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Abstract—The present study introduces a real-time control
algorithm for applications involving energy maximisation and
subject to technological limitations. Development of Wave energy
converters constitutes an actual topic of research, in their designs
and fluid-interactions, and particularly on their controllability.
Immersed WECs are subject to fluid-interaction forces, generat-
ing unusual solicitations specific to hydrodynamic equation, such
as radiation force or excitation forces.

Various control strategies were recently developed and more
advance control algorithms are currently applied on WECS,
such as Model Predictive Control [1], or Pseudospectral optimal
control [2]. Such control strategies, capable of maximizing the
energy production while insuring the respect of path constraints,
are more realistic and applicable in real conditions involving
technological limitation aspects.

This paper presents a receding horizon type control, based
on pseudospectral approach in the control problem resolution.
Dealing with irregular waves on a fixed control horizon, the
presented control need to work with nonperiodic functions,
implying the change of the basis functions involved in the
description of the state and control variables, namely the half-
range Chebyshev Fourier functions.

Application of the receding horizon control is presented for a
generic WEC, and compared with a standard MPC algorithm.

I. INTRODUCTION

In the wave energy field, various control strategies have been
developed, such as latching control [3], declutching control
[4], phase-control [5] and compared [6]. Energy maximisation
remains the main objective of a control algorithm, but despite
the development of advanced control strategies, handling tech-
nological limitations during operation, is a necessary control
ability. The respect of path constraints arises in nowadays
since the development of various WECs and the multiplicity
of experimental testing, bring the wave energy field into the
design of applicable and practical control algorithms. Model
Predictive Control (MPC), introduced in the wave energy
domain [1], allows an energy maximisation while ensuring
the respect of path constraints, leading to an interesting and
realistic approach for the control of WEC. More recently,
pseudospactral optimal control was introduced in an energy
maximisation problem for wave energy conversion [7], and
recently improved in [8] allowing its application in real-time
via a receding control horizon. The present study introduces
the receding horizon pseudospectral control and compare its
performance with a standard MPC algorithm.

II. OPTIMAL CONTROL PROBLEM FORMULATION

As one degree of freedom systems constitute generic case
studies to implement advance control strategies, facilitating the
understanding of the control performance, the wave energy
converter (WEC) considered in this study is constrained to
move in heave only. The studied floating point absorber with a
spherical shape, is set into motion by the incoming wave field.
A power takeoff (PTO) module is responsible for converting
the mechanical energy of the WEC into electrical energy. The
absorbed energy is potentially usable and connectible to a local
grid.
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Fig. 1. Wave energy converter

The control algorithm, implemented on an embedded sys-
tem, is crucial to command the actuators and more gener-
ally, the PTO parameters. Not only, the control algorithm
maximises the WEC energy absorption, but it also ensures



the respect of mechanical or electrical limitations. In our
case study, the control algorithm is defined to generate an
optimal trajectory followed in real-time by the WEC through
the command of the PTO.

The linearised WEC equation of motion, or Cummins’
equation [9], is presented in (1).

(m+ µ)
dv

dt
+

∫ t

0

K(t− τ)v(τ)dτ + SHx = Fex + u (1)

where x and v represent the vertical position and the
velocity of the system, m and µ are, respectively, the mass and
the infinite frequency added mass asymptote. K is the kernel
function of the radiation force, SH is the linearised hydrody-
namic stiffness, Fex is the excitation force, corresponding to
the pressure force generated by the incoming wave field and
finally, and u is the control force, i.e. the force applied by the
PTO on the WEC’s hull.

The absorbed energy over an give time horizon T , under
the assumption of no energy losses, is given by,

E = −
∫ T

0

u(t)v(t)dt (2)

The implemented control is design to maximize the energy
absorption E over a given control horizon T . One needs
to exhibit motion and control trajectories to maximize the
quantity E. In order to estimate the energy production, the
excitation force is assumed to be known over the control
horizon T in the future. An estimation of the forthcoming
values of Fex are estimated by a specific prediction algorithm
based on wave elevation probes, and is not considered in this
study.

Not all trajectories are acceptable in real conditions, course
and control force limitations are obviously part of the control
objectives and cannot be eluded without generating unreal-
istic trajectories. Path constraints are expressed in terms of
inequality constraints over the whole control horizon T , and
for t ∈ [0, T ],

|x(t)| ≤ Xmax (3)
|v(t)| ≤ Vmax (4)
|u(t)| ≤ Umax (5)

where Xmax, Vmax, Umax ∈ R+ correspond to technologi-
cal limitations. The control problem is fully defined, intending
to exhibit motion and control trajectories that maximized the
energy production defined in (2), while respecting the path
constraints described in (5) and insuring realistic description
of the system dynamics presented in (1).

