirectly obtained by
adding a counteracting force against the resulting force in the
direction of the blocked degree of freedom. Even though this
approach is theoretically valid, the numerical finite accuracy
can cause a defective constraint.

Since every controller essentially acts on the device by
means of either restraints or constraints, sixDoFRigidBody-
Motion is suitable as the backbone of the new application,
implementing the real-time control algorithm. The reader
can either code his own control algorithm or download the
ready-to-use latching control algorithm available at Giorgi
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Fig. 2 Latching calculations to put position and force in phase. Latch-
ing instants at extrema of position P and −P: t1, t3 and t5; latching
duration: TL; unlatching instants: t2 and t4

and Ringwood (2015). Details about the control strategy fea-
tures and options are provided in Sect. 3, while practical
instructions are given in the user manual in Giorgi and Ring-
wood (2015).

3 Latching control

After a brief overview on the latching control given in Sect.
3.1, the control strategy actually implemented in the proposed
control algorithm is unfolded. Section 3.2 describes the basic
logic of the new source code. Section 3.3 highlights a nonlin-
ear behavior of the natural periodwith relevant consequences
on the latching strategy, leading to an expansion of the con-
trol algorithm explained in Sect. 3.4. Finally, in Sect. 3.5,
a case study is presented, along with a description of some
issues related to the CFD simulation environment.

3.1 Latching control

The purpose of latching control strategy is to force the veloc-
ity into phase with the excitation force. An on/off PTO force
is applied by means of a latching system, in order to avoid a
phase difference between the velocity and the incomingwave
excitation force. Referring to Fig. 2, the device is locked at
times t1, t3 and t5 at the extrema of displacement, namely
when the velocity is zero, and released at times t2 and t4 after
a latched duration TL. The two latching durations, upper posi-
tion t2 − t1 and lower position t4 − t3, may, in certain cases,
preferably be chosen to be different (Falnes and Lillebekken
2003).

If the wave is regular and monochromatic, with period
TW , the natural period Tn of the device is known and if the
damping is negligible, the control variable TL is optimally
calculated (Ringwood and Butler 2004) as:

TL = t5 − t1
2

− (t5 − t4) = TW
2

− Tn
2

(4)

Equation (4) implicitly suggests that the latching control
strategy best suits conditions in which the wave period is
bigger than the natural period, with TL > 0. Conversely,
another control strategy called declutching is able to control
devices facing an incoming wave with period smaller than
the natural period (Teillant et al. 2010).

The definition of the natural period in Eq. (4) presents sev-
eral issues.While, in a linear case, the natural period is a well
known and univocal concept, the presence of nonlinearities
or large amplitude of motion makes it ambiguous to define.
Section 3.3 focuses on the variability of the natural period
and the consequences on the choice of the latching duration.
Furthermore, Eq. (4) is exact only if damping is absent or
negligible. More correctly, the natural period should be sub-
stituted by the damped natural period, which approaches the
natural period as the damping goes to zero. Section 3.1.1
shows the linear hydrodynamic model approximation of the
system and proposes a model order reduction to estimate the
influence of the damping on the natural period.

Finally, if the sea state is characterized by polychromatic
waves, the requirement of phase accordancebetweenvelocity
and excitation force becomes blurred, so the optimization
criterion is not unique (Babarit et al. 2004). Different targets
can be pursued, such as the synchronization of the velocity
and excitation peaks (Hals et al. 2002) or the maximization
of the absorbed power (Babarit and Clément 2006).

3.1.1 Linear model approximation

The linear equation ofmotion of a floating body, as in chapter
6 of Newman (1977), is defined in the frequency domain
as:

{−ω2[M + A(ω)] + jωB(ω) + G}x( jω) = Fex(ω), (5)

where M is the mass, A(ω) the added mass, B(ω) the radia-
tion damping, G the stiffness, Fex(ω) is the wave excitation
force and x a generic degree of freedom. In the present paper,
the hydrodynamic parameters A(ω) and B(ω) are calculated
by solving the potential problem with the BEM open source
software NEMOH.

For the purposes of real-time control, a time domain for-
mulation is needed, obtained applying theCummins equation
(Cummins 1962):

(M + A∞)ẍ(t) +
∫ t

0
K (t − t ′)ẋ(t ′)dt ′ + Gx(t) = fex(t),

(6)

where x is the generic degree of freedom, M is the mass,
A∞ is the infinity frequency added mass asymptote, G is the
stiffness, fex is the exciting force and the kernel K of the con-
volution term is the retardation function. The calculation of
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K and A∞ is made applying Ogilvie’s relationships (Ogilvie
1964):

K (t) = 2

π

∫ ∞

0
B(ω)cos(ωt)dω, (7)

A∞ = lim
ω→∞ A(ω). (8)

Finally, since the direct computation of the integral in (6)
is expensive, the convolution term can been replaced by a
state space representation (Jefferys 1980) pages 413–438, as
showed by Taghipour et al. (2007). In this way, the whole
dynamic problem becomes a computationally efficient set of
first-order differential equations.

The identification of a state space model is performed
using the toolbox provided by Perez and Fossen (2009),
which automatically selects a proper order, hereafter called
n, to approximate the convolution integral. Therefore, the
overall dynamical system order of the system (6) becomes
2 + n.

In any case, since the oscillatory behavior of a floating
object resembles the dynamics of a simple constant mass–
damper–spring system, Fusco and Ringwood (2011) propose
a second-order approximation, namely reducing the state
space order to zero, i.e., the complete system order to two.
The reduction is reasonable if the system is described by a
dominant pole pair. The evaluation of the relevance of each
order is made by means of the Hankel singular values of the
complete system σi , which are used to quantify the energy
content of each order i (Safonov et al. 1990). If arranged
in descending order, namely σ1 ≥ σ2 ≥ · · · ≥ σn+2, the
second-order approximation is reliable if σ2 >> σ3.

The second-order system approximation presents a con-
stant damping term, so Eq. (6) can be rearranged to match
the standard second-order dynamical system:

ẍ + 2ζωn ẋ + ω2
nx = 0, (9)

where ζ < 1 is the damping ratio and ωn = 2π
Tn

is the natural
frequency. Notwithstanding the approximation introduced,
the advantage of the order reduction is the possibility to
analytically evaluate the effect of damping on the system
dynamics. Since the damped natural frequency is defined as

ωd = ωn

√
1 − ζ 2, (10)

it is smaller than the natural frequency. Consequently, the
presence of damping reduces the ideal optimal latching dura-
tion:

TL = Tω

2
− TL

2
= Tω

2
− Tn

2
√
1 − ζ 2

(11)

The approximation error introduced by Eq. (4) is pro-
portional to the damping factor of the non-reduced system,

which is not as explicitly accessible as in the standard second-
order differential equation (9). The second-order reduction
may be of assistance if the whole system is clearly second-
order-dominant, namely if the approximation introduced by
the order reduction is negligible. Since every case should
be assessed for second-order dominance, it is not possible
to give to the method a general validity. Therefore, TL is
not always exactly definable and Tn is used instead, aware
that the actual optimal TL will be smaller, accordingly to the
damping factor of the system.

3.2 Constant latching duration

The basic latching control algorithm applies to devices sub-
ject tomonochromatic waves, and utilizes a constant latching
duration, which is equal for both positive and negative
peaks. Conversely, alternative and adaptive latching dura-
tion options are available to deal with nonlinear dynamics,
as further explained in 3.4.

The control algorithmallows the user to choosewhich axis
the latching control should be applied to, either in surge (X
axis), sway (Y axis) or heave (Z axis) motion. The conven-
tional right-handed coordinate system assumes the incoming
wave along the x-axis, the gravity acting on the negative
direction of the z-axis and the y-axis oriented according to
the right-hand-rule.

In order to be effective, the controllermust be able to detect
when the latching conditions are verified and actually lock
the motion for as long as required by the latching controller.
The innovation introduced by the new control algorithm is
the dynamical use of constraints to perform the latching act:
instead of being applied just at the beginning of the simu-
lation, constraints in the controlled degree of freedom are
imposed when the body is latched and removed when the
body is released. The timing with which the controller inter-
venes is defined by the control strategy, whose logic is shown
in the flowchart in Fig. 3.

The control algorithm is programmed to apply New-
ton’s second law of dynamics at every time step �T of
the simulation time tsim and update the state variables of
position, velocity and acceleration. Prior to the application
of Newton’s law, the control algorithm sets the constraints
accordingly to the latching status.

The initial conditions normally assume the floating body
in quiet equilibrium in the numerical wave tank at the still
water level. When the simulation starts, the waves are grad-
ually created in the generation zone and travel towards the
device which, in turn, begins to move. Hence, the control
loop is bypassed for a transition time ttransition, defined by the
user, to allow the device motion to reach steady state.