III. PSEUDOSPECTRAL OPTIMAL CONTROL

The control problem defined in Section II falls into standard
optimal control problematics, solved for various applications
and for many years. Various methodologies were developed in
order to answer optimal control problem, among which MPC

and pseudospectral control. The algorithm presented here is
based on the pseudospectral optimal control to generate the
reference trajectory to be followed by the WEC [7].

Spectral methods are characterised by the projection of the
state and control variables into a specific orthogonal set of
basis functions as stated in (6).

x(t) ≈ xN (t) =

N∑
i=1

aiψi(t) = Ψx̄ (6)

where Ψ = [ψ1, . . . , ψN ]. The optimal control is thusly
expressed in terms of projection vectors derived from the
trajectory projections, x̄ = [a1, . . . , aN ], leading to a finite-
order control problem describing continuous control and state
variables.

The choice of a particular set of basis functions is thighly
related to the type of control problem considered and par-
ticularly on the type of control and state variables involved
in the system dynamics. In the specific case of wave energy
conversion, a legitimate choice for the basis functions are
the Fourier function, i.e. orthogonal trigonometric functions.
Approaches based on generalised truncated Fourier series is
presented in for periodic control problems. One drawback of
this methodology relies in the apparition of Gibbs phenomenon
for nonperiodic control problem, i.e. control problem with dif-
ferent initial and final boundary conditions. The present study
is based on a recent development on the Fourier extension of
nonperiodic functions.

The orthogonal set of basis functions employed for the
pseudospectral optimal control approach is based on half-range
Chebyshev Fourier functions [10], defined from trigonometric
polynomials called half-range Chebyshev polynomials Tk and
Uk respectively of the first and second kind.

Definition 1. Let Thk (y) be the unique normalized sequence
of orthogonal polynomials satisfying∫ 1

0

Thk (y)yl
1√

1− y2
dy = 0, l = 0, ..., k − 1 (7)

4

π

∫ 1

0

Thk (y)2 1√
1− y2

dy = 1 (8)

The set {Thk (y)}∞k=0 is a set of half-range Chebyshev polyno-
mials of the first kind.

Definition 2. Let Uhk (y) be the unique normalized sequence
of orthogonal polynomials satisfying∫ 1

0

Uhk (y)yl
√

1− y2dy = 0, l = 0, ..., k − 1 (9)

4

π

∫ 1

0

Uhk (y)2
√

1− y2dy = 1 (10)

The set {Uhk (y)}∞k=0 is a set of half-range Chebyshev polyno-
mials of the second kind.

The set of orthogonal basis functions {Ψi(t)}Ni=1 is de-
fined by the union of the two sets {Tk(cos πt2 )}nk=0 and
{Uk(cos πt2 ) sin πt

2 }
n−1
k=0 called half-range Chebyshev Fourier

functions of the first and second kind respectively. Their



trigonometric definitions are particularly suited to approximate
wave elevation or excitation forces involved in a wave energy
maximisation problem, allowing fast convergent rate during
the state and control variables projections, and bringing in-
sights in the understanding of the phenomenon in the fre-
quency domain since the HRCF functions are hierarchically
organised by fundamental frequency.

Cost function, path constraints and dynamical constraints
are expressed in terms of projection vectors reducing the
computational time involved in solving the parametrised op-
timal control problem. Pseudospectral method considers the
equality and inequality constraints at particular instants tk,
called collocation points, at which the constraints must be
satisfied. Each constraints is expressed as a residual terms
R that needs to be minimized by the employed optimization
algorithm. As an example, the dynamical equation of the WEC
is described in terms of residuals at the collocation nodes in
(11).

R(tk) = Ψ(tk)
(
(m+ µ)Dv̄ + P v̄ + SH x̄− F̄ex − ū

)
= 0
(11)

where D represents the differentiation matrix [11], and P
the convolution matrix defined in [8]. In the same way, the
energy absorption, i.e. the cost function J to maximize, is
rewritten in the following form,

J = −ūT v̄ (12)

where T denotes the transpose vector.
The obtained control problem designed to maximized the

cost function (12), while insuring the nullity of the residuals at
each collocation points tk, such as (11) and under inequality
constraints, can be solved using standard quadratic problem
solving algorithms, such as active-set or interior-point meth-
ods. The obtained solution of the derived control problem
will determined each projection vectors of the state and
control variables. From the solution projections, the optimal
trajectories can be computed in the time domain and used
as a reference trajectory that the WEC needs to follow. For
more information about the implementation of the half-range
Chebyshev Fourier basis function, the reader may refer to the
following article [15].