Then, the latching condition of zero velocity at the extrema
of displacement needs to be verified. Due to numerical
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tsim = 0

tsim > ttransition

v(tsim) · v(tsim − Δt) ≥ 0

Already
latched?

tsim ≥ tu

Stop
latching

Continue
latching

Start
latching

tu = tsim + TL

Newton’s second law of dynamics

tsim = tsim + Δt

YES

YES

NO YES

NO YES

NO

NO

Latching algorithm

Fig. 3 Constant latching duration control strategy. Simulation time:
tsim; time step: �t ; transition time: ttransition; velocity: v; latching dura-
tion TL; unlatching instant: tu

precision, a null velocity is very unlikely, so the multi-
plication between the values in two successive time steps
(v(tsim) · v(tsim − �t)) is checked instead: in the case of an
extremum, the product must be either negative or null. Fur-
thermore, when the body is latched, the velocity is exactly
set equal to zero, so the null-multiplication-condition is ver-
ified as well. Consequently, it is important to asses whether
the body has just reached the peak or it was already locked
in the extremum from the previous time step, i.e., whether
or not the body was latched in the last iteration. In the very
first sample point that the controller locks the device, the
unlatching instant tu is defined by adding the latching dura-
tion to the simulation time. The body is kept in position until
the latching duration is elapsed, then is freed to escape from
the extreme position.

Summing up, use of the latching control algorithm
requires the user to declare the type of latching control (con-
stant, alternative or adaptive), the degree of freedom (surge,
sway or heave) that is to be latched, the value of latching
time and starting time. If some of the parameters are omit-
ted, default values are set in the source code.

3.3 Latching duration and natural period

Themain important parameter to choose to perform the latch-
ing control is the latching duration. If the incoming wave is
monochromatic, Eq. (4) achieves an optimal control, as long
as the natural period of the controlled device is known and the
damping term ζ is negligible. If damping is not negligible,
then (11) can be used instead. Unfortunately, the definition
of a unique characteristic natural period is not straightfor-
ward if the linear assumption of small motion is not made, as
explained in 3.3.1. Since the amplitude of themotion is exag-
gerated by the latching control, the small motion hypothesis
is generally mistaken.

3.3.1 Natural period

In dynamics, the natural period (or frequency) describes how
fast the body oscillates if displaced from an equilibrium posi-
tion and set free to move. The natural frequency is calculated
from the inertia and the stiffness terms of the equation of
motion. Equation (5) shows the frequency dependence of the
added mass A(ω) and damping term B(ω), while the mass
M and the stiffness G are constant.

Actually, Eq. (5) is accurate only in a range of motion
around the equilibrium, small enough to consider the wetted
body surface constant. The added mass (which is the mass of
water accelerated by the body motion, therefore depending
on the submerged portion of the body) and the hydrosta-
tic stiffness (which depends on the cross section piercing the
water) both depend on the instantaneous wetted surface, with
the notional dependence shown by A(x(t)) and G(x(t)) in
(12), respectively. The natural period, which is defined for a
linear case as a time-invariant characteristic of the body, is
not a proper descriptor under large motion conditions. A new
quantity called the instantaneous natural period is defined by
(12), which returns the natural period relative to the actual
submerged portion of the body at each time instant. Hence,
the instantaneous natural period is able to capture the non-
linear relation between the natural period and the motion of
the body.

Tn(x(t)) = 2π

√
M + A(x(t))

G(x(t))
. (12)

Consequently, the instantaneous damped natural period
depends on the instantaneous natural period as well as on
the hydrodynamics of the system.

TL(x(t)) = Tn(x(t)) f (B, M, A). (13)

In 3.3.2 a free decay time series fromCFD simulation is used
to appreciate the range of variability of the instantaneous
natural period.
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3.3.2 Free response tests

The natural period is a description of the dynamical behavior
of a body left free tomove fromapositionof non-equilibrium.
Therefore, a reliablemeasurement of the actual natural period
can be obtained from a free decay test, performed either in a
real or numerical tank. While in a linear analysis, eventually
inaccurate assumptions are needed to calculate the natural
period, here it is directly measured from the time series,
which is inclusive of all the nonlinearities instead.

During the evolution of the free decay, both the ampli-
tude and the frequency are changing in time. For the sake of
simplicity, the two variables are separated, so that:

x(t) = A(t)sin(ωn(t)t + φ) (14)

The natural period is defined as the time lag between two
successive homologous (referring to points of equal displace-
ment, a period apart) points of the harmonic function. Since
the amplitude is not constant, it is straightforward to sam-
ple the natural period at the extrema or the zero-crossings.
While a discrete description is valuable, a more precise and
continuous trend is required to understand how the nonlinear-
ities gradually modify the dynamics as the amplitude varies.
Hence, in order to spot all the couples of consequent homol-
ogous points, Eq. (14) needs to be normalized, i.e., divided
by the envelope that connects the absolute value of all the
peaks and troughs.

As an example, the instantaneous natural period has been
calculated for a semisubmerged sphere with radius and draft
of 0.125 m, hence with the center of gravity at the free
surface height. A heave-free decay is simulated in a CFD
environment, starting with the center of gravity at -0.1 m.
The resulting instantaneous natural period variations in time
are shown via the solid line in Fig. 4. In the same graph, the
envelope of the free decay time series is drawn in dotted line,
along with the indication of peaks and troughs.

Fig. 4 Instantaneous natural period for a CFD heave-free decay test of
a sphere with radius of 0.125 m

As the time elapses, the amplitude of the free decay
decreases and the natural period becomes shorter, until it
matches the linear natural period, represented by the horizon-
tal dashed line. The transition toward the minimum of 0.69 s
is smooth, with a maximum variation of about 7 %, from the
highest value of 0.74 s that occurs for an amplitude around
0.1 m. Note a systematic alternation of concavity and con-
vexity, respectively, occurring at the peaks and troughs of the
free decay displacement. As a consequence, it is possible to
infer that, at equal amplitude, the natural period is relatively
longer at positive displacement, than at negative. Indeed, at
the right side of Fig. 4, where the steepness of the curve is
lower, the variability of the natural period between peaks and
troughs is more evident. Further insight can be produced by
simulating a free decay from a symmetric initial condition,
namely starting from 0.1 m instead of −0.1 m. The result-
ing instantaneous natural period, shown in dash-dot line in
Fig. 4, follows the same average trend, but with a symmetric
alternation of concavity and convexity, which confirms that
at equal magnitude of motion, the natural period is different
inside and outside the water. The discrepancy between peaks
and troughs becomes smaller as the amplitude decreases. The
principal effect responsible for the different natural periods
at peaks and troughs is the asymmetric action of the viscous
forces, since the body is surrounded by two fluids, mainly
water at troughs and mainly air at peaks, with very different
viscous coefficients.

Finally, as far as the constant latching duration algorithm is
concerned, the instantaneous natural period analysis allows a
more effective selection of the latching period. A reasonable
forecast of the amplitude of motion acquirable, for exam-
ple, through a linear simulation, can point to the zone of
the envelope in which the body will oscillate under control.
Consequently, the corresponding natural period allows the
selection of a more suitable latching duration.

3.4 Alternative and adaptive latching durations

Following the discussion about the variability of the natural
period in Sect. 3.3.2, the choice of the latching duration is not
obvious. Since the instantaneous natural period is systemat-
ically longer than the linear one, Eqs. (4) or (11) lead to a
shorter latching period. The optimal duration is not clearly
defined, since it depends on the amplitude of the motion,
which in turn, depends on the latching duration itself. More-
over, the asymmetric behavior between peaks and troughs
adds a further degree of complexity. The present control algo-
rithm proposes two options to partially overcome the issues
of the non-constant natural period: alternative and adaptive
latching control strategies.

The alternative latching control aims to providemore flex-
ibility to the control algorithm, allowing the definition of two
different latching periods for peaks and troughs. Even though
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the choice is still arbitrary, an instantaneous natural period
analysis of a free decay test, as in Fig. 4, may be of assistance.
Since the natural period at peaks is longer than at troughs,
typically the latching duration should be shorter at positive
extrema.

The second option available is the adaptive latching con-
trol, which is an optimization tool used to find out the latching
period thatmaximizes the amplitude of oscillation of the con-
trolled body. A similar approach has already been applied by
Peñalba et al. (2015) to overcome the uncertainty of the latch-
ing duration due to a partially nonlinear model.

The optimization loop is based on the assumption of the
existence and uniqueness of an optimal point, which is the
only maximum of a convex performance function. As widely
explained in 3.3.2, the presence of nonlinearities decreases
the optimal latching duration. On the other hand, a null value
for the latching period implies absence of control, which is
implicitly not optimal, unless the natural period is the same of
thewave period. The uniqueness of the optimal solution is not
straightforward to prove, but a comparison with linear case
can bring confidence: constant latching duration control has
been implemented in a linear simulation model with several
latching periods in order to draw the performance curve in
Fig. 5.

The graph in Fig. 5 validates the assumption of unique-
ness of the optimal point in a linear model, equal to 0.205 s,
correspondent to an equivalent natural period of 0.709 s. The
optimal latching duration is highlighted by a circle marker
on the top of the convex curve of Fig. 5.

Also in Fig. 5, the square marker represents the linear
undamped approximation calculated by Eq. (4). As expected,
the damping makes the actual optimal latching duration
smaller than the undamped, in this case 3.8 % smaller.

The model order reduction using the Hankel singular val-
ues as estimators of the significant order of the system,
proposed in 3.3.1, has been applied to approximate the linear
model with a second-order differential equation and evaluate

Fig. 5 Performance curve of latching control using a linear simulation
for a sphere with radius of 0.125 m

the damped natural frequency. The ratio of the second and
third-order Hankel singular values, about 43, is big but not
enough togive absolute confidence in the reduction.As amat-
ter of fact, the method was successfully applied by Fusco and
Ringwood (2011) to geometries with ratio ranging between
230 and 3204. Nevertheless, the reduction suggests a value
of damping factor ζ of about 0.1, which in turn make the
damped natural period rise from 0.693 to 0.698 s.