IV. RECEDING HORIZON CONTROL

The control algorithm presented in this study is hierarchi-
cally organised into two nested loops responsible for, respec-
tively, the generation and tracking of the optimal trajectory.
The trajectory generation is done using the pseudospectral
approach presented in the previous Section II. A standard
backstepping method is employed in order to track the ref-
erence trajectory computed by the higher algorithm loop. The
control will determine a new trajectory at each time-step of
the trajectory generation loop, leading to a receding horizon
control. The complete structure of the receding horizon control
is presented in Figure 2.
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Fig. 2. Block diagram of the control algorithm

The time intervals between two consecutive calculations of
the optimal trajectory is set to Ts = 0.5s. The trajectory
tracking is implemented inside a Runge-Kutta temporal dis-
cretization with a time-step of 1ms. The backstepping control
employed to track the optimal trajectory uses the second order
ordinary differential equation (1) to define the control force
command at each time-step of the Runge-Kutta simulation.

V. MPC COMPARISONS

The presented algorithm is tested in regular and irregular
waves, and compared with a standard MPC algorithm pre-
sented in [12]. The full algorithm description is presented
in [12] and follow a standard MPC formulation where the
dynamical equation (1) is represented by a continuous time
state-space. Different methods can be employed to define a
state-space model for the convolution product in (1). In this
study, two methodologies are studied, namely the Prony’s
method [13] and the NTNU Toolbox [14]. The Prony’s method
expressed the kernel of the radiation convolution product as
a sum of complex exponential functions. The approximation
obtained from the kernel function K is used to define a first
order differential equation and thus a continuous state-space.
The NTNU Toolbox is based on a least square approximation
of the Fourier transform of the kernel function by a fractional
transfer function. The approximation based on the fractional
transfer function is used to design a continuous time state-
space. Using a First order holder, instead of a more common
zero order holder,

xd[k + 1] = Φ(∆t)xd[k] (13)

· · ·+
∫ (k+1)∆t

k∆t

Φ((k + 1)∆t− τ)Bu(τ)dτ

· · ·+
∫ (k+1)∆t

k∆t

Φ((k + 1)∆t− τ)BFex(τ)dτ

with, Φ(t) = eAt where A is the matrix involved in the
continuous time state-space dynamical model of the wave
energy device described in equation (14).

ẋ = Ax+B(Fex + u) (14)

Then it leads to a discrete-time state-space model on the
form,



TABLE I
PARAMETERS OF THE CONTROL ALGORITHMS

Algorithm MPC RHPSC
Control horizon [s] 15 20
Parameters ∆t = 0.1 s n = 10

xd[k + 1] = Φ(∆t)xd[k] (15)
· · ·+ Γ(u[k] + Fex[k])

· · ·+ Λ(∆u[k + 1] + ∆Fex[k + 1])

where,

∆u[k + 1] = u[k + 1]− u[k] (16)
∆Fex[k + 1] = Fex[k + 1]− Fex[k] (17)

and,

Γ = A−1(Φ(∆t)− I)B (18)
Λ = A−1(Γ−∆tB)/∆t (19)

For more information about the MPC implementation, the
reader may refer to the following articles [12] and [15]. The
cost function, representing the energy absorption over a fixed
control horizon T is expressed in the discrete-time based on
the state-space defined in (16). As presented in [12], it leads to
a quadratic cost function. The control problem is then solved
using standard quadratic optimization algorithms.

The parameters used to implement both the receding horizon
pseudospectral control and MPC are presented in Table I.

The control horizon, i.e. the time under which the control
algorithm will maximised the energy production, is fixed to
15s for MPC and 20s for the pseudospectral approach. A full
convergence study, showing the relative performance of MPS
and RHPSC, can be found in [15]. This convergence study
was performed to derive a fair comparison between MPC and
PS control where both of the algorithms were tuned to give the
best trade-off between accuracy and computational time. The
time-step employed to run the MPC algorithm is thus fixed to
0.1s. The number of basis functions involved in the description
of the control and state variables in the pseudospectral method
is fixed to 21.

The computational time comparison uniquely involves the
resolution of the derived QP for MPC and Pseudospectral
control. Both algorithms need additional computational time
either to interpolate the optimal control force at each time
step of the real-time loop for MPC, or to estimate the control
force, based on a backstepping approach, for a PS contol. In
both cases, the additional computational time is negligeable
compared to the time needed for the resolution of the QP.

Not all recent control strategies are compared in the present
paper, especially [16]; since MPC and PS present directly
competing formulations, describing state and control variables
with a particular sets of basis functions and leading to a

constrained QP optimisation, their direct comparison seems
natural.

A. Regular waves
With the parameters defined by Table I, the MPC and

receding horizon pseudospectral control were tested under
regular waves solicitations for period varying between 5s and
15s. Quadratic optimization problem are solved, for both MPC
and receding horizon pseudospectral control, with a standard
active-set method from the quadrprog function of MATLAB.