The calculation of the optimal point in the linear case is
made possible by the low computational cost of the simula-
tions. A similar approach in CFD is not feasible, due to the
huge computational effort required by each simulation.

The approach pursued by the adaptive control algorithm
is to tune the latching period within just one simulation
run, aiming to maximize the displacement of the body. The
first latching duration is an educated guess based, for exam-
ple, on the linear or the instantaneous natural period. When
latching is applied, the amplitude gradually increases, either
monotonically or with an intermediate maximum, and stabi-
lizes to a steady value. As the amplitude changes, the period
of motion adapts accordingly and, after a transient, stabi-
lizes, matching the forcing wave period. Likewise, when a
modification to the latching duration is carried out, both the
amplitude and the response period experience a transient that
ultimately leads to a steady state. Clearly, the transient is
longer when the latching is applied for the first time than
when the latching period is adapted. The adaptive algo-
rithm’s task is to wait for the steady state to occur, then
update the latching period in order to increase the response
of the device, taking into account the records of previous
modifications.

The adaptive strategy code is nested in the constant
algorithm shown in Fig. 3. The constant latching duration
algorithm takes care of applying the control when peaks
occur, using the latching period previously established by the
adaptive algorithm. As shown in Fig. 6, the adaptive strategy
is coded right before the latching algorithm and eventually
modifies the latching duration.

The adaptive strategy is divided in two phases: it first iden-
tifies when the period and amplitude are stable, thenmodifies
the latching duration. The steadiness is achieved when the
motion period matches the wave period and the amplitude is
constant, both within the percentage tolerances set either by
the user or by default. Once the transient has elapsed, the sta-
ble value of the amplitude is recorded and compared with the
last stable value in memory, in order to ascertain whether the
last modification of the latching duration increased the stable
amplitude. Assuming the convexity of the performance func-
tion, similar to Fig. 5, the latching duration is progressively
reduced, with a certain step�TL, as long as the performance
improves. Conversely, a worsening happens if the maxima
has been exceeded, so the direction of research is inverted
and the step is halved to refine the quest.
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Fig. 6 Adaptive latching duration control strategy. Latching duration:
TL; latching duration increment: �TL

3.5 Case study

In order to actually show the performance of the latching con-
trol algorithm and to highlight the strengths and weaknesses
of the CFD implementation, a case study is presented. The
CFD simulations are carried out in both 3D and 2D, hence
the body is, respectively, a sphere (3D simulations) and a cir-
cle (2D simulations) of radius 0.125 m and draft of 0.125 m.
The device is constrained to move in the heave direction. The
incoming wave is a linear harmonic function with constant
amplitude and period in order to clearly show the nonlinear

effects and the action of the adaptive latching algorithm. The
wave amplitude is 0.015 m, such that the oscillation of the
body is comparable to its dimension, highlighting nonlineari-
ties. Thewave period is 1.118 s, longer than the natural period
of both the sphere and the circle, which are between 0.671 s
and 0.894 s, allowing latching to be an effective controller,
as explained in 3.1.

A schematic representation of the device within the
Numerical Wave Tank is given in Fig. 1. For all the details
about the CFD implementation in OpenFOAM, such as the
Numerical Wave Tank, the mesh, the solver, the boundary
conditions, etc., refer to Davidson et al. (2015a). A more
detailed description of the boundary conditions is presented
in the appendix. Due to the small characteristic length of the
device, the Reynolds number is about 2 · 104 and the flow
can be assumed as laminar. This assumption is in agreement
with the experiments of Zurkinden et al. (2014) and Bhinder
et al. (2011).

Generally, the definition and meshing of the computa-
tional domain has the main consequences on the success and
quality of the simulation. The most relevant issues related to
a controlled floating object are analyzed. The risk of failure
due to over-deformation of the cells is particularly important
when control is applied, since the numerous big amplitudes
of motion caused by the controller stress the whole mesh
around the device. On the other hand, the accuracy of the
generated waves depends both on the cell dimension at the
free surface elevation and on the size of the generation and
absorption zones. A rule of thumb is that the generation zone
has to be between two and three times the wave length. In the
present case study, the wave length is 1.95 m, which means
at least 3.9 m for the generation zone. The resulting mesh is
presented in Fig. 7. As described in detail by Davidson et al.
(2015a), the central region contains a high-density mesh, that
horizontally stretches with distance away from the device.
Furthermore, the free surface region presents a high-density
mesh in the vertical direction. A boundary layer of finer
mesh has been added around the floater in order to describe
correctly the viscous effects. The thickness of the boundary
layer has been determined using the Blasius solution, chapter
9 of Kundu et al. (2011), resulting in a total thickness of 7.6
mm, divided with ten grid points.

Doubtless, the biggest impact on the computational load
is made by the number of dimensions simulated, namely two
or three, where the third dimension is horizontal and perpen-
dicular to the incoming wave direction. The 2D-boundary
conditions are such that all the equations are solvedwithin the
plane. As a consequence, the equivalent three-dimensional
counterpart is a cylinder of infinite length along the third
dimension.

In the simulations performed for this paper, in equal
hardware conditions, the simulation time required by a 3D
simulation is approximately 500 times bigger than its homol-
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Fig. 7 Computational mesh of
the numerical wave tank
domain. Central region with
high-density mesh; free surface
region with high vertical density
mesh

ogous in 2D. In absolute terms, 60 s of 3D simulation
typically requires the order of magnitude of several days or
weeks of computation. Such a long time makes prohibitive
to run a wide range of diverse simulations.

Therefore, the main focus is on the 2D simulations, since
the shorter computational time makes possible to change
several parameters and analyze the behavior of the control
algorithm. Section 4 shows the performances of the con-
stant and adaptive latching duration control applied to the
two-dimensional case study. Anyway, one single 3D latch-
ing simulation, along with other 2D simulations, has been
used in Sect. 5 to draw a comparison against a linear model.

4 Results

The results of the 2D case study are presented. By means of
the free decay analysis described in 3.3.2, the instantaneous
natural period has been found to range between 0.827 and
0.783 s. A basic constant latching duration control is applied
with a latching duration of 0.145 s, corresponding to the
nonlinear natural period of 0.827 s. The resulting time series
is shown in Fig. 8.

The controller is activated after 6.5 s, in order to wait for
the wave to arrive and excite steadily the body. When latch-
ing is applied, the amplitude increases, reaches a maximum
and decreases toward a stable value. The improvement in

Fig. 8 Constant latching duration control of a circle of radius 0.125 m
using a 2DCFD simulation, with regular wave (height: 0.015m, period:
1.118 s) and latching duration of 0.145 s

Fig. 9 Decay of the period of motion of the response in Fig. 8 when
latching control is applied. The horizontal axis represents the number
of peaks from the beginning of latching

amplitude achieved by the controller in this case is of the
38 %.

In the steady unlatched condition, the period of motion is
the same of the wave. When latching is applied, the period
suddenly increases and then is forced to match the excitation
period again. Figure 9 shows the decay of the period against
the number of peaks after the beginning of the latching.

The adaptive latching duration control calculation of Fig.
6 has been applied, initialized with a latching duration of
0.145 s, corresponding to the nonlinear natural period of
0.827 s. After 9 modifications of the latching duration, the
resulting optimum point has been identified at 0.1146 s, lead-
ing to an increment of amplitude of 49 %. Figure 10 shows
the progression of the optimization: the vertical bars indi-
cate the modification steps of the latching duration, while
the line graph represents the corresponding stable ampli-
tude achieved. The horizontal axis shows the simulation time
when the stable amplitude is reached. Note that, in order to
define the latching duration with a four-digit resolution, the
simulation time step must be smaller or equal to 0.0005 s.

As a first step, the latching duration is decreased, because
the nonlinear natural period is longer than the linear. Then, as
long as the stable amplitude increases the latching duration
is decreased. Conversely, every time the stable amplitude
decreases, the research of the optimal latching duration is
inverted and refined. The graph in Fig. 10 shows that the
optimization algorithm effectively converges.
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Fig. 10 Iterations of the adaptive latching duration control algorithm:
the horizontal axis represents the simulation timewhen the stable ampli-
tude is reached and a modification to the latching duration is performed

The foundations of the adaptive algorithm are built on the
hypothesis of convexity of the performance curve, assum-
ing the full nonlinear CFD to behave similarly to the linear
case shown in Fig. 5. In order to validate such assumption,
the performance curve has been reconstructed using several
constant latching duration simulations at different latching
periods. The results are shown in Fig. 11.

As expected, the performance trend presents an unique
peak, occurring for the very same latching period pointed
by the adaptive algorithm. Moreover, the optimal latching
duration for the CFD fully nonlinear model is smaller than
the optimal latching duration for the linear model. The graph
highlights the amplitude gainedwith the linear natural period
of 0.783 s, i.e., latching duration of 0.168 s. Finally, the per-
formance achieved with latching duration of 0.145 s is closer
to the optimal than to the linear, validating the approach of
the instantaneous natural period analysis. Table 1 summaries
the amplitudes and percentage improvements obtained with
the three choices of latching duration, namely linear natural

Table 1 Latching control performances using a two-dimensional CFD
simulation for a circle of radius 0.125 m

Latching duration [s] Amplitude [m] Improvement (%)