The energy absorption presented in Figure 3, for regular
incoming waves under control without path constraints, is
normalized by the theoretical maximum derived from the
optimal complex-conjugate control [17]. The computational
time presented corresponds to the time needed to solve each
quadratic problem with am active-set methodology. Both MPC
and the pseudospectral control present the same energy capture
between 85% and 95% of the theoretical maximum. For both
control algorithms, the absorbed energy is decreasing for large
regular wave periods, since the control horizon is fixed, smaller
wave periods allows a larger number of waves taken into
account within the control horizon and thus a greater accuracy.
The computation time does not depend on the incoming wave
periods, but is shown to be around three times smaller for
the pseudospectral control, around 5ms, than for the standard
MPC, with a computational time of 15ms.
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Fig. 3. Normalised absorbed power and QP computational time for MPC and
RHPSC algorithm for different regular wave periods.

Figure 4 presents the normalised energy absorption and the
computational time needed for both MPC and the pseudospec-
tral control, but with path constraints, i.e. limitation on the



position and velocity of the device. The WEC position is
limited between ±0.1m and its velocity between ±0.1m/s.
The impact of such technical limitations is significant, and
increase with the wave period of the waves. Indeed, larger
wave periods, generate greater excitation forces and increase
the body motion amplitudes, since the constraints are kept
constant for all the different regular waves tested, their impact
will be higher for larger wave periods. No conclusion can
be made on the actual amount of absorbed energy, since
the results show only a normalised energy production. MPC
and pseudospectral control are affected in the same way
by technological limitations, and provide approximately the
same amount of absorbed energy. However, while comparing
the computational times involved in the resolution of each
quadratic problem, the presence of path constraints are much
more penalising for MPC than for the pseudospectral ap-
proach. Going from 15ms to 100ms for the MPC algorithm, it
only goes from 5ms to 20ms for the pseudospectral approach.
This might be due to the smaller number of variables involved
in the quadratic problem resolution.
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Fig. 4. Normalised absorbed power and QP computation time for MPC
and RHPSC algorithms for different regular wave periods under position and
velocity path constraints.

B. Irregular waves

Irregular waves generated from a Pierson-Moskowitz spec-
trum discretized in frequency between 0.02Hz and 0.5Hz
with a frequency step of df = 5.10−3Hz, are used to
immersed the WEC under control in a more realistic sea.
Normalised energy absorption and computational time are

presented in Figure 5. The irregular aspect of the excitation
force does not affect significantly neither the energy absorption
neither the computational time. As in the regular waves study,
the energy absorption diminution with large wave period is
significant. Since in a 15s peak period spectrum, much larger
wave period are generated, the energy drop is more significant
for irregular waves, and normalise energy absorption is found
between 90% and 95% for the pseudospectral approach and
between 80% and 95% for MPC.
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Fig. 5. Normalised absorbed power and QP computational time for MPC and
RHPSC algorithm for different irregular sea states.

Time series of the position, velocity and control force
obtained from WEC controlled with both MPC and pseu-
dospectral control are presented in Figure 6 without any path
constraints. All the proposed trajectories follow the optimal
one determined from the complex-conjugate control [17].

To illustrate the ability of both control algorithms to handle
path constraints, i.e. technological limitations, time series of
the position, velocity and control force are presented in Figure
7 for a controlled WEC under path constraints. Both controls
respect the imposed technological limitations, while absorbing
maximum energy from the waves. The presented trajectories
for MPC and pseudospectral control are almost identical, and
lead to the same amount of absorbed energy.

VI. CONCLUSION

Control strategies presented in this study, maximise the
energy production of a particular WEC and ensure the respect
of path constraints, representing technological limitations such
as limited stroke or control force. MPC and pseudospectral
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Fig. 6. Normalised absorbed power and QP computational time for MPC and
RHPSC algorithms for different irregular sea states.
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Fig. 7. Normalised absorbed power and QP computational time for MPC and
RHPSC algorithms for different irregular sea states under path constraints.

control algorithms contribute to deliver to wave energy in-
vestors, a more advance, realistic and practical control strategy.
Both of the algorithms tested in the present study, and based
on a linear dynamical model of the considered WEC, can be
run in real-time.

Further improvements will be needed to design an efficient
control for WEC, since the fluid-interaction forces involved
in its equation of motion remains highly nonlinear. The fluid
forces acting on the WEC’s hull depend on the immersed

surface that is changing over time, depending on both the wave
elevation and the body position. Additional nonlinear viscous
forces need to be considered, since large velocity magnitude
generate a higher drag force and turbulence effects could arise
around sharp hull edges. Finally, the efficiency of the PTO,
and its chosen technology, i.e. electrical or hydraulic PTO,
affects the way the WEC needs to be controlled. The listed
nonlinear effects, lead to a control strategy that will have to
handle nonlinear dynamical equations, nonlinear cost function
and nonlinear path constraints, in a effective way and a limited
computational time.
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