0 0.083 –

0.168 0.089 8

0.145 0.026 38

0.1146 0.028 49

The percentage improvements refer to the unlatched case

period, nonlinear instantaneous natural period, optimized
latching period with the adaptive algorithm. Table 1 shows
that the controller efficiency is quite sensitive to the latching
duration, making the physical implementation troublesome.
For example, a 15 % relative difference of latching duration
between 0.168 and 0.145 s causes a 30 % degradation in effi-
ciency. Previous work has studied the sensitivity to latching
duration (Babarit and Clement 2009), which is mainly due to
the sharp edges and abrupt modification of the control force.
Note that controllers other than latching may implement a
similar force characteristic (Bacelli and Ringwood 2015).
Implementing the exact latching duration in a real device
can be quite difficult due to the delay between the instant
when latching is commanded and the instant when the latch-
ing system actually locks the device. Various strategies have
been tested in order to mitigate such difficulties: Henriques
et al. (2012) utilize the threshold unlatching criterion while
Durand et al. (2007) advance the latching/unlatching instants
to cover the latching system response delay.

5 Discussion

The implementation of latching control in CFD is valuable
for being able to include all the nonlinearities and reproduce
results more realistic than the linear model ones. Never-

Fig. 11 Performance curve of
latching control using a
two-dimensional CFD
simulation for a circle of radius
0.125 m
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Fig. 12 Figure 11 constant
latching duration control of a
sphere of radius 0.125 m using a
linear simulation, with regular
wave (height: 0.015 m, period:
0.118 s) and latching duration of
0.205 s

Fig. 13 Figure 12 constant
latching duration control of a
sphere of radius 0.125 m using a
3D CFD simulation, with
regular wave (height: 0.015 m,
period: 0.118 s) and latching
duration of 0.205 s

theless, the huge computational cost makes prohibitive an
intensive application, especially in an early design stage. On
the other side, a more suitable usage can be to provide a
benchmark to validate and evaluate the results of linear or
partially nonlinear simulation models, eventually defining a
range of reliability in which the linear model is acceptable.
Indeed, Sect. 5.1 compares the results of a linear model with
the outcome of CFD.

5.1 Comparison with linear model

The 3D case study has been simulated in CFD in order to
make a comparison with the linear simulation model. The
latching duration has been chosen equal to 0.205 s, matching
the linear optimal latching duration showed in Fig. 5. The

resulting linear and CFD time series are shown, respectively,
in Figs. 12 and 13.

The first evident difference is in the transient shape: while
the linear simulation shows a monotonic growth towards the
steady value, the CFD time series presents an oscillatory
behavior with a visible maximum and minimum before sta-
bilizing. When the dynamics elapses, the steady amplitude
of motion in CFD is equal to 0.074 m, smaller than the 0.084
m of the linear model. Furthermore, the transient in CFD
lasts in about 33 s, 3 times longer than in the linear simu-
lation, which reaches the steady state in less than 11 s. The
amplitude transient is linked to a significant period of motion
transient, shown in Fig. 14.

Section 4 showed several two-dimensional results that
need to be compared as well. Since the hydrodynamic matri-
ces needed for the linear simulations are computable only
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Fig. 14 Figure 13 decay of the
period of motion of the response
in Fig. 13 when latching control
is applied. The horizontal axis
represents the number of peaks
from the beginning of latching

Fig. 15 Figure 14 response
amplitude operators of
horizontal cylinders with 0.125
m radius and length ranging
from 0.25 to 2.5 m

for 3D geometries, a direct comparison requires the BEM
software to simulate an infinite long cylinder. With a prac-
tical point of view, a cylinder is considered infinitely long
when a variation of length doesn’t produce a variation of
response. Indeed, Fig. 15 shows the asymptotic trend of the
response amplitude operator (RAO), which is the transfer
function between the surface elevation and the displacement
of the body.

Therefore, control has been applied to a long horizontal
cylinder of 2.5 m. The relative improvements achieved with
respect to theunlatchedmotion are summarized inTable 2.As
inSect. 3.4 for the sphere, the actual optimal latchingduration
is smaller than the linear approximation, respectively 0.132
and 0.168 s. The relative difference in latching duration is
about 21.3 %, considerably bigger than the 3.8 % of the
sphere. The bigger discrepancy is coherent with the higher
damping that an infinite long cylinder provides to the system.

The presence of viscous losses and nonlinearities causes
the CFD improvements to be considerably lower than the

Table 2 Comparison between latching performances in linear andCFD
simulations

Latching
duration [s]

Linear
improvement (%)

CFD
improvement (%)

0.168 30 8

0.145 57 38

0.132 62 40

0.1146 56 49

The percentage improvements refer to the unlatched case

linear for every latching duration. The overestimation of the
amplitude in the linear model leads to a too optimistic pre-
diction of the power caption under control. Notwithstanding
the importance of an accurate prediction of the motion, the
key feature to highlight is the different optimal latching dura-
tion. While the best linear performance happens at 0.132 s
with an improvement of 62 %, the CFD simulation shows a
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lower improvement of 49 % at a smaller latching duration of
0.1146 s.

As far as the controller is concerned, the main purpose of
the simulation model is to reveal the optimal latching dura-
tion for the real device. An inaccurate simulation model is
not only unable to effectively predict the response, but also
points to a latching duration which, even though is optimal
for the simulation model, is suboptimal for the real device.
Since the CFDmodel is more accurate than the linear model,
the main advantage of having the latching control algorithm
implemented in CFD is to indicate a latching duration that
suits better the real device.

6 Conclusions

The controller performances and parameters are strictly
related to the simulation model and its accuracy. The reli-
ability, as well as the complexity of a model depend on the
ability of describing nonlinear behavior. The simplest and
computational lightest model is linear, while CFD is able to
include all the nonlinearities, at the prize of a huge com-
putational load. The matter of fact is that nonlinearities are
magnified by the control, which exaggerates the amplitude
of motion and applies abrupt forces directly on the device.
While linearization can be acceptable with the uncontrolled
device, it becomes an oversimplification when control is
applied. Nevertheless, control has never been applied in a
CFD environment. In this paper, latching control has been
implemented in the CFD open source software OpenFOAM.

The results confirm that founding the latching control on
a linear model is misleading and not optimal. Primarily, the
amplitudes calculated by the linear model are too optimistic,
leading to an overestimation of the power extraction. More-
over, the optimal latching duration pointed out by the linear
model is inadequate to maximize the performances of the
real device. As a matter of fact, the optimal latching dura-
tion depends on the natural period, which is not constant and
unique as in the linear approximation. On the contrary, the
nonlinear natural period is enlarged by the damping of the

system and varies along with the displacement of the device.
An optimization tool has been coded in CFD in order to find
the actual optimal latching duration, which is smaller than
the linear due to the bigger natural period.

Acknowledgments This paper is based upon work supported by Sci-
ence Foundation Ireland under Grant No. 13/IA/1886.

Appendix

The boundary conditions of the 3D numerical wave tank are
summarized in Table 3. Taking advantage of the symmetry of
the problem, only half of the tank is simulated.The names of
the boundaries are self-explanatory while the four fields that
need to be defined are the phase fraction (α), the velocityU ,
the dynamic pressure (pd = 1

2ρ |U |2) and the displacement
of the cells (pointDisplacement). The phase fractionα ranges
from 0 (only air) to 1 (only water).

The names of the boundaries refer to version 2.3 of Open-
FOAM (OpenFOAM 2015). Calling � the general field
(either α,U , pd or pointDisplacement), the boundary condi-
tions are the following:

– symmetryPlane: it defines the boundary as a symmetry
plane.

– fixedValue (0): it sets � to zero.
– zeroGradient: normal gradient of � is zero.
– waveAlpha: input wave surface elevation determined by
waves2Foam (Jacobsen et al. 2012).

– waveVelocity: input wave velocity determined by
waves2Foam (Jacobsen et al. 2012).

– inletOutlet: zeroGradient in case of outflow, fixedValue
(0) in case of inflow.

– pressureInletOutletVelocity: a zeroGradient condition is
applied for outflow while for inflow U is evaluated from
the flux.

– totalPressure: total pressure pT = p0 + 1
2ρ |U |2 is fixed,

where p0 is the reference pressure and ρ is the density;
when U changes, p0 is adjusted accordingly.

Table 3 Boundary conditions for the 3D numerical wave tank using OpenFOAM 2.3

α U pd pointDisplacement

Front symmetryPlane symmetryPlane symmetryPlane symmetryPlane

Back zeroGradient fixedValue (0) zeroGradient fixedValue (0)

Inlet waveAlpha waveVelocity zeroGradient fixedValue (0)

Outlet waveAlpha waveVelocity zeroGradient fixedValue (0)

Bottom zeroGradient fixedValue (0) zeroGradient fixedValue (0)

Atmosphere inletOutlet pressureInletOuletVelocity totalPressure fixedValue (0)

Sphere zeroGradient movingWallVelocity fixedFluxPressure calculated
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– movingWallVelocity: the normal of the patch value is
replaced so that the flux across the patch is zero.

– fixedFluxPressure: the pressure gradient is adjusted such
that the flux on the boundary is that specified by the veloc-
ity boundary condition.

– calculated: the displacement of the cell is calculated
according to the Newton’s second law of dynamics.

In the case of a 2D simulation, which is a one-cell-thick
3D simulation, the boundary condition for every field of the
boundary front and back is called empty. As a result, the third
dimension will be neglected during the calculations.
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